Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización

La transición a las energías renovables es necesaria para el futuro de las sociedades humanas alrededor del mundo. Por ello, los conjuntos de datos fiables de los recursos disponibles tienen un papel crucial debido a la variabilidad e intermitencia de dichos recursos. Sin embargo, suele ser difícil...

Full description

Autores:
Vargas Brochero, José Mario
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9583
Acceso en línea:
https://hdl.handle.net/11323/9583
https://repositorio.cuc.edu.co/
Palabra clave:
Reanálisis
Sistemas de energía
Energías renovables
Homer
Desalación
Reanalysis
Energy systems
Renewable energy
HOMER
Desalination
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_101632b5a65cebaf5e14928e8dc08e33
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9583
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
title Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
spellingShingle Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
Reanálisis
Sistemas de energía
Energías renovables
Homer
Desalación
Reanalysis
Energy systems
Renewable energy
HOMER
Desalination
title_short Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
title_full Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
title_fullStr Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
title_full_unstemmed Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
title_sort Evaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilización
dc.creator.fl_str_mv Vargas Brochero, José Mario
dc.contributor.advisor.none.fl_str_mv Canales Vega, Fausto
Rivillas Ospina, Germán
dc.contributor.author.none.fl_str_mv Vargas Brochero, José Mario
dc.contributor.jury.none.fl_str_mv Navas Martínez, Carlos Julián
Bolívar Carbonell, Marianela
dc.subject.proposal.spa.fl_str_mv Reanálisis
Sistemas de energía
Energías renovables
Homer
Desalación
topic Reanálisis
Sistemas de energía
Energías renovables
Homer
Desalación
Reanalysis
Energy systems
Renewable energy
HOMER
Desalination
dc.subject.proposal.eng.fl_str_mv Reanalysis
Energy systems
Renewable energy
HOMER
Desalination
description La transición a las energías renovables es necesaria para el futuro de las sociedades humanas alrededor del mundo. Por ello, los conjuntos de datos fiables de los recursos disponibles tienen un papel crucial debido a la variabilidad e intermitencia de dichos recursos. Sin embargo, suele ser difícil encontrar datos de medición completos y uniformes con una excelente cobertura espacial y temporal en el lugar de destino. Existen diversas fuentes de datos alternativas, aunque una de las más interesantes son los proyectos de reanálisis por su cobertura mundial y su amplia resolución temporal. Por lo tanto, este estudio pretende evaluar la viabilidad de utilizar conjuntos de datos de reanálisis para alimentar sistemas de energías renovables. Se utilizó HOMER para diseñar el sistema óptimo para suministrar energía a una planta desaladora en La Guajira con los conjuntos de datos ERA5-Land y MERRA-2, y se comparó con el diseño de IDEAM (mediciones) utilizando métricas de desempeño relevantes. Los resultados muestran en su mayoría que la demanda puede ser abastecida con energía fotovoltaica sin necesidad de un generador diésel. El coste de la energía varía entre 83 €/MWh y 199 €/MWh, dependiendo de la carga y la capacidad de escasez. Llegamos a la conclusión de que ambos conjuntos de tienen buen rendimiento para reproducir la radiación solar, pero el ERA5-Land supera al MERRA-2 en términos de fiabilidad. Además de que es viable utilizar soluciones alternativas como las de este estudio para obtener agua potable.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-21T20:40:28Z
dc.date.available.none.fl_str_mv 2022-10-21T20:40:28Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/9583
dc.identifier.instname.spa.fl_str_mv Corporacion Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC-Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/9583
https://repositorio.cuc.edu.co/
identifier_str_mv Corporacion Universidad de la Costa
REDICUC-Repositorio CUC
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Acosta Cubides, L. D., & Herrera Quintero, S. (2021). Metodología para el uso de captadores de rocío. Una aproximación a una solución sostenible para el recurso hídrico en Maicao, La Guajira. [Fundación Universidad de América]. https://hdl.handle.net/20.500.11839/8594
Ahmad, M., & Zeeshan, M. (2022). Validation of weather reanalysis datasets and geospatial and techno-economic viability and potential assessment of concentrated solar power plants. Energy Conversion and Management, 256, 115366. https://doi.org/10.1016/j.enconman.2022.115366
Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. https://doi.org/10.1016/j.tjem.2018.08.001
Aliana, A., Chang, M., Østergaard, P. A., Victoria, M., & Andersen, A. N. (2022). Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks. Renewable Energy, 190, 699–712. https://doi.org/10.1016/j.renene.2022.03.163
Anastasiades, G., & McSharry, P. E. (2014). Extreme value analysis for estimating 50 year return wind speeds from reanalysis data. Wind Energy, 17(8), 1231–1245. https://doi.org/10.1002/WE.1630
Arribas, L., Lechón, Y., Perula, A., Domínguez, J., Ferres, M., Navarro, J., Zarzalejo, L. F., Barquero, C. G., & Cruz, I. (2021). Review of data and data sources for the assessment of the potential of utility-scale hybrid wind–solar pv power plants deployment, under a microgrid scope. In Energies (Vol. 14, Issue 21). https://doi.org/10.3390/en14217434
Baek, S., Park, E., Kim, M. G., Kwon, S. J., Kim, K. J., Ohm, J. Y., & del Pobil, A. P. (2016). Optimal renewable power generation systems for Busan metropolitan city in South Korea. Renewable Energy, 88, 517–525. https://doi.org/10.1016/j.renene.2015.11.058
Barrado, C., Perez-Batlle, M., Lopez, M., & Pastor, E. (2016). Paired T-test analysis to measure the efficiency impact of a flying RPAS in the non-segregated airspace. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 1–7. https://doi.org/10.1109/DASC.2016.7778008
Barrientos Marín, J., & Villada, F. (2020). Regionalized discount rate to evaluate renewable energy projects in Colombia. International Journal of Energy Economics and Policy, 10(2), 332–336. https://doi.org/10.32479/ijeep.8924
Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D., & El-Halwagi, M. M. (2019). Technology review and data analysis for cost assessment of water treatment systems. Science of the Total Environment, 651, 2749–2761. https://doi.org/10.1016/j.scitotenv.2018.09.363
Boilley, A., & Wald, L. (2015). Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface. Renewable Energy, 75, 135–143. https://doi.org/10.1016/J.RENENE.2014.09.042
California Energy Comission. (2017). PV modules. List of PV Modules.
Cámara de Comercio de La Guajira. (2021). Informe socioeconómico de La Guajira 2021. https://www.camaraguajira.org/nosotros/informe-socioeconomico-departamento-de-la-guajira.html
Canales, F. A., Beluco, A., & Mendes, C. A. B. (2008). A matter of cost. International Water Power and Dam Construction, 60(12), 43–45.
Canales, F. A., Beluco, A., & Mendes, C. A. B. (2017). Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER). International Journal of Sustainable Energy, 36(7), 654–667. https://doi.org/10.1080/14786451.2015.1080706
Canales, F. A., Jurasz, J. K., Guezgouz, M., & Beluco, A. (2021). Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustainable Energy Technologies and Assessments, 44, 101062. https://doi.org/10.1016/j.seta.2021.101062
Cannon, D. J., Brayshaw, D. J., Methven, J., Coker, P. J., & Lenaghan, D. (2015). Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain. Renewable Energy, 75, 767–778. https://doi.org/10.1016/J.RENENE.2014.10.024
Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36(February), 100531. https://doi.org/10.1016/j.seta.2019.100531
Castillo-Ramirez, A., Mejia-Giraldo, D., & Giraldo-Ocampo, J. D. (2015). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171
Centre, J. R., for Energy, I., Transport, Weidner, E., Jakubcionis, M., Vallei, M., Sigfusson, B., Jäger-Waldau, A., Lacal Arántegui, R., Perez Fortes, M., Carlsson, J., Spisto, A., Moles, C., Giuntoli, J., Marco, G., Lazarou, S., & Magagna, D. (2014). Energy Technology Reference Indicator (ETRI) projections for 2010-2050. Publications Office. https://doi.org/doi/10.2790/057687
Chadee, X. T., & Clarke, R. M. (2014). Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. In Renewable and Sustainable Energy Reviews (Vol. 30, pp. 45–58). Pergamon. https://doi.org/10.1016/j.rser.2013.09.018
Chawla, I., & Mujumdar, P. P. (2020). Evaluating rainfall datasets to reconstruct floods in data-sparse Himalayan region. Journal of Hydrology, 588(May), 125090. https://doi.org/10.1016/j.jhydrol.2020.125090
Contreras, D. (2019). The integrated spatial pattern of child mortality during the 2012-2016 drought in La Guajira, Colombia. Sustainability (Switzerland), 11(24). https://doi.org/10.3390/SU11247190
Dawoud, S. M., Lin, X. N., Sun, J. W., Okba, M. I., Khalid, M. S., & Waqar, A. (2015). Feasibility Study of Isolated PV-Wind Hybrid System in Egypt. Advanced Materials Research, 1092–1093, 145–151. https://doi.org/10.4028/www.scientific.net/amr.1092-1093.145
Daza-Daza, A. R., Serna-Mendoza, C. A., Carabalí-Angola, A., Daza-Daza, A. R., Serna-Mendoza, C. A., & Carabalí-Angola, A. (2018). The Water Resource in the Wayuu Indigenous Communities of La Guajira Colombiana. Part 2: Qualitative Study of the Conditions of Hygiene, Cleanliness and Water Availability. Información Tecnológica, 29(6), 25–32. https://doi.org/10.4067/S0718-07642018000600025
Doddy Clarke, E., Griffin, S., McDermott, F., Monteiro Correia, J., & Sweeney, C. (2021). Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere, 12(5), 624. https://doi.org/10.3390/atmos12050624
Duarte, L., Revollo, J., Betancur, D., Lopez, G., Isaac, I., Cardona, H., & Ortega, S. (2019). Placement of weather stations in Colombia for future applications in solar and wind energy forecasting models. 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE), 1–6. https://doi.org/10.1109/FISECIGRE48012.2019.8984983
ECMWF. (2020, November 9). Fact sheet: Reanalysis | ECMWF. https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysis
Gauthier, T. D., & Hawley, M. E. (2015). Statistical Methods. In Introduction to Environmental Forensics: Third Edition (pp. 99–148). Elsevier. https://doi.org/10.1016/B978-0-12-404696-2.00005-9
Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1
Gil Ruiz, S. A., Barriga, J. E. C., & Martínez, J. A. (2021). Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data. Renewable Energy, 172, 158–176. https://doi.org/10.1016/j.renene.2021.03.033
Gil Ruiz, S. A., Cañón Barriga, J. E., & Martínez, J. A. (2022). Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia. Energy, 244, 123127. https://doi.org/10.1016/j.energy.2022.123127
Gilbert, J. E., Gilbertson, T., & Jakobsen, L. (2021). Incommensurability and corporate social technologies: a critique of corporate compensations in Colombia’s coal mining region of La Guajira. Journal of Political Ecology, 28(1), 434–452. https://doi.org/10.2458/jpe.2952
Global Modeling and Assimilation Office (GMAO). (2015). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. https://doi.org/10.5067/VJAFPLI1CSIV
Gruber, K., Regner, P., Wehrle, S., Zeyringer, M., & Schmidt, J. (2022). Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas. Energy, 238, 121520. https://doi.org/10.1016/j.energy.2021.121520
Guerrero, S. (2021a, October). El agua de Camarones no es apta para el consumo humano. El Heraldo.
Guerrero, S. (2021b, December 1). ANLA otorga licencia a parque solar fotovoltaico en La Guajira. https://www.elheraldo.co/la-guajira/anla-otorga-licencia-parque-solar-fotovoltaico-en-la-guajira-869947
Guezgouz, M., Jurasz, J., Bekkouche, B., Ma, T., Javed, M. S., & Kies, A. (2019). Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Conversion and Management, 199(September), 112046. https://doi.org/10.1016/j.enconman.2019.112046 Hagen, I., Huggel, C., Ramajo, L., Chacón, N., Ometto, J. P., Postigo, J. C., & Castellanos, E. J. (2022). Climate change-related risks and adaptation potential in Central and South America
during the 21st century. Environmental Research Letters, 17(3), 033002. https://doi.org/10.1088/1748-9326/ac5271
Hayes, L., Stocks, M., & Blakers, A. (2021). Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy, 229, 120603. https://doi.org/10.1016/j.energy.2021.120603
HOMER Energy. (2022). HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids. Www.Homerenergy.Com. https://www.homerenergy.com/products/pro/index.html
IDEAM. (2021). Consulta y descarga de datos hidrometeorológicos
Junior, A. L. P., Biudes, M. S., Machado, N. G., Vourlitis, G. L., Geli, H. M. E., Santos, L. O. F. dos, Querino, C. A. S., Ivo, I. O., & Neto, N. L. (2021). Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water, 13(3), 333. https://doi.org/10.3390/w13030333
Kapica, J., Canales, F. A., & Jurasz, J. (2021). Global atlas of solar and wind resources temporal complementarity. Energy Conversion and Management, 246, 114692. https://doi.org/10.1016/j.enconman.2021.114692
Khatibi, A., & Krauter, S. (2021). Validation and performance of satellite meteorological dataset merra-2 for solar and wind applications. Energies, 14(4). https://doi.org/10.3390/en14040882
Kim, I., James, J. A., & Crittenden, J. (2017). The case study of combined cooling heat and power and photovoltaic systems for building customers using HOMER software. Electric Power Systems Research, 143, 490–502. https://doi.org/10.1016/j.epsr.2016.10.061
Kotb, K. M., Elkadeem, M. R., Khalil, A., Imam, S. M., Hamada, M. A., Sharshir, S. W., & Dán, A. (2021). A fuzzy decision-making model for optimal design of solar, wind, diesel-based RO desalination integrating flow-battery and pumped-hydro storage: Case study in Baltim, Egypt. Energy Conversion and Management, 235. https://doi.org/10.1016/j.enconman.2021.113962
La Guajira Hoy. (2022a, April). En La Guajira, comunidad indígena se beneficia con planta desalinizadora de agua. La Guajira Hoy.
la Guajira Hoy. (2022b, May). En extremo norte de La Guajira no hay agua para consumo humano. La Guajira Hoy.
La Opinión. (2020, May 22). La realidad del hambre: cada seis días ha muerto un niño en la Guajira en 2022. La Opinión. https://www.laopinion.com.co/colombia/la-realidad-del-hambre-cada-seis-dias-ha-muerto-un-nino-en-la-guajira-en-2022
La realidad del hambre: cada seis días ha muerto un niño en la Guajira en 2022. (2022, May). La Opinión.
Lemma, E., Upadhyaya, S., & Ramsankaran, R. (2019). Investigating the performance of satellite and reanalysis rainfall products at monthly timescales across different rainfall regimes of Ethiopia. International Journal of Remote Sensing, 40(10), 4019–4042. https://doi.org/10.1080/01431161.2018.1558373
Lind, D. A., Marchal, W. G., & Wathen, S. A. (2014). ESTADÍSTICA APLICADA A LOS NEGOCIOS Y LA ECONOMÍA. In Ciencia y Sociedad: Vol. XVI (Issue 4).
M, B. S. S., & Fernando, C. B. (2017). Estudio de factibilidad para la implementación de sistemas fotovoltaicos como fuente de energía en el sector industrial de Colombia. http://hdl.handle.net/10726/1572
M. Cano, L., Carmona, M. A., Martínez, J. A., & Arias, P. A. (2022). Estimación y pronóstico de radiación solar en el valle de Aburrá – Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(179), 529–549. https://doi.org/10.18257/raccefyn.1576
Matched Pairs t-Test. (2008). In Encyclopedia of Genetics, Genomics, Proteomics and Informatics (p. 1159). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6754-9_9931
Mehrjerdi, H. (2020). Modeling and optimization of an island water-energy nexus powered by a hybrid solar-wind renewable system. Energy, 197, 117217. https://doi.org/10.1016/j.energy.2020.117217
Mejía Ospino, E. (2021, December 28). Habitantes de Barrancas denuncian que llevan más de un mes sin agua. El Tiempo. https://www.eltiempo.com/colombia/otras-ciudades/municipio-de-la-guajira-denuncia-falta-de-agua-potable-desde-hace-un-mes-641788
Mendoza-Fandino, J. M., Julio, J. D. R., Gomez, A. E. A., Guarin, A. R. M., Gonzalez, T. D. D., & Padilla, E. R. D. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC, 17(2), 21–30.
Ministerio de Vivienda Ciudad y Territorio. República de Colombia. (2017). Resolución 0330 de 2017: “Por la cual se adopta el Reglamento Técnico para el Sector de Agua Potable y Saneamiento Básico -RAS- y se derogan las resoluciones 1096 de 2000, 0424 de 2001, 0668 de 2003, 1459 de 2005, 1447 de 2005 y 2320 de 2009” (p. 182).
Movahediyan, Z., & Askarzadeh, A. (2018). Multi-objective optimization framework of a photovoltaic-diesel generator hybrid energy system considering operating reserve. Sustainable Cities and Society, 41(April), 1–12. https://doi.org/10.1016/j.scs.2018.05.002
Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bac
Nash, J. E., & Sutcliffe, J. v. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Nordex. (2007). N60/1300 kW Specifications.
Ojeda Hernández, D. A. (2020). Estudio técnico y económico de dos tecnologías de potabilización de agua impulsadas por energías renovables en el municipio de Manaure – La Guajira. Universidad de la Costa.
Olauson, J. (2018). ERA5: The new champion of wind power modelling? Renewable Energy, 126, 322–331. https://doi.org/10.1016/J.RENENE.2018.03.056
Ong, S., Campbell, C., Denholm, P., Margolis, R., & Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Nrel/Tp-6a20-56290, June, 47. http://www.nrel.gov/docs/fy13osti/56290.pdf
Orfila, A., Urbano-Latorre, C. P., Sayol, J. M., Gonzalez-Montes, S., Caceres-Euse, A., Hernández-Carrasco, I., & Muñoz, Á. G. (2021). On the Impact of the Caribbean Counter Current in the Guajira Upwelling System. Frontiers in Marine Science, 8, 128. https://doi.org/10.3389/FMARS.2021.626823/BIBTEX
Parraga Meneses, M., Fajardo Jaimes, A., & Vuelvas Quintana, J. (2021). An optimized management model of the resources embedded on an isolated water-energy microgrid for a Rancheriá. Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic Control, CCAC 2021, 98–103. https://doi.org/10.1109/CCAC51819.2021.9633297
Pfenninger, S., & Staffell, I. (2016). Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy, 114, 1251–1265. https://doi.org/10.1016/j.energy.2016.08.060
Piasecki, A., Jurasz, J., & Kies, A. (2019). Measurements and reanalysis data on wind speed and solar irradiation from energy generation perspectives at several locations in Poland. SN Applied Sciences, 1(8), 865. https://doi.org/10.1007/s42452-019-0897-2
Pinilla, A., Rodriguez, L., & Trujillo, R. (2009). Performance evaluation of Jepirachi Wind Park. Renewable Energy, 34(1), 48–52. https://doi.org/10.1016/j.renene.2008.04.015
Polo, J., Wilbert, S., Ruiz-Arias, J. A., Meyer, R., Gueymard, C., Súri, M., Martín, L., Mieslinger, T., Blanc, P., Grant, I., Boland, J., Ineichen, P., Remund, J., Escobar, R., Troccoli, A., Sengupta, M., Nielsen, K. P., Renne, D., Geuder, N., & Cebecauer, T. (2016). Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Solar Energy, 132, 25–37. https://doi.org/10.1016/j.solener.2016.03.001
Prasad, A. A., & Kay, M. (2020). Assessment of simulated solar irradiance on days of high intermittency using WRF-solar. Energies, 13(2), 385. https://doi.org/10.3390/en13020385
Prasad, A. A., Yang, Y., Kay, M., Menictas, C., & Bremner, S. (2021). Synergy of solar photovoltaics-wind-battery systems in Australia. Renewable and Sustainable Energy Reviews, 152, 111693. https://doi.org/10.1016/j.rser.2021.111693
Quagraine, K. A., Nkrumah, F., Klein, C., Klutse, N. A. B., & Quagraine, K. T. (2020). West African summer monsoon precipitation variability as represented by reanalysis datasets. Climate, 8(10), 1–18. https://doi.org/10.3390/cli8100111
Ramirez Camargo, L., Gruber, K., & Nitsch, F. (2019). Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems. Renewable Energy, 133, 1468–1478. https://doi.org/10.1016/j.renene.2018.09.015
Ramirez Camargo, L., Gruber, K., Nitsch, F., & Dorner, W. (2019). Hybrid renewable energy systems to supply electricity self-sufficient residential buildings in Central Europe. Energy Procedia, 158, 321–326. https://doi.org/10.1016/j.egypro.2019.01.096
Ramirez Camargo, L., Nitsch, F., Gruber, K., & Dorner, W. (2018). Electricity self-sufficiency of single-family houses in Germany and the Czech Republic. Applied Energy, 228, 902–915. https://doi.org/10.1016/J.APENERGY.2018.06.118
Ramirez Camargo, L., & Schmidt, J. (2020). Simulation of multi-annual time series of solar photovoltaic power: Is the ERA5-land reanalysis the next big step? Sustainable Energy Technologies and Assessments, 42(September), 100829. https://doi.org/10.1016/j.seta.2020.100829
Ramirez Camargo, L., Valdes, J., Masip Macia, Y., & Dorner, W. (2019). Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile. Applied Energy, 250, 1548–1558. https://doi.org/10.1016/J.APENERGY.2019.05.005
Ramli, M. A. M., Hiendro, A., Sedraoui, K., & Twaha, S. (2015). Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renewable Energy, 75, 489–495. https://doi.org/10.1016/j.renene.2014.10.028
Saleh, L., & Mezher, T. (2021). Techno-economic analysis of sustainability and externality costs of water desalination production. Renewable and Sustainable Energy Reviews, 150(February), 111465. https://doi.org/10.1016/j.rser.2021.111465
Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In Studies in individual differences: The search for intelligence. Appleton-Century-Crofts. https://doi.org/10.1037/11491-005
Springer, A., Eicker, A., Bettge, A., Kusche, J., & Hense, A. (2017). Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. Water (Switzerland), 9(4), 289. https://doi.org/10.3390/w9040289
Staffell, I., & Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate current and future wind power output. Energy, 114, 1224–1239. https://doi.org/10.1016/j.energy.2016.08.068
Ul Rehman Tahir, Z., Asim, M., Azhar, M., Moeenuddin, G., & Farooq, M. (2021). Correcting solar radiation from reanalysis and analysis datasets with systematic and seasonal variations. Case Studies in Thermal Engineering, 25(February), 100933. https://doi.org/10.1016/j.csite.2021.100933
Vega‐Durán, J., Escalante‐castro, B., Canales, F. A., Acuña, G. J., & Kaźmierczak, B. (2021). Evaluation of areal monthly average precipitation estimates from merra2 and era5 reanalysis in a colombian caribbean basin. Atmosphere, 12(11). https://doi.org/10.3390/atmos12111430
Veilleux, G., Potisat, T., Pezim, D., Ribback, C., Ling, J., Krysztofiński, A., Ahmed, A., Papenheim, J., Pineda, A. M., Sembian, S., & Chucherd, S. (2020). Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development, 54, 1–13. https://doi.org/10.1016/j.esd.2019.09.007
Veolia Sabana S.A. E.S.P. (2022). Veolia Colombia. https://www.veolia.com.co/sabana/
Villada, F., Saldarriaga-Loaiza, J. D., & López-Lezama, J. M. (2021). Incentives for renewable energies in colombia. Renewable Energy and Power Quality Journal, 19(1), 24–27. https://doi.org/10.24084/repqj19.203
Wang, N., Liu, W., Sun, F., Yao, Z., Wang, H., & Liu, W. (2020). Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmospheric Research, 234, 104746. https://doi.org/10.1016/j.atmosres.2019.104746
Wang, S., Tarroja, B., Schell, L. S., Shaffer, B., & Samuelsen, S. (2019). Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions. Applied Energy, 235, 284–298. https://doi.org/10.1016/j.apenergy.2018.10.071
Wang, Y.-H., Walter, R. K., White, C., Farr, H., & Ruttenberg, B. I. (2019). Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast. Renewable Energy, 133, 343–353. https://doi.org/10.1016/j.renene.2018.10.008
Yu, Z., Wu, J., & Chen, X. (2019). An approach to revising the climate forecast system reanalysis rainfall data in a sparsely-gauged mountain basin. Atmospheric Research, 220(135), 194–205. https://doi.org/10.1016/j.atmosres.2019.01.014
Zavadskas, E. K., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2017). Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability 2018, Vol. 10, Page 14, 10(1), 14. https://doi.org/10.3390/SU10010014
Zhang, H., Cao, Y., Zhang, Y., & Terzija, V. (2018). Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Applied Energy, 216, 172–182. https://doi.org/10.1016/j.apenergy.2018.02.094
Zou, J., Lu, N., Jiang, H., Qin, J., Yao, L., Xin, Y., & Su, F. (2022). Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. Science of the Total Environment, 828, 154459. https://doi.org/10.1016/j.scitotenv.2022.154459
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 78 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.spa.fl_str_mv Civil y ambiental
dc.publisher.program.spa.fl_str_mv Ingeniería Civil
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/d1468019-0cef-4de0-aa08-987f47a33be5/download
https://repositorio.cuc.edu.co/bitstreams/66423586-1161-44f8-957d-b3053b91ba77/download
https://repositorio.cuc.edu.co/bitstreams/a069236d-6298-4376-b81b-e2419929b269/download
https://repositorio.cuc.edu.co/bitstreams/7b978a4e-8097-4696-83d2-7d5b8a588d20/download
bitstream.checksum.fl_str_mv 59d80258e807d63208b90f5fa2b70656
2f9959eaf5b71fae44bbf9ec84150c7a
40443a64a0a97be797ca26161be89b60
add26124474bb618303064e510060dbb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760720235200512
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Canales Vega, FaustoRivillas Ospina, GermánVargas Brochero, José MarioNavas Martínez, Carlos JuliánBolívar Carbonell, Marianela2022-10-21T20:40:28Z2022-10-21T20:40:28Z2022https://hdl.handle.net/11323/9583Corporacion Universidad de la CostaREDICUC-Repositorio CUChttps://repositorio.cuc.edu.co/La transición a las energías renovables es necesaria para el futuro de las sociedades humanas alrededor del mundo. Por ello, los conjuntos de datos fiables de los recursos disponibles tienen un papel crucial debido a la variabilidad e intermitencia de dichos recursos. Sin embargo, suele ser difícil encontrar datos de medición completos y uniformes con una excelente cobertura espacial y temporal en el lugar de destino. Existen diversas fuentes de datos alternativas, aunque una de las más interesantes son los proyectos de reanálisis por su cobertura mundial y su amplia resolución temporal. Por lo tanto, este estudio pretende evaluar la viabilidad de utilizar conjuntos de datos de reanálisis para alimentar sistemas de energías renovables. Se utilizó HOMER para diseñar el sistema óptimo para suministrar energía a una planta desaladora en La Guajira con los conjuntos de datos ERA5-Land y MERRA-2, y se comparó con el diseño de IDEAM (mediciones) utilizando métricas de desempeño relevantes. Los resultados muestran en su mayoría que la demanda puede ser abastecida con energía fotovoltaica sin necesidad de un generador diésel. El coste de la energía varía entre 83 €/MWh y 199 €/MWh, dependiendo de la carga y la capacidad de escasez. Llegamos a la conclusión de que ambos conjuntos de tienen buen rendimiento para reproducir la radiación solar, pero el ERA5-Land supera al MERRA-2 en términos de fiabilidad. Además de que es viable utilizar soluciones alternativas como las de este estudio para obtener agua potable.The transition to renewable energy is necessary for the future of the human societies around the world. Therefore, reliable data sets of available resources play a crucial role due to the variability and intermittency of these resources. However, it is often difficult to find complete and uniform measurement data with excellent spatial and temporal coverage at the target site. Several alternative data sources exist, although one of the most interesting are reanalysis projects because of their global coverage and broad temporal resolution. Therefore, this study aims to assess the feasibility of using reanalysis datasets to feed renewable energy systems. HOMER was used to design the optimal system to power a desalination plant in La Guajira with the ERA5-Land and MERRA-2 datasets and compared to the IDEAM design (measurements) using relevant performance metrics. The results mostly show that the demand can be supplied with photovoltaic power without the need for a diesel generator. The cost of energy varies between 83 €/MWh and 199 €/MWh, depending on load and annual capacity shortage. We conclude that both arrays perform well in reproducing solar radiation, but the ERA5-Land outperforms the MERRA-2 in terms of reliability. Furthermore, it is feasible to use alternative solutions such as the ones in this study to obtain drinking water.Lista de Tablas y Figuras 9--1. Introducción 11--1.1. Planteamiento del problema 12-- 1.2. Justificación 13--2. Objetivos 17--2.1. Objetivo General 17-- 2.2.ObjetivosEspecíficos 17--3. Marco Teórico 18--3.1. Datos de Reanálisis 18--3.2. Métricas de Desempeño 22--3.3. Dimensionamiento de Sistemas de Energía Híbridos (Software HOMER PRO) 25--3.4. Paired t-test/Wilcoxon’s Rank Sum Test 27-- 3.4.1. Hipótesis Nula 28--3.5. Necesidad de Suministro de Agua y Desalación 28-- 4. Metodología 30--4.1. Área de Estudio 30--4.2. Conjunto de Datos 32--4.2.1. Datos de Campo 32--4.2.2. MERRA-2 33--4.2.3. ERA5-Land 34--4.2.4. Demanda de Agua 34--4.3. Método 36--4.3.1. Métricas de desempeño 36--4.3.2. Configuración óptima del sistema de energía renovable 37 5. Resultados 41--6. Análisis de Resultados 51--7. Conclusiones57--8. Referencias 61--Ingeniero(a) CivilPregrado78 páginasapplication/pdfspaCorporación Universidad de la CostaCivil y ambientalIngeniería CivilEvaluación de las métricas de desempeño de ERA5-Land y MERRA-2 y su efecto en el dimensionamiento de un sistema basado en energías renovables para potabilizaciónTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAcosta Cubides, L. D., & Herrera Quintero, S. (2021). Metodología para el uso de captadores de rocío. Una aproximación a una solución sostenible para el recurso hídrico en Maicao, La Guajira. [Fundación Universidad de América]. https://hdl.handle.net/20.500.11839/8594Ahmad, M., & Zeeshan, M. (2022). Validation of weather reanalysis datasets and geospatial and techno-economic viability and potential assessment of concentrated solar power plants. Energy Conversion and Management, 256, 115366. https://doi.org/10.1016/j.enconman.2022.115366Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine, 18(3), 91–93. https://doi.org/10.1016/j.tjem.2018.08.001Aliana, A., Chang, M., Østergaard, P. A., Victoria, M., & Andersen, A. N. (2022). Performance assessment of using various solar radiation data in modelling large-scale solar thermal systems integrated in district heating networks. Renewable Energy, 190, 699–712. https://doi.org/10.1016/j.renene.2022.03.163Anastasiades, G., & McSharry, P. E. (2014). Extreme value analysis for estimating 50 year return wind speeds from reanalysis data. Wind Energy, 17(8), 1231–1245. https://doi.org/10.1002/WE.1630Arribas, L., Lechón, Y., Perula, A., Domínguez, J., Ferres, M., Navarro, J., Zarzalejo, L. F., Barquero, C. G., & Cruz, I. (2021). Review of data and data sources for the assessment of the potential of utility-scale hybrid wind–solar pv power plants deployment, under a microgrid scope. In Energies (Vol. 14, Issue 21). https://doi.org/10.3390/en14217434Baek, S., Park, E., Kim, M. G., Kwon, S. J., Kim, K. J., Ohm, J. Y., & del Pobil, A. P. (2016). Optimal renewable power generation systems for Busan metropolitan city in South Korea. Renewable Energy, 88, 517–525. https://doi.org/10.1016/j.renene.2015.11.058Barrado, C., Perez-Batlle, M., Lopez, M., & Pastor, E. (2016). Paired T-test analysis to measure the efficiency impact of a flying RPAS in the non-segregated airspace. 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), 1–7. https://doi.org/10.1109/DASC.2016.7778008Barrientos Marín, J., & Villada, F. (2020). Regionalized discount rate to evaluate renewable energy projects in Colombia. International Journal of Energy Economics and Policy, 10(2), 332–336. https://doi.org/10.32479/ijeep.8924Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D., & El-Halwagi, M. M. (2019). Technology review and data analysis for cost assessment of water treatment systems. Science of the Total Environment, 651, 2749–2761. https://doi.org/10.1016/j.scitotenv.2018.09.363Boilley, A., & Wald, L. (2015). Comparison between meteorological re-analyses from ERA-Interim and MERRA and measurements of daily solar irradiation at surface. Renewable Energy, 75, 135–143. https://doi.org/10.1016/J.RENENE.2014.09.042California Energy Comission. (2017). PV modules. List of PV Modules.Cámara de Comercio de La Guajira. (2021). Informe socioeconómico de La Guajira 2021. https://www.camaraguajira.org/nosotros/informe-socioeconomico-departamento-de-la-guajira.htmlCanales, F. A., Beluco, A., & Mendes, C. A. B. (2008). A matter of cost. International Water Power and Dam Construction, 60(12), 43–45.Canales, F. A., Beluco, A., & Mendes, C. A. B. (2017). Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER). International Journal of Sustainable Energy, 36(7), 654–667. https://doi.org/10.1080/14786451.2015.1080706Canales, F. A., Jurasz, J. K., Guezgouz, M., & Beluco, A. (2021). Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community. Sustainable Energy Technologies and Assessments, 44, 101062. https://doi.org/10.1016/j.seta.2021.101062Cannon, D. J., Brayshaw, D. J., Methven, J., Coker, P. J., & Lenaghan, D. (2015). Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain. Renewable Energy, 75, 767–778. https://doi.org/10.1016/J.RENENE.2014.10.024Carvajal-Romo, G., Valderrama-Mendoza, M., Rodríguez-Urrego, D., & Rodríguez-Urrego, L. (2019). Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects. Sustainable Energy Technologies and Assessments, 36(February), 100531. https://doi.org/10.1016/j.seta.2019.100531Castillo-Ramirez, A., Mejia-Giraldo, D., & Giraldo-Ocampo, J. D. (2015). Geospatial levelized cost of energy in Colombia: GeoLCOE. 2015 IEEE PES Innovative Smart Grid Technologies Latin America (ISGT LATAM), 298–303. https://doi.org/10.1109/ISGT-LA.2015.7381171Centre, J. R., for Energy, I., Transport, Weidner, E., Jakubcionis, M., Vallei, M., Sigfusson, B., Jäger-Waldau, A., Lacal Arántegui, R., Perez Fortes, M., Carlsson, J., Spisto, A., Moles, C., Giuntoli, J., Marco, G., Lazarou, S., & Magagna, D. (2014). Energy Technology Reference Indicator (ETRI) projections for 2010-2050. Publications Office. https://doi.org/doi/10.2790/057687Chadee, X. T., & Clarke, R. M. (2014). Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data. In Renewable and Sustainable Energy Reviews (Vol. 30, pp. 45–58). Pergamon. https://doi.org/10.1016/j.rser.2013.09.018Chawla, I., & Mujumdar, P. P. (2020). Evaluating rainfall datasets to reconstruct floods in data-sparse Himalayan region. Journal of Hydrology, 588(May), 125090. https://doi.org/10.1016/j.jhydrol.2020.125090Contreras, D. (2019). The integrated spatial pattern of child mortality during the 2012-2016 drought in La Guajira, Colombia. Sustainability (Switzerland), 11(24). https://doi.org/10.3390/SU11247190Dawoud, S. M., Lin, X. N., Sun, J. W., Okba, M. I., Khalid, M. S., & Waqar, A. (2015). Feasibility Study of Isolated PV-Wind Hybrid System in Egypt. Advanced Materials Research, 1092–1093, 145–151. https://doi.org/10.4028/www.scientific.net/amr.1092-1093.145Daza-Daza, A. R., Serna-Mendoza, C. A., Carabalí-Angola, A., Daza-Daza, A. R., Serna-Mendoza, C. A., & Carabalí-Angola, A. (2018). The Water Resource in the Wayuu Indigenous Communities of La Guajira Colombiana. Part 2: Qualitative Study of the Conditions of Hygiene, Cleanliness and Water Availability. Información Tecnológica, 29(6), 25–32. https://doi.org/10.4067/S0718-07642018000600025Doddy Clarke, E., Griffin, S., McDermott, F., Monteiro Correia, J., & Sweeney, C. (2021). Which Reanalysis Dataset Should We Use for Renewable Energy Analysis in Ireland? Atmosphere, 12(5), 624. https://doi.org/10.3390/atmos12050624Duarte, L., Revollo, J., Betancur, D., Lopez, G., Isaac, I., Cardona, H., & Ortega, S. (2019). Placement of weather stations in Colombia for future applications in solar and wind energy forecasting models. 2019 FISE-IEEE/CIGRE Conference - Living the Energy Transition (FISE/CIGRE), 1–6. https://doi.org/10.1109/FISECIGRE48012.2019.8984983ECMWF. (2020, November 9). Fact sheet: Reanalysis | ECMWF. https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reanalysisGauthier, T. D., & Hawley, M. E. (2015). Statistical Methods. In Introduction to Environmental Forensics: Third Edition (pp. 99–148). Elsevier. https://doi.org/10.1016/B978-0-12-404696-2.00005-9Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1Gil Ruiz, S. A., Barriga, J. E. C., & Martínez, J. A. (2021). Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data. Renewable Energy, 172, 158–176. https://doi.org/10.1016/j.renene.2021.03.033Gil Ruiz, S. A., Cañón Barriga, J. E., & Martínez, J. A. (2022). Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia. Energy, 244, 123127. https://doi.org/10.1016/j.energy.2022.123127Gilbert, J. E., Gilbertson, T., & Jakobsen, L. (2021). Incommensurability and corporate social technologies: a critique of corporate compensations in Colombia’s coal mining region of La Guajira. Journal of Political Ecology, 28(1), 434–452. https://doi.org/10.2458/jpe.2952Global Modeling and Assimilation Office (GMAO). (2015). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4. https://doi.org/10.5067/VJAFPLI1CSIVGruber, K., Regner, P., Wehrle, S., Zeyringer, M., & Schmidt, J. (2022). Towards global validation of wind power simulations: A multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas. Energy, 238, 121520. https://doi.org/10.1016/j.energy.2021.121520Guerrero, S. (2021a, October). El agua de Camarones no es apta para el consumo humano. El Heraldo.Guerrero, S. (2021b, December 1). ANLA otorga licencia a parque solar fotovoltaico en La Guajira. https://www.elheraldo.co/la-guajira/anla-otorga-licencia-parque-solar-fotovoltaico-en-la-guajira-869947Guezgouz, M., Jurasz, J., Bekkouche, B., Ma, T., Javed, M. S., & Kies, A. (2019). Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems. Energy Conversion and Management, 199(September), 112046. https://doi.org/10.1016/j.enconman.2019.112046 Hagen, I., Huggel, C., Ramajo, L., Chacón, N., Ometto, J. P., Postigo, J. C., & Castellanos, E. J. (2022). Climate change-related risks and adaptation potential in Central and South Americaduring the 21st century. Environmental Research Letters, 17(3), 033002. https://doi.org/10.1088/1748-9326/ac5271Hayes, L., Stocks, M., & Blakers, A. (2021). Accurate long-term power generation model for offshore wind farms in Europe using ERA5 reanalysis. Energy, 229, 120603. https://doi.org/10.1016/j.energy.2021.120603HOMER Energy. (2022). HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids. Www.Homerenergy.Com. https://www.homerenergy.com/products/pro/index.htmlIDEAM. (2021). Consulta y descarga de datos hidrometeorológicosJunior, A. L. P., Biudes, M. S., Machado, N. G., Vourlitis, G. L., Geli, H. M. E., Santos, L. O. F. dos, Querino, C. A. S., Ivo, I. O., & Neto, N. L. (2021). Assessment of Remote Sensing and Re-Analysis Estimates of Regional Precipitation over Mato Grosso, Brazil. Water, 13(3), 333. https://doi.org/10.3390/w13030333Kapica, J., Canales, F. A., & Jurasz, J. (2021). Global atlas of solar and wind resources temporal complementarity. Energy Conversion and Management, 246, 114692. https://doi.org/10.1016/j.enconman.2021.114692Khatibi, A., & Krauter, S. (2021). Validation and performance of satellite meteorological dataset merra-2 for solar and wind applications. Energies, 14(4). https://doi.org/10.3390/en14040882Kim, I., James, J. A., & Crittenden, J. (2017). The case study of combined cooling heat and power and photovoltaic systems for building customers using HOMER software. Electric Power Systems Research, 143, 490–502. https://doi.org/10.1016/j.epsr.2016.10.061Kotb, K. M., Elkadeem, M. R., Khalil, A., Imam, S. M., Hamada, M. A., Sharshir, S. W., & Dán, A. (2021). A fuzzy decision-making model for optimal design of solar, wind, diesel-based RO desalination integrating flow-battery and pumped-hydro storage: Case study in Baltim, Egypt. Energy Conversion and Management, 235. https://doi.org/10.1016/j.enconman.2021.113962La Guajira Hoy. (2022a, April). En La Guajira, comunidad indígena se beneficia con planta desalinizadora de agua. La Guajira Hoy.la Guajira Hoy. (2022b, May). En extremo norte de La Guajira no hay agua para consumo humano. La Guajira Hoy.La Opinión. (2020, May 22). La realidad del hambre: cada seis días ha muerto un niño en la Guajira en 2022. La Opinión. https://www.laopinion.com.co/colombia/la-realidad-del-hambre-cada-seis-dias-ha-muerto-un-nino-en-la-guajira-en-2022La realidad del hambre: cada seis días ha muerto un niño en la Guajira en 2022. (2022, May). La Opinión.Lemma, E., Upadhyaya, S., & Ramsankaran, R. (2019). Investigating the performance of satellite and reanalysis rainfall products at monthly timescales across different rainfall regimes of Ethiopia. International Journal of Remote Sensing, 40(10), 4019–4042. https://doi.org/10.1080/01431161.2018.1558373Lind, D. A., Marchal, W. G., & Wathen, S. A. (2014). ESTADÍSTICA APLICADA A LOS NEGOCIOS Y LA ECONOMÍA. In Ciencia y Sociedad: Vol. XVI (Issue 4).M, B. S. S., & Fernando, C. B. (2017). Estudio de factibilidad para la implementación de sistemas fotovoltaicos como fuente de energía en el sector industrial de Colombia. http://hdl.handle.net/10726/1572M. Cano, L., Carmona, M. A., Martínez, J. A., & Arias, P. A. (2022). Estimación y pronóstico de radiación solar en el valle de Aburrá – Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(179), 529–549. https://doi.org/10.18257/raccefyn.1576Matched Pairs t-Test. (2008). In Encyclopedia of Genetics, Genomics, Proteomics and Informatics (p. 1159). Springer Netherlands. https://doi.org/10.1007/978-1-4020-6754-9_9931Mehrjerdi, H. (2020). Modeling and optimization of an island water-energy nexus powered by a hybrid solar-wind renewable system. Energy, 197, 117217. https://doi.org/10.1016/j.energy.2020.117217Mejía Ospino, E. (2021, December 28). Habitantes de Barrancas denuncian que llevan más de un mes sin agua. El Tiempo. https://www.eltiempo.com/colombia/otras-ciudades/municipio-de-la-guajira-denuncia-falta-de-agua-potable-desde-hace-un-mes-641788Mendoza-Fandino, J. M., Julio, J. D. R., Gomez, A. E. A., Guarin, A. R. M., Gonzalez, T. D. D., & Padilla, E. R. D. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC, 17(2), 21–30.Ministerio de Vivienda Ciudad y Territorio. República de Colombia. (2017). Resolución 0330 de 2017: “Por la cual se adopta el Reglamento Técnico para el Sector de Agua Potable y Saneamiento Básico -RAS- y se derogan las resoluciones 1096 de 2000, 0424 de 2001, 0668 de 2003, 1459 de 2005, 1447 de 2005 y 2320 de 2009” (p. 182).Movahediyan, Z., & Askarzadeh, A. (2018). Multi-objective optimization framework of a photovoltaic-diesel generator hybrid energy system considering operating reserve. Sustainable Cities and Society, 41(April), 1–12. https://doi.org/10.1016/j.scs.2018.05.002Muñoz Sabater, J. (2019). ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). https://doi.org/10.24381/cds.e2161bacNash, J. E., & Sutcliffe, J. v. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6Nordex. (2007). N60/1300 kW Specifications.Ojeda Hernández, D. A. (2020). Estudio técnico y económico de dos tecnologías de potabilización de agua impulsadas por energías renovables en el municipio de Manaure – La Guajira. Universidad de la Costa.Olauson, J. (2018). ERA5: The new champion of wind power modelling? Renewable Energy, 126, 322–331. https://doi.org/10.1016/J.RENENE.2018.03.056Ong, S., Campbell, C., Denholm, P., Margolis, R., & Heath, G. (2013). Land-Use Requirements for Solar Power Plants in the United States. Nrel/Tp-6a20-56290, June, 47. http://www.nrel.gov/docs/fy13osti/56290.pdfOrfila, A., Urbano-Latorre, C. P., Sayol, J. M., Gonzalez-Montes, S., Caceres-Euse, A., Hernández-Carrasco, I., & Muñoz, Á. G. (2021). On the Impact of the Caribbean Counter Current in the Guajira Upwelling System. Frontiers in Marine Science, 8, 128. https://doi.org/10.3389/FMARS.2021.626823/BIBTEXParraga Meneses, M., Fajardo Jaimes, A., & Vuelvas Quintana, J. (2021). An optimized management model of the resources embedded on an isolated water-energy microgrid for a Rancheriá. Proceedings of the 2021 IEEE 5th Colombian Conference on Automatic Control, CCAC 2021, 98–103. https://doi.org/10.1109/CCAC51819.2021.9633297Pfenninger, S., & Staffell, I. (2016). Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data. Energy, 114, 1251–1265. https://doi.org/10.1016/j.energy.2016.08.060Piasecki, A., Jurasz, J., & Kies, A. (2019). Measurements and reanalysis data on wind speed and solar irradiation from energy generation perspectives at several locations in Poland. SN Applied Sciences, 1(8), 865. https://doi.org/10.1007/s42452-019-0897-2Pinilla, A., Rodriguez, L., & Trujillo, R. (2009). Performance evaluation of Jepirachi Wind Park. Renewable Energy, 34(1), 48–52. https://doi.org/10.1016/j.renene.2008.04.015Polo, J., Wilbert, S., Ruiz-Arias, J. A., Meyer, R., Gueymard, C., Súri, M., Martín, L., Mieslinger, T., Blanc, P., Grant, I., Boland, J., Ineichen, P., Remund, J., Escobar, R., Troccoli, A., Sengupta, M., Nielsen, K. P., Renne, D., Geuder, N., & Cebecauer, T. (2016). Preliminary survey on site-adaptation techniques for satellite-derived and reanalysis solar radiation datasets. Solar Energy, 132, 25–37. https://doi.org/10.1016/j.solener.2016.03.001Prasad, A. A., & Kay, M. (2020). Assessment of simulated solar irradiance on days of high intermittency using WRF-solar. Energies, 13(2), 385. https://doi.org/10.3390/en13020385Prasad, A. A., Yang, Y., Kay, M., Menictas, C., & Bremner, S. (2021). Synergy of solar photovoltaics-wind-battery systems in Australia. Renewable and Sustainable Energy Reviews, 152, 111693. https://doi.org/10.1016/j.rser.2021.111693Quagraine, K. A., Nkrumah, F., Klein, C., Klutse, N. A. B., & Quagraine, K. T. (2020). West African summer monsoon precipitation variability as represented by reanalysis datasets. Climate, 8(10), 1–18. https://doi.org/10.3390/cli8100111Ramirez Camargo, L., Gruber, K., & Nitsch, F. (2019). Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems. Renewable Energy, 133, 1468–1478. https://doi.org/10.1016/j.renene.2018.09.015Ramirez Camargo, L., Gruber, K., Nitsch, F., & Dorner, W. (2019). Hybrid renewable energy systems to supply electricity self-sufficient residential buildings in Central Europe. Energy Procedia, 158, 321–326. https://doi.org/10.1016/j.egypro.2019.01.096Ramirez Camargo, L., Nitsch, F., Gruber, K., & Dorner, W. (2018). Electricity self-sufficiency of single-family houses in Germany and the Czech Republic. Applied Energy, 228, 902–915. https://doi.org/10.1016/J.APENERGY.2018.06.118Ramirez Camargo, L., & Schmidt, J. (2020). Simulation of multi-annual time series of solar photovoltaic power: Is the ERA5-land reanalysis the next big step? Sustainable Energy Technologies and Assessments, 42(September), 100829. https://doi.org/10.1016/j.seta.2020.100829Ramirez Camargo, L., Valdes, J., Masip Macia, Y., & Dorner, W. (2019). Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile. Applied Energy, 250, 1548–1558. https://doi.org/10.1016/J.APENERGY.2019.05.005Ramli, M. A. M., Hiendro, A., Sedraoui, K., & Twaha, S. (2015). Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia. Renewable Energy, 75, 489–495. https://doi.org/10.1016/j.renene.2014.10.028Saleh, L., & Mezher, T. (2021). Techno-economic analysis of sustainability and externality costs of water desalination production. Renewable and Sustainable Energy Reviews, 150(February), 111465. https://doi.org/10.1016/j.rser.2021.111465Spearman, C. (1961). The Proof and Measurement of Association Between Two Things. In Studies in individual differences: The search for intelligence. Appleton-Century-Crofts. https://doi.org/10.1037/11491-005Springer, A., Eicker, A., Bettge, A., Kusche, J., & Hense, A. (2017). Evaluation of the water cycle in the European COSMO-REA6 reanalysis using GRACE. Water (Switzerland), 9(4), 289. https://doi.org/10.3390/w9040289Staffell, I., & Pfenninger, S. (2016). Using bias-corrected reanalysis to simulate current and future wind power output. Energy, 114, 1224–1239. https://doi.org/10.1016/j.energy.2016.08.068Ul Rehman Tahir, Z., Asim, M., Azhar, M., Moeenuddin, G., & Farooq, M. (2021). Correcting solar radiation from reanalysis and analysis datasets with systematic and seasonal variations. Case Studies in Thermal Engineering, 25(February), 100933. https://doi.org/10.1016/j.csite.2021.100933Vega‐Durán, J., Escalante‐castro, B., Canales, F. A., Acuña, G. J., & Kaźmierczak, B. (2021). Evaluation of areal monthly average precipitation estimates from merra2 and era5 reanalysis in a colombian caribbean basin. Atmosphere, 12(11). https://doi.org/10.3390/atmos12111430Veilleux, G., Potisat, T., Pezim, D., Ribback, C., Ling, J., Krysztofiński, A., Ahmed, A., Papenheim, J., Pineda, A. M., Sembian, S., & Chucherd, S. (2020). Techno-economic analysis of microgrid projects for rural electrification: A systematic approach to the redesign of Koh Jik off-grid case study. Energy for Sustainable Development, 54, 1–13. https://doi.org/10.1016/j.esd.2019.09.007Veolia Sabana S.A. E.S.P. (2022). Veolia Colombia. https://www.veolia.com.co/sabana/Villada, F., Saldarriaga-Loaiza, J. D., & López-Lezama, J. M. (2021). Incentives for renewable energies in colombia. Renewable Energy and Power Quality Journal, 19(1), 24–27. https://doi.org/10.24084/repqj19.203Wang, N., Liu, W., Sun, F., Yao, Z., Wang, H., & Liu, W. (2020). Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmospheric Research, 234, 104746. https://doi.org/10.1016/j.atmosres.2019.104746Wang, S., Tarroja, B., Schell, L. S., Shaffer, B., & Samuelsen, S. (2019). Prioritizing among the end uses of excess renewable energy for cost-effective greenhouse gas emission reductions. Applied Energy, 235, 284–298. https://doi.org/10.1016/j.apenergy.2018.10.071Wang, Y.-H., Walter, R. K., White, C., Farr, H., & Ruttenberg, B. I. (2019). Assessment of surface wind datasets for estimating offshore wind energy along the Central California Coast. Renewable Energy, 133, 343–353. https://doi.org/10.1016/j.renene.2018.10.008Yu, Z., Wu, J., & Chen, X. (2019). An approach to revising the climate forecast system reanalysis rainfall data in a sparsely-gauged mountain basin. Atmospheric Research, 220(135), 194–205. https://doi.org/10.1016/j.atmosres.2019.01.014Zavadskas, E. K., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2017). Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability 2018, Vol. 10, Page 14, 10(1), 14. https://doi.org/10.3390/SU10010014Zhang, H., Cao, Y., Zhang, Y., & Terzija, V. (2018). Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Applied Energy, 216, 172–182. https://doi.org/10.1016/j.apenergy.2018.02.094Zou, J., Lu, N., Jiang, H., Qin, J., Yao, L., Xin, Y., & Su, F. (2022). Performance of air temperature from ERA5-Land reanalysis in coastal urban agglomeration of Southeast China. Science of the Total Environment, 828, 154459. https://doi.org/10.1016/j.scitotenv.2022.154459ReanálisisSistemas de energíaEnergías renovablesHomerDesalaciónReanalysisEnergy systemsRenewable energyHOMERDesalinationPublicationORIGINALEVALUACIÓN DE LAS MÉTRICAS DE DESEMPEÑO DE ERA5-LAND Y MERRA-2 Y SU EFECTO EN EL DIMENSIONAMIENTO DE UN SISTEMA BASADO EN ENERGÍAS RENOVABLES PARA POTABILIZACIÓN.pdfEVALUACIÓN DE LAS MÉTRICAS DE DESEMPEÑO DE ERA5-LAND Y MERRA-2 Y SU EFECTO EN EL DIMENSIONAMIENTO DE UN SISTEMA BASADO EN ENERGÍAS RENOVABLES PARA POTABILIZACIÓN.pdfTesisapplication/pdf2220682https://repositorio.cuc.edu.co/bitstreams/d1468019-0cef-4de0-aa08-987f47a33be5/download59d80258e807d63208b90f5fa2b70656MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/66423586-1161-44f8-957d-b3053b91ba77/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTEVALUACIÓN DE LAS MÉTRICAS DE DESEMPEÑO DE ERA5-LAND Y MERRA-2 Y SU EFECTO EN EL DIMENSIONAMIENTO DE UN SISTEMA BASADO EN ENERGÍAS RENOVABLES PARA POTABILIZACIÓN.pdf.txtEVALUACIÓN DE LAS MÉTRICAS DE DESEMPEÑO DE ERA5-LAND Y MERRA-2 Y SU EFECTO EN EL DIMENSIONAMIENTO DE UN SISTEMA BASADO EN ENERGÍAS RENOVABLES PARA POTABILIZACIÓN.pdf.txtExtracted texttext/plain116899https://repositorio.cuc.edu.co/bitstreams/a069236d-6298-4376-b81b-e2419929b269/download40443a64a0a97be797ca26161be89b60MD53THUMBNAILEVALUACIÓN DE LAS MÉTRICAS DE DESEMPEÑO DE ERA5-LAND Y MERRA-2 Y SU EFECTO EN EL DIMENSIONAMIENTO DE UN SISTEMA BASADO EN ENERGÍAS RENOVABLES PARA POTABILIZACIÓN.pdf.jpgEVALUACIÓN DE LAS MÉTRICAS DE DESEMPEÑO DE ERA5-LAND Y MERRA-2 Y SU EFECTO EN EL DIMENSIONAMIENTO DE UN SISTEMA BASADO EN ENERGÍAS RENOVABLES PARA POTABILIZACIÓN.pdf.jpgGenerated Thumbnailimage/jpeg9387https://repositorio.cuc.edu.co/bitstreams/7b978a4e-8097-4696-83d2-7d5b8a588d20/downloadadd26124474bb618303064e510060dbbMD5411323/9583oai:repositorio.cuc.edu.co:11323/95832024-09-17 10:47:43.267https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=