Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast

Greater incorporation of wind energy into power systems has necessitated the development of accurate and reliable techniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of win...

Full description

Autores:
Palomino, Kevin
Reyes, Fabiola
Núñez, José
Valencia, Guillermo
Herrera Acosta, Roberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6621
Acceso en línea:
https://hdl.handle.net/11323/6621
https://repositorio.cuc.edu.co/
Palabra clave:
Wind speed prediction
ARIMA
OLS
Sustainable energy
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_0f3a93836dda1c3cfec1abce6ff31d56
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6621
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
dc.title.translated.spa.fl_str_mv Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
title Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
spellingShingle Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
Wind speed prediction
ARIMA
OLS
Sustainable energy
title_short Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
title_full Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
title_fullStr Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
title_full_unstemmed Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
title_sort Wind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean Coast
dc.creator.fl_str_mv Palomino, Kevin
Reyes, Fabiola
Núñez, José
Valencia, Guillermo
Herrera Acosta, Roberto
dc.contributor.author.spa.fl_str_mv Palomino, Kevin
Reyes, Fabiola
Núñez, José
Valencia, Guillermo
Herrera Acosta, Roberto
dc.subject.spa.fl_str_mv Wind speed prediction
ARIMA
OLS
Sustainable energy
topic Wind speed prediction
ARIMA
OLS
Sustainable energy
description Greater incorporation of wind energy into power systems has necessitated the development of accurate and reliable techniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of wind resources in this region is greater than the hydroelectric potential of the whole country, but all this potential has yet to be developed. In this paper, based on time series, Autoregressive Integrated Moving Average (ARIMA), and Multiple Regression with Ordinary Least Squares (OLS) in the study, two models are proposed and their performance for wind speed prediction is compared. The data were collected in the meteorological station located in the experimental farm of the Atlantic University, in Barranquilla, Colombia, and variables analyzed included wind speed, wind direction, temperature, relative humidity, solar radiation, and pressure. The results of the two approaches indicated that among all the involved models, the ARIMA model has the best predicting performance. Also, it is essential to highlight that through this work, decision-makers would explore the local wind potential, allowing for the possibility of predicting future wind speed, and thus giving them the ability to plan the production and the interaction of other sources of energy.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-17T15:15:23Z
dc.date.available.none.fl_str_mv 2020-07-17T15:15:23Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1791-2377
1791-9320
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6621
dc.identifier.doi.spa.fl_str_mv doi:10.25103/jestr.133.22
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1791-2377
1791-9320
doi:10.25103/jestr.133.22
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6621
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Taner, T. and Demirci, K.O., “Energy and economic City”, Applied Ecology and Environmental Sciences, analysis of the wind turbine plant’s draft for the Aksaray Vol. 2, No. 3, (2015), 82–85.
[2] Boutoubat, M., Mokrani, L., Machmoum, M., “Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement”, Renewable Energy, Vol. 50, (2013), 378–386.
[3] Brown, S.P.A. and Huntington, H.G., “Energy security and climate change protection: Complementarity or tradeoff?” Energy Policy, Vol. 36, No. 9, (2008), 3510– 3513.
[4] Congress of the Republic of Colombia: Law 1715 - 2014.
[5] Valencia, G., Vanegas, M. and Polo, J., "Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 150.
[6] Valencia, G. and Vanegas, M., “Atlas Eólico de la Región Caribe Colombiana”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 1-45.
[7] Ouyang, T., Zha, X., Qin, L., Xiong, Y. and Xia, T., “Wind power prediction method based on regime of switching kernel functions”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 153, (2016), 26–33.
[8] Cadenas, E. and Rivera, W., “Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model”, Renewable Energy, Vol. 35, No. 12, (2010), 2732–2738.
[9] Lawrie, L.K. al., “ENERGYPLUS, a new-generation building energy simulation program”. Proceedings of Building Simulation 1999, Kyoto, Japan, (Aug. 1999), 1999.
[10] Liu, H., Erdem, E. and Shi, J., “Comprehensive evaluation of ARMA–GARCH(-M) approach hes for modeling the mean and volatility of wind speed”, Applied Energy, Vol. 88, No. 3, (2011), 724–732.
[11] Kavasseri, R.G. and Seetharaman, K., “Day-ahead wind speed forecasting using f-ARIMA models”, Renewable Energy, Vol. 34, No. 5, (2009), 1388–1393.
[12] Ariza, A.M., “Métodos utilizados para el pronóstico de demanda de energía eléctrica en sistemas de distribución”, Vol. 1, 1st ed., Universidad Tecnológica de Pereira, Pereira, (2013), 15-145.
[13] Wang, X., Guo, P. and Huang, X., “A Review of Wind Power Forecasting Models”, Energy Procedia, Vol. 12, (2011), 770–778.
[14] Barrozo, F., Valencia, G. and Escorcia, Y.C., “Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost”, Contemporary Engineering Sciences, Vol. 10, No. 26, (2017), 1269-1278.
[15] Haque, A.U., Mandal, P., Meng, J. and Negnevitsky, M., “Wind speed forecast model for wind farm based on a hybrid machine learning algorithm”, International Journal of Sustainable Energy, Vol. 34, No. 1, (2015), 38–51.
[16] Cassola, F. and Burlando, M., “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output”, Applied Energy, Vol. 99, (2012), 154–166.
[17] Torres, J. L., García, A., De Blas, M. and De Francisco, A., “Forecast of hourly average wind speed with ARMA models in Navarre (Spain)”, Solar Energy, Vol. 79, No. 1, (2005), 65–77.
[18] Box, G.E.P and Jenkins, G. M “Time Series Analysis Time series Analysis: Forecasting and control”, Vol. 1, 3rd ed., Prentice-Hall, New Jersey, (1994), 614
[19] Box, G.E.P, Jenkins, G. M. and Reinsel, G., “Time series Analysis: Forecasting and control”, Vol. 1, 2nd ed., Holden-Day, New Jersey, (1976), 586
[20] Makridakis, S. G., Wheelwright, S. C. and Hyndman, R. J., “Forecasting: Methods and Applications”, Vol. 1, 3rd ed., John Wiley & Sons, New York, (1998), 656
[21] Aguado, J., Quevedo, A., Castro, M., Arteaga, R., Vázquez, M.A, and Zamora, B.P., “Meteorological variables prediction through ARIMA models”, Agrociencia, Vol. 50, No. 1, (2016), 1-13.
[22] Rojo, J. M., “Regresión lineal multiple”, Instituto de Economía y Geografía Madrid, Madrid, (2007), 32.
[23] Herrera, R., Palomino, K., Reyes, F. and Valencia, G., "Análisis Estadístico Descriptivo e Inferencial de la Velocidad y Dirección del viento en la Costa Caribe Colombiana", Revista Espacios, Vol. 39, No. 19, (2018), 3-15.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Engineering Science and Technology Review
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/199f9c7c-c653-43e4-9e98-58de9e73b74a/download
https://repositorio.cuc.edu.co/bitstreams/0c85812b-e83e-445a-9efa-0ea362f7c977/download
https://repositorio.cuc.edu.co/bitstreams/39d7291e-fc8e-4d37-9aaf-7aaac7e74df2/download
https://repositorio.cuc.edu.co/bitstreams/0c66cc34-06ba-4cc3-826b-60ac7a31e3ec/download
https://repositorio.cuc.edu.co/bitstreams/17f71f43-f4ce-44e9-8f0d-974a125a3400/download
bitstream.checksum.fl_str_mv abd74ec9fabe1a093ad6fa65fc605b36
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
a0cb0d6b0eb127a59a80412540e4f2d4
6ab8fcb5e21a0ea65847ec87dbb6386d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760817496915968
spelling Palomino, KevinReyes, FabiolaNúñez, JoséValencia, GuillermoHerrera Acosta, Roberto2020-07-17T15:15:23Z2020-07-17T15:15:23Z20201791-23771791-9320https://hdl.handle.net/11323/6621doi:10.25103/jestr.133.22Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Greater incorporation of wind energy into power systems has necessitated the development of accurate and reliable techniques for wind speed forecasting. However, although there are multiple studies, none are set up for the Colombia Caribbean coast. This is a disadvantage because the potential of wind resources in this region is greater than the hydroelectric potential of the whole country, but all this potential has yet to be developed. In this paper, based on time series, Autoregressive Integrated Moving Average (ARIMA), and Multiple Regression with Ordinary Least Squares (OLS) in the study, two models are proposed and their performance for wind speed prediction is compared. The data were collected in the meteorological station located in the experimental farm of the Atlantic University, in Barranquilla, Colombia, and variables analyzed included wind speed, wind direction, temperature, relative humidity, solar radiation, and pressure. The results of the two approaches indicated that among all the involved models, the ARIMA model has the best predicting performance. Also, it is essential to highlight that through this work, decision-makers would explore the local wind potential, allowing for the possibility of predicting future wind speed, and thus giving them the ability to plan the production and the interaction of other sources of energy.Palomino, KevinReyes, FabiolaNúñez, JoséValencia, GuillermoHerrera Acosta, Roberto-will be generated-orcid-0000-0002-7161-3360-600engJournal of Engineering Science and Technology ReviewCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Wind speed predictionARIMAOLSSustainable energyWind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean CoastWind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean CoastWind speed prediction based on univariate ARIMA and OLS on the Colombian Caribbean CoastArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Taner, T. and Demirci, K.O., “Energy and economic City”, Applied Ecology and Environmental Sciences, analysis of the wind turbine plant’s draft for the Aksaray Vol. 2, No. 3, (2015), 82–85.[2] Boutoubat, M., Mokrani, L., Machmoum, M., “Control of a wind energy conversion system equipped by a DFIG for active power generation and power quality improvement”, Renewable Energy, Vol. 50, (2013), 378–386.[3] Brown, S.P.A. and Huntington, H.G., “Energy security and climate change protection: Complementarity or tradeoff?” Energy Policy, Vol. 36, No. 9, (2008), 3510– 3513.[4] Congress of the Republic of Colombia: Law 1715 - 2014.[5] Valencia, G., Vanegas, M. and Polo, J., "Análisis estadístico de la velocidad y dirección del viento en la Costa Caribe colombiana con énfasis en La Guajira”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 150.[6] Valencia, G. and Vanegas, M., “Atlas Eólico de la Región Caribe Colombiana”, Vol. 1, 1st ed., Universidad del Atlántico, Barranquilla, (2016), 1-45.[7] Ouyang, T., Zha, X., Qin, L., Xiong, Y. and Xia, T., “Wind power prediction method based on regime of switching kernel functions”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 153, (2016), 26–33.[8] Cadenas, E. and Rivera, W., “Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model”, Renewable Energy, Vol. 35, No. 12, (2010), 2732–2738.[9] Lawrie, L.K. al., “ENERGYPLUS, a new-generation building energy simulation program”. Proceedings of Building Simulation 1999, Kyoto, Japan, (Aug. 1999), 1999.[10] Liu, H., Erdem, E. and Shi, J., “Comprehensive evaluation of ARMA–GARCH(-M) approach hes for modeling the mean and volatility of wind speed”, Applied Energy, Vol. 88, No. 3, (2011), 724–732.[11] Kavasseri, R.G. and Seetharaman, K., “Day-ahead wind speed forecasting using f-ARIMA models”, Renewable Energy, Vol. 34, No. 5, (2009), 1388–1393.[12] Ariza, A.M., “Métodos utilizados para el pronóstico de demanda de energía eléctrica en sistemas de distribución”, Vol. 1, 1st ed., Universidad Tecnológica de Pereira, Pereira, (2013), 15-145.[13] Wang, X., Guo, P. and Huang, X., “A Review of Wind Power Forecasting Models”, Energy Procedia, Vol. 12, (2011), 770–778.[14] Barrozo, F., Valencia, G. and Escorcia, Y.C., “Hybrid PV and wind grid-connected renewable energy system to reduce the gas emission and operation cost”, Contemporary Engineering Sciences, Vol. 10, No. 26, (2017), 1269-1278.[15] Haque, A.U., Mandal, P., Meng, J. and Negnevitsky, M., “Wind speed forecast model for wind farm based on a hybrid machine learning algorithm”, International Journal of Sustainable Energy, Vol. 34, No. 1, (2015), 38–51.[16] Cassola, F. and Burlando, M., “Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output”, Applied Energy, Vol. 99, (2012), 154–166.[17] Torres, J. L., García, A., De Blas, M. and De Francisco, A., “Forecast of hourly average wind speed with ARMA models in Navarre (Spain)”, Solar Energy, Vol. 79, No. 1, (2005), 65–77.[18] Box, G.E.P and Jenkins, G. M “Time Series Analysis Time series Analysis: Forecasting and control”, Vol. 1, 3rd ed., Prentice-Hall, New Jersey, (1994), 614[19] Box, G.E.P, Jenkins, G. M. and Reinsel, G., “Time series Analysis: Forecasting and control”, Vol. 1, 2nd ed., Holden-Day, New Jersey, (1976), 586[20] Makridakis, S. G., Wheelwright, S. C. and Hyndman, R. J., “Forecasting: Methods and Applications”, Vol. 1, 3rd ed., John Wiley & Sons, New York, (1998), 656[21] Aguado, J., Quevedo, A., Castro, M., Arteaga, R., Vázquez, M.A, and Zamora, B.P., “Meteorological variables prediction through ARIMA models”, Agrociencia, Vol. 50, No. 1, (2016), 1-13.[22] Rojo, J. M., “Regresión lineal multiple”, Instituto de Economía y Geografía Madrid, Madrid, (2007), 32.[23] Herrera, R., Palomino, K., Reyes, F. and Valencia, G., "Análisis Estadístico Descriptivo e Inferencial de la Velocidad y Dirección del viento en la Costa Caribe Colombiana", Revista Espacios, Vol. 39, No. 19, (2018), 3-15.PublicationORIGINALWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast.pdfWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast.pdfapplication/pdf576790https://repositorio.cuc.edu.co/bitstreams/199f9c7c-c653-43e4-9e98-58de9e73b74a/downloadabd74ec9fabe1a093ad6fa65fc605b36MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/0c85812b-e83e-445a-9efa-0ea362f7c977/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/39d7291e-fc8e-4d37-9aaf-7aaac7e74df2/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast.pdf.jpgWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast.pdf.jpgimage/jpeg73681https://repositorio.cuc.edu.co/bitstreams/0c66cc34-06ba-4cc3-826b-60ac7a31e3ec/downloada0cb0d6b0eb127a59a80412540e4f2d4MD54TEXTWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast.pdf.txtWind Speed Prediction Based on Univariate ARIMA and OLS on the Colombian Caribbean Coast.pdf.txttext/plain26066https://repositorio.cuc.edu.co/bitstreams/17f71f43-f4ce-44e9-8f0d-974a125a3400/download6ab8fcb5e21a0ea65847ec87dbb6386dMD5511323/6621oai:repositorio.cuc.edu.co:11323/66212024-09-17 12:49:34.398http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==