Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region

A hybrid system was analyzed and optimized to produce electric energy in non-interconnected zones in the Colombian Caribbean region, contributing to the reduction of greenhouse gas emissions and the improvement in efficient energy management. A comparative analysis of the performance of hybrid was c...

Full description

Autores:
Guillermo, Valencia
Benavides, Aldair
Cárdenas, Yulineth
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4934
Acceso en línea:
https://hdl.handle.net/11323/4934
https://repositorio.cuc.edu.co/
Palabra clave:
Fuel cell
Wind energy
Solar energy
Hybrid energy system
Colombian Caribbean region
Multiobjective optimization
Rights
openAccess
License
http://creativecommons.org/publicdomain/zero/1.0/
id RCUC2_0f1903aa1791f02fad0a35e672fc82c5
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4934
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
title Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
spellingShingle Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
Fuel cell
Wind energy
Solar energy
Hybrid energy system
Colombian Caribbean region
Multiobjective optimization
title_short Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
title_full Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
title_fullStr Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
title_full_unstemmed Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
title_sort Economic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region
dc.creator.fl_str_mv Guillermo, Valencia
Benavides, Aldair
Cárdenas, Yulineth
dc.contributor.author.spa.fl_str_mv Guillermo, Valencia
Benavides, Aldair
Cárdenas, Yulineth
dc.subject.spa.fl_str_mv Fuel cell
Wind energy
Solar energy
Hybrid energy system
Colombian Caribbean region
Multiobjective optimization
topic Fuel cell
Wind energy
Solar energy
Hybrid energy system
Colombian Caribbean region
Multiobjective optimization
description A hybrid system was analyzed and optimized to produce electric energy in non-interconnected zones in the Colombian Caribbean region, contributing to the reduction of greenhouse gas emissions and the improvement in efficient energy management. A comparative analysis of the performance of hybrid was conducted using a proposed model, built with historical data for meteorological conditions, wind speed, and solar radiation. The model is integrated by a Southwest Wind Power Inc. wind turbine AIR 403, a proton-exchange membrane fuel cell (PEM), an electrolyzer, a solar panel, and a regulator based on proportional, integral, and derivative (PID) controllers to manipulate oxygen and hydrogen flow entering in the fuel cell. The transient responses of the cell voltage, current, and power were obtained for the demand of 200 W under changes in solar radiation and wind speed for each day of the year 2013 in different meteorological stations, such as Ernesto Cortissoz airport, Puerto Bolívar, Alfonso Lopez airport, and Simon Bolívar airport. Through the adjustment of the hydrogen and oxygen flow into the fuel cell, the maximum contribution of power generation from the fuel cell was presented for the Simon Bolívar airport in November with a value of 158.35 W (9.45%). Multiobjective design optimization under a Pareto diagram front is presented for each place studied to minimize the levelized cost of energy and CO2 emission, where the objective control variables are the number of panel and stack in the photovoltaic (PV) system and PEM.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-04T18:50:12Z
dc.date.available.none.fl_str_mv 2019-07-04T18:50:12Z
dc.date.issued.none.fl_str_mv 2019-05-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1996-1073
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4934
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1996-1073
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4934
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.3390/en12112119
dc.relation.references.spa.fl_str_mv 1. Sinha, A. Inequality of renewable energy generation across OECD countries: A note. Renew. Sustain. Energy Rev. 2017, 79, 9–14. [CrossRef] 2. Kim, K.; Park, H.; Kim, H. Real options analysis for renewable energy investment decisions in developing countries. Renew. Sustain. Energy Rev. 2017, 75, 918–926. [CrossRef] 3. Shukla, A.K.; Sudhakar, K.; Baredar, P. Renewable energy resources in South Asian countries: Challenges, policy and recommendations. Resour. Technol. 2017, 3, 342–346. [CrossRef] 4. Ahmed, S.; Mahmood, A.; Hasan, A.; Sidhu, G.A.S.; Butt, M.F.U. A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities. Renew. Sustain. Energy Rev. 2016, 57, 216–225. [CrossRef] 5. Romo-Fernández, L.M.; López-Pujalte, C.; Bote, V.P.G.; Moya-Anegón, F. Analysis of Europe’s scientific production on renewable energies. Renew. Energy 2011, 36, 2529–2537. [CrossRef] 6. Fernández, L.M.R.; Bote, V.P.G.; Anegón, F.M. Análisis de la producción científica española en energías renovables, sostenibilidad y medio ambiente (Scopus, 2003–2009) en el contexto mundial. Investig. Bibl. Arch. Bibl. Inf. 2013, 27, 125–151. [CrossRef] 7. Abbasi, S.A.; Abbasi, T. Abbasi. Impact of wind-energy generation on climate: A rising spectre. Renew. Sustain. Energy Rev. 2016, 59, 1591–1598. [CrossRef] 8. Congreso de Colombia Ley N◦ 1715 del 13 de mayo de 2014. Available online: www.fedebiocombustibles. com/files/1715.pdf (accessed on 8 September 2018). 9. Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [CrossRef] 10. Islam, M.R.; Mekhilef, S.; Saidur, R. Progress and recent trends of wind energy technology. Renew. Sustain. Energy Rev. 2013, 21, 456–468. [CrossRef] 11. Procolombia Electric Power in Colombia. Power Generation—2015. Available online: http://www.energynet. co.uk/webfm_send/1839 (accessed on 9 January 2019). 12. Budes, F.B.; Escorcia, Y.C.; Ochoa, G.V. Optimization of a Biomass, solar and fuel cell Hybrid energy systems for a specific energy load using Homer Pro software®. Int. J. ChemTech Res. 2018, 11, 335–340. 13. Sikka, M.; Thornton, T.F.; Worl, R. Sustainable Biomass Energy and Indigenous Cultural Models of Well-being in an Alaska Forest Ecosystem. Ecol. Soc. 2013, 18, 531–543. [CrossRef] 14. Vides-Prado, A.; Camargo, E.O.; Vides-Prado, C.; Orozco, I.H.; Chenlo, F.; Candelo, J.E.; Sarmiento, A.B. Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renew. Sustain. Energy Rev. 2018, 82, 4245–4255. [CrossRef] 15. Mikati, M.; Santos, M.; Armenta, C. Modelado y Simulación de un Sistema Conjunto de Energía Solar y Eólica para Analizar su Dependencia de la Red Eléctrica. Rev. Iberoam. Autom. Inform. Ind. RIAI 2012, 9, 267–281. [CrossRef] 16. Bordons, C.; García-Torres, F.; Valverde, L. Gestión Óptima de la Energía en Microrredes con Generación Renovable. Rev. Iberoam. Autom. Inform. Ind. RIAI 2015, 12, 117–132. [CrossRef] 17. López, A.; Somolinos, J.A.; Núñez, L.R. Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas. Rev. Iberoam. Autom. Inform. Ind. RIAI 2014, 11, 224–235. [CrossRef] 18. Esmaeili, S.; Shafiee, M. Simulation of Dynamic Response of Small Wind-Photovoltaic-Fuel Cell Hybrid Energy System. Smart Grid Renew. Energy 2012, 3, 194–203. [CrossRef] 19. Ochoa, G.V.; Blanco, C.; Martinez, C.; Ramos, E. Fuzzy Adaptive Control Applied to a Hybrid Electric-Power Generation System (HEPGS). Indian J. Sci. Technol 2017, 10, 1–9. [CrossRef] 20. De Dias, C.L.; Branco, D.A.C.; Arouca, M.C.; Legey, L.F.L. Performance estimation of photovoltaic technologies in Brazil. Renew. Energy 2017, 114, 367–375. [CrossRef] 21. Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [CrossRef] 22. Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [CrossRef] 23. Cancino-Solórzano, Y.; Xiberta-Bernat, J. Statistical analysis of wind power in the region of Veracruz (Mexico). Renew. Energy 2009, 34, 1628–1634. [CrossRef] 24. Observatorio del Caribe Colombiano. Región Caribe Colombiana 2015. Available online: http://www.ocaribe. org/region-caribe (accessed on 7 January 2019). 25. Pandiarajan, N.; Ramaprabha, R.; Muthu, R. Application of circuit model for photovoltaic energy conversion system. Int. J. Photoenergy 2012, 2012, 410401. [CrossRef] 26. ¸Sen, S.; Demirer, G.N. Anaerobic tratment of real textile wastewater with a fluidized bed reactor. Water Res. 2003, 37, 1868–1878. [CrossRef] 27. Padilla, R.V.; Demirkaya, G.; Goswami, D.Y.; Stefanakos, E.; Rahman, M.M. Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 2011, 88, 5097–5110. [CrossRef] 28. Ochoa, G.V.; Chamorro, M.V.; Jiménez, J.P. Análisis Estadístico de la Velocidad y Dirección del Viento en la Región Caribe Colombiana con Énfasis en la Guajira; Universidad del Atlántico: Barranquilla, Colombia, 2016. 29. Bilil, H.; Aniba, G.; Maaroufi, M. Multiobjective Optimization of Renewable Energy Penetration Rate in Power Systems. Energy Procedia 2014, 50, 368–375. [CrossRef] 30. Kamjoo, A.; Maheri, A.; Dizqah, A.M.; Putrus, G.A. Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. Int. J. Electr. Power Energy Syst. 2016, 74, 187–194. [CrossRef] 31. Ighravwe, D. A CRITIC-TOPSIS framework for hybrid renewable energy systems evaluation under techno-economic requirements. J. Proj. Manag. 2019, 4, 109–126. 32. Chen, S.J.; Hwang, C.L. Fuzzy Multiple Attribute Decision Making Methods. In Fuzzy Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1992; Volume 375, pp. 289–486.
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Energies
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/059d3506-8c42-4be1-b7f4-734b389b0701/download
https://repositorio.cuc.edu.co/bitstreams/23a7071b-319c-4813-a397-8892838ffcae/download
https://repositorio.cuc.edu.co/bitstreams/f6fee70e-b31d-47b0-902b-27546737ad0c/download
https://repositorio.cuc.edu.co/bitstreams/933983cd-aa55-4139-b367-7ce1a5ce2d98/download
https://repositorio.cuc.edu.co/bitstreams/8a4d9166-7acd-4f74-b7da-192eba37034f/download
bitstream.checksum.fl_str_mv 230d8e7406952fed01b954fdbcd0b2b6
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
614f9c7ff6d8c5f2f1903b1b8926b38e
37d7277072a4bbb41288b73b397eea2c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760762083868672
spelling Guillermo, ValenciaBenavides, AldairCárdenas, Yulineth2019-07-04T18:50:12Z2019-07-04T18:50:12Z2019-05-151996-1073https://hdl.handle.net/11323/4934Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/A hybrid system was analyzed and optimized to produce electric energy in non-interconnected zones in the Colombian Caribbean region, contributing to the reduction of greenhouse gas emissions and the improvement in efficient energy management. A comparative analysis of the performance of hybrid was conducted using a proposed model, built with historical data for meteorological conditions, wind speed, and solar radiation. The model is integrated by a Southwest Wind Power Inc. wind turbine AIR 403, a proton-exchange membrane fuel cell (PEM), an electrolyzer, a solar panel, and a regulator based on proportional, integral, and derivative (PID) controllers to manipulate oxygen and hydrogen flow entering in the fuel cell. The transient responses of the cell voltage, current, and power were obtained for the demand of 200 W under changes in solar radiation and wind speed for each day of the year 2013 in different meteorological stations, such as Ernesto Cortissoz airport, Puerto Bolívar, Alfonso Lopez airport, and Simon Bolívar airport. Through the adjustment of the hydrogen and oxygen flow into the fuel cell, the maximum contribution of power generation from the fuel cell was presented for the Simon Bolívar airport in November with a value of 158.35 W (9.45%). Multiobjective design optimization under a Pareto diagram front is presented for each place studied to minimize the levelized cost of energy and CO2 emission, where the objective control variables are the number of panel and stack in the photovoltaic (PV) system and PEM.Guillermo, Valencia-0000-0001-5437-1964-600Benavides, Aldair-ecacf430-1d70-4386-adf5-6ad8a05d6e21-0Cárdenas, Yulineth-4adce3af-dcc3-45df-afb9-13e19a39ec62-0engEnergieshttps://doi.org/10.3390/en121121191. Sinha, A. Inequality of renewable energy generation across OECD countries: A note. Renew. Sustain. Energy Rev. 2017, 79, 9–14. [CrossRef] 2. Kim, K.; Park, H.; Kim, H. Real options analysis for renewable energy investment decisions in developing countries. Renew. Sustain. Energy Rev. 2017, 75, 918–926. [CrossRef] 3. Shukla, A.K.; Sudhakar, K.; Baredar, P. Renewable energy resources in South Asian countries: Challenges, policy and recommendations. Resour. Technol. 2017, 3, 342–346. [CrossRef] 4. Ahmed, S.; Mahmood, A.; Hasan, A.; Sidhu, G.A.S.; Butt, M.F.U. A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities. Renew. Sustain. Energy Rev. 2016, 57, 216–225. [CrossRef] 5. Romo-Fernández, L.M.; López-Pujalte, C.; Bote, V.P.G.; Moya-Anegón, F. Analysis of Europe’s scientific production on renewable energies. Renew. Energy 2011, 36, 2529–2537. [CrossRef] 6. Fernández, L.M.R.; Bote, V.P.G.; Anegón, F.M. Análisis de la producción científica española en energías renovables, sostenibilidad y medio ambiente (Scopus, 2003–2009) en el contexto mundial. Investig. Bibl. Arch. Bibl. Inf. 2013, 27, 125–151. [CrossRef] 7. Abbasi, S.A.; Abbasi, T. Abbasi. Impact of wind-energy generation on climate: A rising spectre. Renew. Sustain. Energy Rev. 2016, 59, 1591–1598. [CrossRef] 8. Congreso de Colombia Ley N◦ 1715 del 13 de mayo de 2014. Available online: www.fedebiocombustibles. com/files/1715.pdf (accessed on 8 September 2018). 9. Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [CrossRef] 10. Islam, M.R.; Mekhilef, S.; Saidur, R. Progress and recent trends of wind energy technology. Renew. Sustain. Energy Rev. 2013, 21, 456–468. [CrossRef] 11. Procolombia Electric Power in Colombia. Power Generation—2015. Available online: http://www.energynet. co.uk/webfm_send/1839 (accessed on 9 January 2019). 12. Budes, F.B.; Escorcia, Y.C.; Ochoa, G.V. Optimization of a Biomass, solar and fuel cell Hybrid energy systems for a specific energy load using Homer Pro software®. Int. J. ChemTech Res. 2018, 11, 335–340. 13. Sikka, M.; Thornton, T.F.; Worl, R. Sustainable Biomass Energy and Indigenous Cultural Models of Well-being in an Alaska Forest Ecosystem. Ecol. Soc. 2013, 18, 531–543. [CrossRef] 14. Vides-Prado, A.; Camargo, E.O.; Vides-Prado, C.; Orozco, I.H.; Chenlo, F.; Candelo, J.E.; Sarmiento, A.B. Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renew. Sustain. Energy Rev. 2018, 82, 4245–4255. [CrossRef] 15. Mikati, M.; Santos, M.; Armenta, C. Modelado y Simulación de un Sistema Conjunto de Energía Solar y Eólica para Analizar su Dependencia de la Red Eléctrica. Rev. Iberoam. Autom. Inform. Ind. RIAI 2012, 9, 267–281. [CrossRef] 16. Bordons, C.; García-Torres, F.; Valverde, L. Gestión Óptima de la Energía en Microrredes con Generación Renovable. Rev. Iberoam. Autom. Inform. Ind. RIAI 2015, 12, 117–132. [CrossRef] 17. López, A.; Somolinos, J.A.; Núñez, L.R. Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas. Rev. Iberoam. Autom. Inform. Ind. RIAI 2014, 11, 224–235. [CrossRef] 18. Esmaeili, S.; Shafiee, M. Simulation of Dynamic Response of Small Wind-Photovoltaic-Fuel Cell Hybrid Energy System. Smart Grid Renew. Energy 2012, 3, 194–203. [CrossRef] 19. Ochoa, G.V.; Blanco, C.; Martinez, C.; Ramos, E. Fuzzy Adaptive Control Applied to a Hybrid Electric-Power Generation System (HEPGS). Indian J. Sci. Technol 2017, 10, 1–9. [CrossRef] 20. De Dias, C.L.; Branco, D.A.C.; Arouca, M.C.; Legey, L.F.L. Performance estimation of photovoltaic technologies in Brazil. Renew. Energy 2017, 114, 367–375. [CrossRef] 21. Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [CrossRef] 22. Parida, B.; Iniyan, S.; Goic, R. A review of solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2011, 15, 1625–1636. [CrossRef] 23. Cancino-Solórzano, Y.; Xiberta-Bernat, J. Statistical analysis of wind power in the region of Veracruz (Mexico). Renew. Energy 2009, 34, 1628–1634. [CrossRef] 24. Observatorio del Caribe Colombiano. Región Caribe Colombiana 2015. Available online: http://www.ocaribe. org/region-caribe (accessed on 7 January 2019). 25. Pandiarajan, N.; Ramaprabha, R.; Muthu, R. Application of circuit model for photovoltaic energy conversion system. Int. J. Photoenergy 2012, 2012, 410401. [CrossRef] 26. ¸Sen, S.; Demirer, G.N. Anaerobic tratment of real textile wastewater with a fluidized bed reactor. Water Res. 2003, 37, 1868–1878. [CrossRef] 27. Padilla, R.V.; Demirkaya, G.; Goswami, D.Y.; Stefanakos, E.; Rahman, M.M. Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 2011, 88, 5097–5110. [CrossRef] 28. Ochoa, G.V.; Chamorro, M.V.; Jiménez, J.P. Análisis Estadístico de la Velocidad y Dirección del Viento en la Región Caribe Colombiana con Énfasis en la Guajira; Universidad del Atlántico: Barranquilla, Colombia, 2016. 29. Bilil, H.; Aniba, G.; Maaroufi, M. Multiobjective Optimization of Renewable Energy Penetration Rate in Power Systems. Energy Procedia 2014, 50, 368–375. [CrossRef] 30. Kamjoo, A.; Maheri, A.; Dizqah, A.M.; Putrus, G.A. Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. Int. J. Electr. Power Energy Syst. 2016, 74, 187–194. [CrossRef] 31. Ighravwe, D. A CRITIC-TOPSIS framework for hybrid renewable energy systems evaluation under techno-economic requirements. J. Proj. Manag. 2019, 4, 109–126. 32. Chen, S.J.; Hwang, C.L. Fuzzy Multiple Attribute Decision Making Methods. In Fuzzy Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1992; Volume 375, pp. 289–486.http://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fuel cellWind energySolar energyHybrid energy systemColombian Caribbean regionMultiobjective optimizationEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean regionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region.pdfEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region.pdfapplication/pdf8932997https://repositorio.cuc.edu.co/bitstreams/059d3506-8c42-4be1-b7f4-734b389b0701/download230d8e7406952fed01b954fdbcd0b2b6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/23a7071b-319c-4813-a397-8892838ffcae/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/f6fee70e-b31d-47b0-902b-27546737ad0c/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region.pdf.jpgEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region.pdf.jpgimage/jpeg69984https://repositorio.cuc.edu.co/bitstreams/933983cd-aa55-4139-b367-7ce1a5ce2d98/download614f9c7ff6d8c5f2f1903b1b8926b38eMD55TEXTEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region.pdf.txtEconomic and environmental multiobjective optimization of a wind–solar–fuel cell hybrid energy system in the colombian caribbean region.pdf.txttext/plain75392https://repositorio.cuc.edu.co/bitstreams/8a4d9166-7acd-4f74-b7da-192eba37034f/download37d7277072a4bbb41288b73b397eea2cMD5611323/4934oai:repositorio.cuc.edu.co:11323/49342024-09-17 11:02:02.548http://creativecommons.org/publicdomain/zero/1.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=