Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model

In this work, physical statistical models were employed to provide reasonable information regarding the adsorption of naproxen onto different activated carbons. The activated carbons were prepared from different biomasses (pitaya peels, jabuticaba peels, or grape residues from the winery process) us...

Full description

Autores:
Franco, Dison S.P.
Georgin, Jordana
Netto, Matias S.
da Boit Martinello, Katia
Silva, Luis F.O.
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10904
Acceso en línea:
https://hdl.handle.net/11323/10904
https://repositorio.cuc.edu.co
Palabra clave:
Activated carbons
Adsorption modeling
Naproxen
Physics statistics
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
id RCUC2_0ecd529f810f2a77e7ba4699f02d804a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10904
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
title Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
spellingShingle Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
Activated carbons
Adsorption modeling
Naproxen
Physics statistics
title_short Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
title_full Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
title_fullStr Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
title_full_unstemmed Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
title_sort Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical model
dc.creator.fl_str_mv Franco, Dison S.P.
Georgin, Jordana
Netto, Matias S.
da Boit Martinello, Katia
Silva, Luis F.O.
dc.contributor.author.none.fl_str_mv Franco, Dison S.P.
Georgin, Jordana
Netto, Matias S.
da Boit Martinello, Katia
Silva, Luis F.O.
dc.subject.proposal.eng.fl_str_mv Activated carbons
Adsorption modeling
Naproxen
Physics statistics
topic Activated carbons
Adsorption modeling
Naproxen
Physics statistics
description In this work, physical statistical models were employed to provide reasonable information regarding the adsorption of naproxen onto different activated carbons. The activated carbons were prepared from different biomasses (pitaya peels, jabuticaba peels, or grape residues from the winery process) using ZnCl2 as an activator. All the adsorbents were characterized regarding their functional groups and morphological surfaces. The maximum capacity obtained for the activated carbons (at 328 K) was found to be: 167.0 mg g−1 for jabuticaba peels at pH 4; 158.81 mg g−1 for pitaya peels at pH 6.7; and last., grape residues the capacity was 176.0 mg g−1 at pH 7. The equilibrium data of the three adsorbents were well fitted to the monolayer with two energy sites adsorption model, assuming that NPX adsorption on the carbon surfaces occurs via two different functional groups. This statistical physics model calculated the number of NPX molecules bound on the surface and the saturated adsorption capacity for both functional groups at different temperatures. The obtained results indicate that the naproxen molecules can be adsorbed in a parallel and horizontal manner according to the material employed. The receptor density tends to increase with the temperature evolution, indicating that thermal energy and solubility play an important role in adsorption. Configurational entropy indicates similar thermodynamic behavior for all materials where higher disorder is found at the early stages of the adsorption, followed by and decrease a possible organization of the molecules on the surface. The Gibbs free energy shows that adsorption of naproxen is spontaneous in all cases and internal energy is proportional to the adsorption capacity indicating that the system releases energy as the adsorption occurs. Therefore, this article reports new findings to understand the adsorption mechanism of naproxen molecules on activated carbons prepared from lignocellulosic biomass.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-06-15
dc.date.accessioned.none.fl_str_mv 2024-03-21T14:48:54Z
dc.date.available.none.fl_str_mv 2024-03-21T14:48:54Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Franco, D. S. P., Georgin, J., Netto, M. S., da Boit Martinello, K., & Silva, L. F. O. (2022). Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. Journal of Molecular Liquids, 356, 119021. https://doi.org/10.1016/j.molliq.2022.119021
dc.identifier.issn.spa.fl_str_mv 0167-7322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10904
dc.identifier.doi.none.fl_str_mv 10.1016/j.molliq.2022.119021
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co
identifier_str_mv Franco, D. S. P., Georgin, J., Netto, M. S., da Boit Martinello, K., & Silva, L. F. O. (2022). Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. Journal of Molecular Liquids, 356, 119021. https://doi.org/10.1016/j.molliq.2022.119021
0167-7322
10.1016/j.molliq.2022.119021
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10904
https://repositorio.cuc.edu.co
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Liquids
dc.relation.references.spa.fl_str_mv [1] S. Terzic´, I. Senta, M. Ahel, M. Gros, M. Petrovic´, D. Barcelo, J. Müller, T. Knepper, I. Martí, F. Ventura, P. Jovancˇic´, D. Jabucˇar, Occurrence and fate of emerging wastewater contaminants in Western Balkan Region, Sci. Total Environ. 399 (1-3) (2008) 66–77, https://doi.org/10.1016/j.scitotenv.2008.03.003.
[2] S.L. Rice, S. Mitra, Microwave-assisted solvent extraction of solid matrices and subsequent detection of pharmaceuticals and personal care products (PPCPs) using gas chromatography-mass spectrometry, Anal. Chim. Acta. 589 (1) (2007) 125–132, https://doi.org/10.1016/j.aca.2007.02.051.
[3] S. Zhu, Y.-G. Liu, S.-b. Liu, G.-M. Zeng, L.-H. Jiang, X.-F. Tan, L.u. Zhou, W. Zeng, T.-T. Li, C.-P. Yang, Adsorption of emerging contaminant metformin using graphene oxide, Chemosphere 179 (2017) 20–28, https://doi.org/10.1016/j. chemosphere.2017.03.071.
[4] H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review, Chemosphere 222 (2019) 766–780, https://doi.org/10.1016/j.chemosphere.2019.02.009.
[5] L. Feng, E.D. van Hullebusch, M.A. Rodrigo, G. Esposito, M.A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J. 228 (2013) 944–964, https://doi.org/10.1016/j.cej.2013.05.061.
[6] Y. Shao, Z. Chen, H. Hollert, S. Zhou, B. Deutschmann, T.B. Seiler, Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment, Sci. Total Environ. 666 (2019) 1273–1282, https://doi.org/ 10.1016/j.scitotenv.2019.02.047.
[7] B. de Diego-Díaz, A. Duran, M.R. Álvarez-García, J. Fernández-Rodríguez, New trends in physicochemical characterization of solid lignocellulosic waste in anaerobic digestion, Fuel 245 (2019) 240–246, https://doi.org/10.1016/ j.fuel.2019.02.051.
[8] F. Tomul, Y. Arslan, B. Kabak, D. Trak, E. Kendüzler, E.C. Lima, H.N. Tran, Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water, Sci. Total Environ. 726 (2020) 137828, https://doi.org/10.1016/j. scitotenv.2020.137828.
[9] M.H. Ahmad, M. Fatima, M. Hossain, A.C. Mondal, Evaluation of naproxeninduced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats, J. Pharm. Anal. 8 (6) (2018) 400–406, https://doi.org/10.1016/j. jpha.2018.04.002.
[10] D. Liu, Y.i. Zhu, Z. Li, D. Tian, L. Chen, P. Chen, Chitin nanofibrils for rapid and efficient removal of metal ions from water system, Carbohydr. Polym. 98 (1) (2013) 483–489, https://doi.org/10.1016/j.carbpol.2013.06.015.
[11] L.F. Cusioli, H.B. Quesada, A.L. de Brito Portela Castro, R.G. Gomes, R. Bergamasco, Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water, Chemosphere 247 (2020) 125852, https://doi.org/10.1016/j. chemosphere.2020.125852.
[12] J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb (II) from water using b–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater. 400 (2020) 123142, https://doi.org/10.1016/j. jhazmat.2020.123142.
[13] L. Sellaoui, A. Yazidi, S. Taamalli, A. Bonilla-Petriciolet, F. Louis, A. El Bakali, M. Badawi, E.C. Lima, D.R. Lima, Z. Chen, Adsorption of 3-aminophenol and resorcinol on avocado seed activated carbon: Mathematical modelling, thermodynamic study and description of adsorbent performance, J. Mol. Liq. 342 (2021) 116952, https://doi.org/10.1016/j.molliq.2021.116952.
[14] M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R.A. Torres-Palma, Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study, J. Environ. Chem. Eng. 9 (4) (2021) 105685, https://doi.org/10.1016/j.jece:2021.105685.
[15] S.M. Kharrazi, M. Soleimani, M. Jokar, T. Richards, A. Pettersson, N. Mirghaffari, Pretreatment of lignocellulosic waste as a precursor for synthesis of high porous activated carbon and its application for Pb (II) and Cr (VI) adsorption from aqueous solutions, Int. J. Biol. Macromol. 180 (2021) 299–310, https:// doi.org/10.1016/j.ijbiomac.2021.03.078.
[16] A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed, A.A. Nada, Efficiently activated carbons from corn cob for methylene blue adsorption, Appl. Surf. Sci. Adv. 3 (2021) 100037, https://doi.org/10.1016/j.apsadv.2020.100037.
[17] C.M. Kerkhoff, K.d. Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021) 117184, https:// doi.org/10.1016/j.molliq.2021.117184.
[18] F.M. Onaga Medina, M.B. Aguiar, M.E. Parolo, M.J. Avena, Insights of competitive adsorption on activated carbon of binary caffeine and diclofenac solutions, J. Environ. Manage. 278 (2021) 111523, https://doi.org/10.1016/ j.jenvman.2020.111523.
[19] J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng. 4 (1) (2016) 266–275.
[20] R.L.T. Costa, R.A. do Nascimento, R.C.S. de Araújo, M.G.A. Vieira, M.G.C. da Silva, S.M.L. de Carvalho, L.J.G. de Faria, Removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water with activated carbons synthetized from waste murumuru (Astrocaryum murumuru Mart.): Characterization and adsorption studies, J. Mol. Liq. 343 (2021) 116980, https://doi.org/10.1016/ j.molliq.2021.116980.
[21] A. Nasrullah, A.S. Khan, A.H. Bhat, I.U. Din, A. Inayat, N. Muhammad, E.M. Bakhsh, S.B. Khan, Effect of short time ball milling on physicochemical and adsorption performance of activated carbon prepared from mangosteen peel waste, Renew. Energy 168 (2021) 723–733, https://doi.org/10.1016/j. renene.2020.12.077.
[22] H.K. Yag˘mur, _ I. Kaya, Synthesis and characterization of magnetic ZnCl2- activated carbon produced from coconut shell for the adsorption of methylene blue, J. Mol. Struct. 1232 (2021) 130071, https://doi.org/10.1016/ j.molstruc.2021.130071.
[23] A. Wong, F.M. de Oliveira, C.R.T. Tarley, M., Del Pilar Taboada Sotomayor, Study on the cross-linked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective adsorption of diuron, React. Funct. Polym. 100 (2016) 26–36, https://doi.org/10.1016/j. reactfunctpolym.2016.01.006.
[24] H. Xue, X. Wang, Q.i. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A. Ben Lamine, H. Belmabrouk, A. Bajahzar, A. Bonilla-Petriciolet, Z. Li, Q. Li, Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis, Chem. Eng. J. 430 (2022) 132801, https://doi.org/10.1016/j. cej.2021.132801.
[25] I. Anastopoulos, M.J. Ahmed, E.H. Hummadi, Eucalyptus-based materials as adsorbents of heavy metals and dyes pollutants from (waste)waters, J. Mol. Liq. (2022) 118864, https://doi.org/10.1016/j.molliq.2022.118864.
[26] I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, D.A. Giannakoudakis, A. Robalds, M. Usman, L.B. Escudero, Y. Zhou, J.C. Colmenares, A. NúñezDelgado, É.C. Lima, Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions, J. Mol. Liq. 295 (2019) 111684, https:// doi.org/10.1016/j.molliq.2019.111684.
[27] H.B. Quesada, T.P. de Araújo, L.F. Cusioli, M.A.S.D. de Barros, R.G. Gomes, R. Bergamasco, Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture, J. Environ. Chem. Eng. 9 (1) (2021) 104914, https://doi.org/10.1016/j.jece:2020.104914.
[28] T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D. Van Kiet, T.T.K. Ngan, L. Van Tan, Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf, Mater. Today Proc. 38 (2020) 3405–3413, https://doi.org/ 10.1016/j.matpr.2020.10.834.
[29] G.K.P. Lopes, H.G. Zanella, L. Spessato, A. Ronix, P. Viero, J.M. Fonseca, J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye, Arab. J. Chem. 14 (3) (2021) 103001, https://doi.org/ 10.1016/j.arabjc.2021.103001.
[30] G. Kaur, N. Singh, A. Rajor, Adsorption of doxycycline hydrochloride onto powdered activated carbon synthesized from pumpkin seed shell by microwave-assisted pyrolysis, Environ. Technol. Innov. 23 (2021) 101601, https://doi.org/10.1016/j.eti.2021.101601.
[31] Q. Han, J. Wang, B.A. Goodman, J. Xie, Z. Liu, High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue, Powder Technol. 366 (2020) 239–248, https://doi.org/10.1016/j. powtec.2020.02.013.
[32] M.C. Silva, L. Spessato, T.L. Silva, G.K.P. Lopes, H.G. Zanella, J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: Adsorption studies of methylene blue dye in batch and fixed bed systems, J. Mol. Liq. 324 (2021) 114771, https://doi.org/ 10.1016/j.molliq.2020.114771.
[33] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria peel and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019), https:// doi.org/10.1016/j.cej.2019.122101 122101.
[34] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.
[35] K. Philippou, I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, M. Usman, M. Kornaros, M. Omirou, D. Kalderis, J.V. Milojkovic´, Z.R. Lopicˇic´, M. Abatal, Chapter 6 – The application of pine-based adsorbents to remove potentially toxic elements from aqueous solutions, in: A. Núñez-Delgado (Ed.), Sorbents Mater. Control. Environ. Pollut., Elsevier, 2021, pp. 113–133, https:// doi.org/10.1016/B978-0-12-820042-1.00016-X.
[36] I. Anastopoulos, I. Pashalidis, Environmental applications of Luffa cylindricabased adsorbents, J. Mol. Liq. 319 (2020) 114127, https://doi.org/10.1016/ j.molliq.2020.114127.
[37] H.Y. Leong, C.W. Ooi, C.L. Law, A.L. Julkifle, G.T. Pan, P.L. Show, Investigation of betacyanins stability from peel and flesh of red-purple pitaya with food additives supplementation and pH treatments, Lwt 98 (2018) 546–558, https://doi.org/10.1016/j.lwt.2018.09.021.
[38] Q. Wu, Y. Zhou, Z. Zhang, T. Li, Y. Jiang, H. Gao, Z.e. Yun, Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya, Postharvest Biol. Technol. 160 (2020) 111059, https://doi.org/10.1016/ j.postharvbio.2019.111059.
[39] R.S. Bueno, J.B. Ressutte, N.N.Y. Hata, F.C. Henrique-Bana, K.B. Guergoletto, A.G. de Oliveira, W.A. Spinosa, Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya, Lwt 140 (2021) 110770, https://doi.org/10.1016/j.lwt.2020.110770.
[40] Y. Gong, X. Bi, L. Deng, J. Hu, S. Jiang, L. Tan, T. Wang, X. Luo, Z.B. Xu, D.Q. Chen, J.Y. Liu, Comparative Study on Cold Resistance Physiology of Red Pulp Pitaya and White Pulp Pitaya, E3S Web Conf. 131 (2019) 01113, https://doi.org/ 10.1051/e3sconf/201913101113.
[41] Q. Hua, C. Chen, N. Tel Zur, H. Wang, J. Wu, J. Chen, Z. Zhang, J. Zhao, G. Hu, Y. Qin, Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors, Plant Physiol. Biochem. 126 (2018) 117– 125, https://doi.org/10.1016/j.plaphy.2018.02.027.
[42] D.S. Magalhães, J.D. Ramos, L.A.S. Pio, E.V.D.B. Vilas Boas, M. Pasqual, F.A. Rodrigues, J.C.M. Rufini, V.A.D. Santos, V.A. dos Santos, Physical and physicochemical modifications of white-fleshed pitaya throughout its development, Sci. Hortic. (Amsterdam) 243 (2019) 537–543, https://doi.org/ 10.1016/j.scienta.2018.08.029.
[43] S.S. Lam, R.K. Liew, C.K. Cheng, N. Rasit, C.K. Ooi, N.L. Ma, J.H. Ng, W.H. Lam, C.T. Chong, H.A. Chase, Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent, J. Environ. Manage. 213 (2018) 400–408, https://doi.org/10.1016/j.jenvman.2018.02.092.
[44] T.A. Sial, M.N. Khan, Z. Lan, F. Kumbhar, Z. Ying, J. Zhang, D. Sun, X. Li, Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties, Process Saf. Environ. Prot. 122 (2019) 366–377, https://doi.org/10.1016/j.psep.2018.10.030.
[45] L.L. Borges, E.C. Conceição, D. Silveira, Active compounds and medicinal properties of Myrciaria genus, Food Chem. 153 (2014) 224–233, https://doi. org/10.1016/j.foodchem.2013.12.064.
[46] A. Gasparotto Junior, P. de Souza, F.A.D.R. Lívero, Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species, J. Ethnopharmacol. 245 (2019) 112169, https://doi.org/ 10.1016/j.jep.2019.112169.
[47] K.O.P. Inada, A.A. Oliveira, T.B. Revorêdo, A.B.N. Martins, E.C.Q. Lacerda, A.S. Freire, B.F. Braz, R.E. Santelli, A.G. Torres, D. Perrone, M.C. Monteiro, Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions, J. Funct. Foods 17 (2015) 422–433, https://doi.org/10.1016/j.jff.2015.06.002.
[48] L.O. Stefanello, R. Schwalbert, R.A. Schwalbert, G.L. Drescher, L. De Conti, L.P. Pott, A. Tassinari, M.S.d.S. Kulmann, I.C.B. da Silva, G. Brunetto, Ideal nitrogen concentration in leaves for the production of high-quality grapes cv ‘Alicante Bouschet’ (Vitis vinifera L.) subjected to modes of application and nitrogen doses, Eur. J. Agron. 123 (2021) 126200, https://doi.org/10.1016/j. eja.2020.126200.
[49] L.O. Stefanello, R. Schwalbert, R.A. Schwalbert, L. De Conti, M.S.d.S. Kulmann, L. P. Garlet, M.L.R. Silveira, C.K. Sautter, G.W.B. de Melo, D.E. Rozane, G. Brunetto, Nitrogen supply method affects growth, yield and must composition of young grape vines (Vitis vinifera L. cv Alicante Bouschet) in southern Brazil, Sci. Hortic. (Amsterdam) 261 (2020) 108910, https://doi.org/10.1016/ j.scienta.2019.108910.
[50] M. Bartoli, L. Rosi, A. Giovannelli, P. Frediani, M. Passaponti, M. Frediani, Microwave assisted pyrolysis of crop residues from Vitis vinifera, J. Anal. Appl. Pyrolysis 130 (2018) 249–255, https://doi.org/10.1016/j.jaap.2017.12.018.
[51] M. Khalfaoui, M.H.V. Baouab, R. Gauthier, A., Ben Lamine, Statistical physics modelling of dye adsorption on modified cotton, Adsorpt. Sci. Technol. 20 (2002) 17–32, https://doi.org/10.1260/026361702760120908.
[52] S. Knani, M. Mathlouthi, A. Ben Lamine, Modeling of the psychophysical response curves using the grand canonical ensemble in statistical physics, Food Biophys. 2 (4) (2007) 183–192, https://doi.org/10.1007/s11483-007- 9042-7.
[53] M. Khalfaoui, M.H.V. Baouab, R. Gauthier, A., Ben Lamine, Dye adsorption by modified cotton. Steric and energetic interpretations of model parameter behaviours, Adsorpt. Sci. Technol. 20 (2002) 33–48, https://doi.org/10.1260/ 026361702760120917.
[54] E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (DS and DH), J. Mol. Liq. 311 (2020) 113315, https://doi.org/ 10.1016/j.molliq.2020.113315.
[55] X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu, L. Chen, H. Cao, G. Wu, Dependency of tunable electromagnetic wave absorption performance on morphologycontrolled 3D porous carbon fabricated by biomass, Compos. Commun. 21 (2020) 100404, https://doi.org/10.1016/j.coco.2020.100404.
[56] O. Üner, Ü. Geçgel, Y. Bayrak, Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride, Arab. J. Chem. 12 (8) (2019) 3621– 3627, https://doi.org/10.1016/j.arabjc.2015.12.004
[57] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014- 1117.
[58] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619, https://doi. org/10.1351/pac198557040603.
[59] M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman, Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye, Elsevier B.V., 2018, https://doi.org/10.1016/j.surfin.2018.02.001.
[60] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surf. A Physicochem. Eng. Asp. 583 (2019) 123966, https://doi.org/10.1016/ j.colsurfa.2019.123966.
[61] M.R. Cunha, E.C. Lima, D.R. Lima, R.S. da Silva, P.S. Thue, M.K. Seliem, F. Sher, G. S. dos Reis, S.H. Larsson, Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis, J. Environ. Chem. Eng. 8 (2020), https://doi.org/10.1016/ j.jece.2020.104506 104506.
[62] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L. P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J. Clean. Prod. 197 (2018) 919–929, https://doi.org/ 10.1016/j.jclepro.2018.06.146.
[63] Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4- dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (1) (2021) 104911, https://doi.org/10.1016/j.jece:2020.104911.
[64] J. Georgin, Y.L.D.O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen, J. Environ. Chem. Eng. 9 (4) (2021) 105676, https://doi.org/10.1016/j.jece:2021.105676.
[65] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G.L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (5) (2021) 105927, https://doi.org/10.1016/ j.jece:2021.105927.
[66] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935, https://doi.org/10.1016/j. cej.2014.11.056.
[67] A.F.M.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry, Chemosphere 262 (2020), https://doi.org/ 10.1016/j.chemosphere.2020.128322 128322.
[68] Y.L. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022) 117990, https://doi.org/10.1016/j.molliq.2021.117990.
[69] C. Anchieta, A. Cancelier, M. Mazutti, S. Jahn, R. Kuhn, A. Gündel, O. ChiavoneFilho, E. Foletto, Effects of Solvent Diols on the Synthesis of ZnFe2O4 Particles and Their Use as Heterogeneous Photo-Fenton Catalysts, Materials (Basel) 7 (2014) 6281–6290, https://doi.org/10.3390/ma7096281.
[70] A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, T.J. Wess, Molecular interactions in collagen and chitosan blends, Biomaterials 25 (2004) 795–801, https://doi.org/10.1016/S0142-9612(03)00595-7.
[71] A. Elena, I. Gozescu, A. Dabici, P. Sfirloaga, Z. Szabadai, Organic Compounds FTIR Spectroscopy, in: Macro To Nano Spectrosc, InTech, 2012, https://doi.org/ 10.5772/50183.
[72] S. Xue, B. Tu, Z. Li, X. Ma, Y. Xu, M. Li, C. Fang, H. Tao, Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments, Colloids Surf. A Physicochem. Eng. Asp. 618 (2021) 126489, https://doi.org/10.1016/j.colsurfa.2021.126489.
[73] L. Sellaoui, S. Knani, A. Erto, M.A. Hachicha, A., Ben Lamine, Equilibrium isotherm simulation of tetrachlorethylene on activated carbon using the double layer model with two energies: Steric and energetic interpretations, Fluid Phase Equilib. 408 (2016) 259–264, https://doi.org/10.1016/j. fluid.2015.09.022.
[74] L. Sellaoui, D.S.P. Franco, G.L. Dotto, É.C. Lima, A. Ben Lamine, Single and binary adsorption of cobalt and methylene blue on modified chitin: Application of the Hill and exclusive extended Hill models, J. Mol. Liq. 233 (2017) 543–550, https://doi.org/10.1016/j.molliq.2016.10.079.
[75] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Fröhlich, A. Ben Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286, https://doi.org/10.1016/j.molliq.2019.03.101.
[76] M. Khalfaoui, A. Nakhli, C. Aguir, A. Omri, M.F. M’henni, A. Ben Lamine, Statistical thermodynamics of adsorption of dye DR75 onto natural materials and its modifications: Double-layer model with two adsorption energies, Environ. Sci. Pollut. Res. 21 (4) (2014) 3134–3144, https://doi.org/10.1007/ s11356-013-2263-z.
[77] L. Sellaoui, T. Depci, A.R. Kul, S. Knani, A. Ben Lamine, A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon, J. Mol. Liq. 214 (2016) 220–230, https://doi.org/10.1016/ j.molliq.2015.12.080.
[78] S. Knani, M. Khalfaoui, M.A. Hachicha, M. Mathlouthi, A., Ben Lamine, Interpretation of psychophysics response curves using statistical physics, Food Chem. 151 (2014) 487–499, https://doi.org/10.1016/j.foodchem.2013.11.114.
[79] A. Nakhli, M. Khalfaoui, C. Aguir, M. Bergaoui, M.F. M’henni, A. Ben Lamine, Statistical Physics Studies of Multilayer Adsorption on Solid Surface: Adsorption of Basic Blue 41 Dye onto Functionalized Posidonia Biomass, Sep. Sci. Technol. 49 (16) (2014) 2525–2533, https://doi.org/10.1080/ 01496395.2014.929703.
[80] A. Nakhli, M. Bergaoui, C. Aguir, M. Khalfaoui, M.F. M’henni, A. Ben Lamine, Adsorption thermodynamics in the framework of the statistical physics formalism: basic blue 41 adsorption onto Posidonia biomass, Desalin. Water Treat. 57 (27) (2016) 12730–12742, https://doi.org/10.1080/ 19443994.2015.1052564.
[81] M. Bergaoui, C. Aguir, M. Khalfaoui, E. Enciso, L. Duclaux, L. Reinert, J.L.G. Fierro, New insights in the adsorption of Bovine Serum Albumin onto carbon nanoparticles derived from organic resin: Experimental and theoretical studies, Microporous Mesoporous Mater. 241 (2017) 418–428, https://doi. org/10.1016/j.micromeso.2016.12.017.
[82] D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol + water mixtures, Quim. Nova. 33 (2010) 1923–1927, https://doi. org/10.1590/S0100-40422010000900019.
[83] A.H. Almuqrin, S. Wjihi, F. Aouaini, A.B. Lamine, New insights on physicochemical investigation of bisphosphonate adsorption isotherm into apatite substrate using statistical physics treatment, J. Mol. Liq. 310 (2020) 113230, https://doi.org/10.1016/j.molliq.2020.113230.
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 119021
dc.relation.citationvolume.spa.fl_str_mv 356
dc.rights.eng.fl_str_mv Copyright 2022 Elsevier B.V., All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
Copyright 2022 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.scopus.com/record/display.uri?eid=2-s2.0-85127522740&doi=10.1016%2fj.molliq.2022.119021&origin=inward&txGid=629f3b113236df5362c53d6e8142bd68
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a42cab65-a9d0-40ff-a4dc-5c84f31dfd72/download
https://repositorio.cuc.edu.co/bitstreams/bb477331-255d-4998-9d71-2b12bffc3798/download
https://repositorio.cuc.edu.co/bitstreams/36eeb402-d286-481c-ab93-6c6177bcfa1f/download
https://repositorio.cuc.edu.co/bitstreams/12fa2446-cd47-4a6b-a4ae-3cb0054c3ece/download
bitstream.checksum.fl_str_mv 172a582ce1f7215678e4884b50cf4509
2f9959eaf5b71fae44bbf9ec84150c7a
a2ab019312c606ac1d30e57f2b8a7129
9b1084fd28cf1841abe79a87c43fade2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760729283362816
spelling Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)Copyright 2022 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Franco, Dison S.P.Georgin, JordanaNetto, Matias S.da Boit Martinello, KatiaSilva, Luis F.O.2024-03-21T14:48:54Z2024-03-21T14:48:54Z2022-06-15Franco, D. S. P., Georgin, J., Netto, M. S., da Boit Martinello, K., & Silva, L. F. O. (2022). Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): Analytical interpretation via statistical physical model. Journal of Molecular Liquids, 356, 119021. https://doi.org/10.1016/j.molliq.2022.1190210167-7322https://hdl.handle.net/11323/1090410.1016/j.molliq.2022.119021Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.coIn this work, physical statistical models were employed to provide reasonable information regarding the adsorption of naproxen onto different activated carbons. The activated carbons were prepared from different biomasses (pitaya peels, jabuticaba peels, or grape residues from the winery process) using ZnCl2 as an activator. All the adsorbents were characterized regarding their functional groups and morphological surfaces. The maximum capacity obtained for the activated carbons (at 328 K) was found to be: 167.0 mg g−1 for jabuticaba peels at pH 4; 158.81 mg g−1 for pitaya peels at pH 6.7; and last., grape residues the capacity was 176.0 mg g−1 at pH 7. The equilibrium data of the three adsorbents were well fitted to the monolayer with two energy sites adsorption model, assuming that NPX adsorption on the carbon surfaces occurs via two different functional groups. This statistical physics model calculated the number of NPX molecules bound on the surface and the saturated adsorption capacity for both functional groups at different temperatures. The obtained results indicate that the naproxen molecules can be adsorbed in a parallel and horizontal manner according to the material employed. The receptor density tends to increase with the temperature evolution, indicating that thermal energy and solubility play an important role in adsorption. Configurational entropy indicates similar thermodynamic behavior for all materials where higher disorder is found at the early stages of the adsorption, followed by and decrease a possible organization of the molecules on the surface. The Gibbs free energy shows that adsorption of naproxen is spontaneous in all cases and internal energy is proportional to the adsorption capacity indicating that the system releases energy as the adsorption occurs. Therefore, this article reports new findings to understand the adsorption mechanism of naproxen molecules on activated carbons prepared from lignocellulosic biomass.12 páginasapplication/pdfengElsevierNetherlandshttps://www.scopus.com/record/display.uri?eid=2-s2.0-85127522740&doi=10.1016%2fj.molliq.2022.119021&origin=inward&txGid=629f3b113236df5362c53d6e8142bd68Preparation of activated carbons from fruit residues for the removal of naproxen (NPX): analytical interpretation via statistical physical modelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Molecular Liquids[1] S. Terzic´, I. Senta, M. Ahel, M. Gros, M. Petrovic´, D. Barcelo, J. Müller, T. Knepper, I. Martí, F. Ventura, P. Jovancˇic´, D. Jabucˇar, Occurrence and fate of emerging wastewater contaminants in Western Balkan Region, Sci. Total Environ. 399 (1-3) (2008) 66–77, https://doi.org/10.1016/j.scitotenv.2008.03.003.[2] S.L. Rice, S. Mitra, Microwave-assisted solvent extraction of solid matrices and subsequent detection of pharmaceuticals and personal care products (PPCPs) using gas chromatography-mass spectrometry, Anal. Chim. Acta. 589 (1) (2007) 125–132, https://doi.org/10.1016/j.aca.2007.02.051.[3] S. Zhu, Y.-G. Liu, S.-b. Liu, G.-M. Zeng, L.-H. Jiang, X.-F. Tan, L.u. Zhou, W. Zeng, T.-T. Li, C.-P. Yang, Adsorption of emerging contaminant metformin using graphene oxide, Chemosphere 179 (2017) 20–28, https://doi.org/10.1016/j. chemosphere.2017.03.071.[4] H.B. Quesada, A.T.A. Baptista, L.F. Cusioli, D. Seibert, C. de Oliveira Bezerra, R. Bergamasco, Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review, Chemosphere 222 (2019) 766–780, https://doi.org/10.1016/j.chemosphere.2019.02.009.[5] L. Feng, E.D. van Hullebusch, M.A. Rodrigo, G. Esposito, M.A. Oturan, Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review, Chem. Eng. J. 228 (2013) 944–964, https://doi.org/10.1016/j.cej.2013.05.061.[6] Y. Shao, Z. Chen, H. Hollert, S. Zhou, B. Deutschmann, T.B. Seiler, Toxicity of 10 organic micropollutants and their mixture: Implications for aquatic risk assessment, Sci. Total Environ. 666 (2019) 1273–1282, https://doi.org/ 10.1016/j.scitotenv.2019.02.047.[7] B. de Diego-Díaz, A. Duran, M.R. Álvarez-García, J. Fernández-Rodríguez, New trends in physicochemical characterization of solid lignocellulosic waste in anaerobic digestion, Fuel 245 (2019) 240–246, https://doi.org/10.1016/ j.fuel.2019.02.051.[8] F. Tomul, Y. Arslan, B. Kabak, D. Trak, E. Kendüzler, E.C. Lima, H.N. Tran, Peanut shells-derived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water, Sci. Total Environ. 726 (2020) 137828, https://doi.org/10.1016/j. scitotenv.2020.137828.[9] M.H. Ahmad, M. Fatima, M. Hossain, A.C. Mondal, Evaluation of naproxeninduced oxidative stress, hepatotoxicity and in-vivo genotoxicity in male Wistar rats, J. Pharm. Anal. 8 (6) (2018) 400–406, https://doi.org/10.1016/j. jpha.2018.04.002.[10] D. Liu, Y.i. Zhu, Z. Li, D. Tian, L. Chen, P. Chen, Chitin nanofibrils for rapid and efficient removal of metal ions from water system, Carbohydr. Polym. 98 (1) (2013) 483–489, https://doi.org/10.1016/j.carbpol.2013.06.015.[11] L.F. Cusioli, H.B. Quesada, A.L. de Brito Portela Castro, R.G. Gomes, R. Bergamasco, Development of a new low-cost adsorbent functionalized with iron nanoparticles for removal of metformin from contaminated water, Chemosphere 247 (2020) 125852, https://doi.org/10.1016/j. chemosphere.2020.125852.[12] J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb (II) from water using b–cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater. 400 (2020) 123142, https://doi.org/10.1016/j. jhazmat.2020.123142.[13] L. Sellaoui, A. Yazidi, S. Taamalli, A. Bonilla-Petriciolet, F. Louis, A. El Bakali, M. Badawi, E.C. Lima, D.R. Lima, Z. Chen, Adsorption of 3-aminophenol and resorcinol on avocado seed activated carbon: Mathematical modelling, thermodynamic study and description of adsorbent performance, J. Mol. Liq. 342 (2021) 116952, https://doi.org/10.1016/j.molliq.2021.116952.[14] M. Paredes-Laverde, M. Salamanca, J.D. Diaz-Corrales, E. Flórez, J. Silva-Agredo, R.A. Torres-Palma, Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study, J. Environ. Chem. Eng. 9 (4) (2021) 105685, https://doi.org/10.1016/j.jece:2021.105685.[15] S.M. Kharrazi, M. Soleimani, M. Jokar, T. Richards, A. Pettersson, N. Mirghaffari, Pretreatment of lignocellulosic waste as a precursor for synthesis of high porous activated carbon and its application for Pb (II) and Cr (VI) adsorption from aqueous solutions, Int. J. Biol. Macromol. 180 (2021) 299–310, https:// doi.org/10.1016/j.ijbiomac.2021.03.078.[16] A. Medhat, H.H. El-Maghrabi, A. Abdelghany, N.M. Abdel Menem, P. Raynaud, Y.M. Moustafa, M.A. Elsayed, A.A. Nada, Efficiently activated carbons from corn cob for methylene blue adsorption, Appl. Surf. Sci. Adv. 3 (2021) 100037, https://doi.org/10.1016/j.apsadv.2020.100037.[17] C.M. Kerkhoff, K.d. Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021) 117184, https:// doi.org/10.1016/j.molliq.2021.117184.[18] F.M. Onaga Medina, M.B. Aguiar, M.E. Parolo, M.J. Avena, Insights of competitive adsorption on activated carbon of binary caffeine and diclofenac solutions, J. Environ. Manage. 278 (2021) 111523, https://doi.org/10.1016/ j.jenvman.2020.111523.[19] J. Georgin, G.L. Dotto, M.A. Mazutti, E.L. Foletto, Preparation of activated carbon from peanut shell by conventional pyrolysis and microwave irradiation-pyrolysis to remove organic dyes from aqueous solutions, J. Environ. Chem. Eng. 4 (1) (2016) 266–275.[20] R.L.T. Costa, R.A. do Nascimento, R.C.S. de Araújo, M.G.A. Vieira, M.G.C. da Silva, S.M.L. de Carvalho, L.J.G. de Faria, Removal of non-steroidal anti-inflammatory drugs (NSAIDs) from water with activated carbons synthetized from waste murumuru (Astrocaryum murumuru Mart.): Characterization and adsorption studies, J. Mol. Liq. 343 (2021) 116980, https://doi.org/10.1016/ j.molliq.2021.116980.[21] A. Nasrullah, A.S. Khan, A.H. Bhat, I.U. Din, A. Inayat, N. Muhammad, E.M. Bakhsh, S.B. Khan, Effect of short time ball milling on physicochemical and adsorption performance of activated carbon prepared from mangosteen peel waste, Renew. Energy 168 (2021) 723–733, https://doi.org/10.1016/j. renene.2020.12.077.[22] H.K. Yag˘mur, _ I. Kaya, Synthesis and characterization of magnetic ZnCl2- activated carbon produced from coconut shell for the adsorption of methylene blue, J. Mol. Struct. 1232 (2021) 130071, https://doi.org/10.1016/ j.molstruc.2021.130071.[23] A. Wong, F.M. de Oliveira, C.R.T. Tarley, M., Del Pilar Taboada Sotomayor, Study on the cross-linked molecularly imprinted poly(methacrylic acid) and poly(acrylic acid) towards selective adsorption of diuron, React. Funct. Polym. 100 (2016) 26–36, https://doi.org/10.1016/j. reactfunctpolym.2016.01.006.[24] H. Xue, X. Wang, Q.i. Xu, F. Dhaouadi, L. Sellaoui, M.K. Seliem, A. Ben Lamine, H. Belmabrouk, A. Bajahzar, A. Bonilla-Petriciolet, Z. Li, Q. Li, Adsorption of methylene blue from aqueous solution on activated carbons and composite prepared from an agricultural waste biomass: A comparative study by experimental and advanced modeling analysis, Chem. Eng. J. 430 (2022) 132801, https://doi.org/10.1016/j. cej.2021.132801.[25] I. Anastopoulos, M.J. Ahmed, E.H. Hummadi, Eucalyptus-based materials as adsorbents of heavy metals and dyes pollutants from (waste)waters, J. Mol. Liq. (2022) 118864, https://doi.org/10.1016/j.molliq.2022.118864.[26] I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, D.A. Giannakoudakis, A. Robalds, M. Usman, L.B. Escudero, Y. Zhou, J.C. Colmenares, A. NúñezDelgado, É.C. Lima, Agricultural biomass/waste as adsorbents for toxic metal decontamination of aqueous solutions, J. Mol. Liq. 295 (2019) 111684, https:// doi.org/10.1016/j.molliq.2019.111684.[27] H.B. Quesada, T.P. de Araújo, L.F. Cusioli, M.A.S.D. de Barros, R.G. Gomes, R. Bergamasco, Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture, J. Environ. Chem. Eng. 9 (1) (2021) 104914, https://doi.org/10.1016/j.jece:2020.104914.[28] T.H. Do, V.T. Nguyen, N.Q. Dung, M.N. Chu, D. Van Kiet, T.T.K. Ngan, L. Van Tan, Study on methylene blue adsorption of activated carbon made from Moringa oleifera leaf, Mater. Today Proc. 38 (2020) 3405–3413, https://doi.org/ 10.1016/j.matpr.2020.10.834.[29] G.K.P. Lopes, H.G. Zanella, L. Spessato, A. Ronix, P. Viero, J.M. Fonseca, J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, Steam-activated carbon from malt bagasse: Optimization of preparation conditions and adsorption studies of sunset yellow food dye, Arab. J. Chem. 14 (3) (2021) 103001, https://doi.org/ 10.1016/j.arabjc.2021.103001.[30] G. Kaur, N. Singh, A. Rajor, Adsorption of doxycycline hydrochloride onto powdered activated carbon synthesized from pumpkin seed shell by microwave-assisted pyrolysis, Environ. Technol. Innov. 23 (2021) 101601, https://doi.org/10.1016/j.eti.2021.101601.[31] Q. Han, J. Wang, B.A. Goodman, J. Xie, Z. Liu, High adsorption of methylene blue by activated carbon prepared from phosphoric acid treated eucalyptus residue, Powder Technol. 366 (2020) 239–248, https://doi.org/10.1016/j. powtec.2020.02.013.[32] M.C. Silva, L. Spessato, T.L. Silva, G.K.P. Lopes, H.G. Zanella, J.T.C. Yokoyama, A.L. Cazetta, V.C. Almeida, H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: Adsorption studies of methylene blue dye in batch and fixed bed systems, J. Mol. Liq. 324 (2021) 114771, https://doi.org/ 10.1016/j.molliq.2020.114771.[33] X. Pang, L. Sellaoui, D. Franco, G.L. Dotto, J. Georgin, A. Bajahzar, H. Belmabrouk, A. Ben Lamine, A. Bonilla-Petriciolet, Z. Li, Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria peel and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models, Chem. Eng. J. 378 (2019), https:// doi.org/10.1016/j.cej.2019.122101 122101.[34] X. Pang, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G. Luiz Dotto, M.K. Abu Shayeb, H. Belmabrouk, A. Bonilla-Petriciolet, Z. Li, Preparation and characterization of a novel mountain soursop seeds powder adsorbent and its application for the removal of crystal violet and methylene blue from aqueous solutions, Chem. Eng. J. 391 (2020) 123617, https://doi.org/10.1016/j. cej.2019.123617.[35] K. Philippou, I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, M. Usman, M. Kornaros, M. Omirou, D. Kalderis, J.V. Milojkovic´, Z.R. Lopicˇic´, M. Abatal, Chapter 6 – The application of pine-based adsorbents to remove potentially toxic elements from aqueous solutions, in: A. Núñez-Delgado (Ed.), Sorbents Mater. Control. Environ. Pollut., Elsevier, 2021, pp. 113–133, https:// doi.org/10.1016/B978-0-12-820042-1.00016-X.[36] I. Anastopoulos, I. Pashalidis, Environmental applications of Luffa cylindricabased adsorbents, J. Mol. Liq. 319 (2020) 114127, https://doi.org/10.1016/ j.molliq.2020.114127.[37] H.Y. Leong, C.W. Ooi, C.L. Law, A.L. Julkifle, G.T. Pan, P.L. Show, Investigation of betacyanins stability from peel and flesh of red-purple pitaya with food additives supplementation and pH treatments, Lwt 98 (2018) 546–558, https://doi.org/10.1016/j.lwt.2018.09.021.[38] Q. Wu, Y. Zhou, Z. Zhang, T. Li, Y. Jiang, H. Gao, Z.e. Yun, Effect of blue light on primary metabolite and volatile compound profiling in the peel of red pitaya, Postharvest Biol. Technol. 160 (2020) 111059, https://doi.org/10.1016/ j.postharvbio.2019.111059.[39] R.S. Bueno, J.B. Ressutte, N.N.Y. Hata, F.C. Henrique-Bana, K.B. Guergoletto, A.G. de Oliveira, W.A. Spinosa, Quality and shelf life assessment of a new beverage produced from water kefir grains and red pitaya, Lwt 140 (2021) 110770, https://doi.org/10.1016/j.lwt.2020.110770.[40] Y. Gong, X. Bi, L. Deng, J. Hu, S. Jiang, L. Tan, T. Wang, X. Luo, Z.B. Xu, D.Q. Chen, J.Y. Liu, Comparative Study on Cold Resistance Physiology of Red Pulp Pitaya and White Pulp Pitaya, E3S Web Conf. 131 (2019) 01113, https://doi.org/ 10.1051/e3sconf/201913101113.[41] Q. Hua, C. Chen, N. Tel Zur, H. Wang, J. Wu, J. Chen, Z. Zhang, J. Zhao, G. Hu, Y. Qin, Metabolomic characterization of pitaya fruit from three red-skinned cultivars with different pulp colors, Plant Physiol. Biochem. 126 (2018) 117– 125, https://doi.org/10.1016/j.plaphy.2018.02.027.[42] D.S. Magalhães, J.D. Ramos, L.A.S. Pio, E.V.D.B. Vilas Boas, M. Pasqual, F.A. Rodrigues, J.C.M. Rufini, V.A.D. Santos, V.A. dos Santos, Physical and physicochemical modifications of white-fleshed pitaya throughout its development, Sci. Hortic. (Amsterdam) 243 (2019) 537–543, https://doi.org/ 10.1016/j.scienta.2018.08.029.[43] S.S. Lam, R.K. Liew, C.K. Cheng, N. Rasit, C.K. Ooi, N.L. Ma, J.H. Ng, W.H. Lam, C.T. Chong, H.A. Chase, Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent, J. Environ. Manage. 213 (2018) 400–408, https://doi.org/10.1016/j.jenvman.2018.02.092.[44] T.A. Sial, M.N. Khan, Z. Lan, F. Kumbhar, Z. Ying, J. Zhang, D. Sun, X. Li, Contrasting effects of banana peels waste and its biochar on greenhouse gas emissions and soil biochemical properties, Process Saf. Environ. Prot. 122 (2019) 366–377, https://doi.org/10.1016/j.psep.2018.10.030.[45] L.L. Borges, E.C. Conceição, D. Silveira, Active compounds and medicinal properties of Myrciaria genus, Food Chem. 153 (2014) 224–233, https://doi. org/10.1016/j.foodchem.2013.12.064.[46] A. Gasparotto Junior, P. de Souza, F.A.D.R. Lívero, Plinia cauliflora (Mart.) Kausel: A comprehensive ethnopharmacological review of a genuinely Brazilian species, J. Ethnopharmacol. 245 (2019) 112169, https://doi.org/ 10.1016/j.jep.2019.112169.[47] K.O.P. Inada, A.A. Oliveira, T.B. Revorêdo, A.B.N. Martins, E.C.Q. Lacerda, A.S. Freire, B.F. Braz, R.E. Santelli, A.G. Torres, D. Perrone, M.C. Monteiro, Screening of the chemical composition and occurring antioxidants in jabuticaba (Myrciaria jaboticaba) and jussara (Euterpe edulis) fruits and their fractions, J. Funct. Foods 17 (2015) 422–433, https://doi.org/10.1016/j.jff.2015.06.002.[48] L.O. Stefanello, R. Schwalbert, R.A. Schwalbert, G.L. Drescher, L. De Conti, L.P. Pott, A. Tassinari, M.S.d.S. Kulmann, I.C.B. da Silva, G. Brunetto, Ideal nitrogen concentration in leaves for the production of high-quality grapes cv ‘Alicante Bouschet’ (Vitis vinifera L.) subjected to modes of application and nitrogen doses, Eur. J. Agron. 123 (2021) 126200, https://doi.org/10.1016/j. eja.2020.126200.[49] L.O. Stefanello, R. Schwalbert, R.A. Schwalbert, L. De Conti, M.S.d.S. Kulmann, L. P. Garlet, M.L.R. Silveira, C.K. Sautter, G.W.B. de Melo, D.E. Rozane, G. Brunetto, Nitrogen supply method affects growth, yield and must composition of young grape vines (Vitis vinifera L. cv Alicante Bouschet) in southern Brazil, Sci. Hortic. (Amsterdam) 261 (2020) 108910, https://doi.org/10.1016/ j.scienta.2019.108910.[50] M. Bartoli, L. Rosi, A. Giovannelli, P. Frediani, M. Passaponti, M. Frediani, Microwave assisted pyrolysis of crop residues from Vitis vinifera, J. Anal. Appl. Pyrolysis 130 (2018) 249–255, https://doi.org/10.1016/j.jaap.2017.12.018.[51] M. Khalfaoui, M.H.V. Baouab, R. Gauthier, A., Ben Lamine, Statistical physics modelling of dye adsorption on modified cotton, Adsorpt. Sci. Technol. 20 (2002) 17–32, https://doi.org/10.1260/026361702760120908.[52] S. Knani, M. Mathlouthi, A. Ben Lamine, Modeling of the psychophysical response curves using the grand canonical ensemble in statistical physics, Food Biophys. 2 (4) (2007) 183–192, https://doi.org/10.1007/s11483-007- 9042-7.[53] M. Khalfaoui, M.H.V. Baouab, R. Gauthier, A., Ben Lamine, Dye adsorption by modified cotton. Steric and energetic interpretations of model parameter behaviours, Adsorpt. Sci. Technol. 20 (2002) 33–48, https://doi.org/10.1260/ 026361702760120917.[54] E.C. Lima, A.A. Gomes, H.N. Tran, Comparison of the nonlinear and linear forms of the van’t Hoff equation for calculation of adsorption thermodynamic parameters (DS and DH), J. Mol. Liq. 311 (2020) 113315, https://doi.org/ 10.1016/j.molliq.2020.113315.[55] X. Zhou, Z. Jia, A. Feng, K. Wang, X. Liu, L. Chen, H. Cao, G. Wu, Dependency of tunable electromagnetic wave absorption performance on morphologycontrolled 3D porous carbon fabricated by biomass, Compos. Commun. 21 (2020) 100404, https://doi.org/10.1016/j.coco.2020.100404.[56] O. Üner, Ü. Geçgel, Y. Bayrak, Preparation and characterization of mesoporous activated carbons from waste watermelon rind by using the chemical activation method with zinc chloride, Arab. J. Chem. 12 (8) (2019) 3621– 3627, https://doi.org/10.1016/j.arabjc.2015.12.004[57] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069, https://doi.org/10.1515/pac-2014- 1117.[58] K.S.W. Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619, https://doi. org/10.1351/pac198557040603.[59] M. Danish, T. Ahmad, R. Hashim, N. Said, M.N. Akhtar, J. Mohamad-Saleh, O. Sulaiman, Comparison of surface properties of wood biomass activated carbons and their application against rhodamine B and methylene blue dye, Elsevier B.V., 2018, https://doi.org/10.1016/j.surfin.2018.02.001.[60] D.R. Lima, A. Hosseini-Bandegharaei, P.S. Thue, E.C. Lima, Y.R.T. de Albuquerque, G.S. dos Reis, C.S. Umpierres, S.L.P. Dias, H.N. Tran, Efficient acetaminophen removal from water and hospital effluents treatment by activated carbons derived from Brazil nutshells, Colloids Surf. A Physicochem. Eng. Asp. 583 (2019) 123966, https://doi.org/10.1016/ j.colsurfa.2019.123966.[61] M.R. Cunha, E.C. Lima, D.R. Lima, R.S. da Silva, P.S. Thue, M.K. Seliem, F. Sher, G. S. dos Reis, S.H. Larsson, Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis, J. Environ. Chem. Eng. 8 (2020), https://doi.org/10.1016/ j.jece.2020.104506 104506.[62] F.M. Kasperiski, E.C. Lima, C.S. Umpierres, G.S. dos Reis, P.S. Thue, D.R. Lima, S.L. P. Dias, C. Saucier, J.B. da Costa, Production of porous activated carbons from Caesalpinia ferrea seed pod wastes: Highly efficient removal of captopril from aqueous solutions, J. Clean. Prod. 197 (2018) 919–929, https://doi.org/ 10.1016/j.jclepro.2018.06.146.[63] Y.L.D.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4- dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ. Chem. Eng. 9 (1) (2021) 104911, https://doi.org/10.1016/j.jece:2020.104911.[64] J. Georgin, Y.L.D.O. Salomón, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, D. Perondi, L.F.O. Silva, E.L. Foletto, G.L. Dotto, Development of highly porous activated carbon from Jacaranda mimosifolia seed pods for remarkable removal of aqueous-phase ketoprofen, J. Environ. Chem. Eng. 9 (4) (2021) 105676, https://doi.org/10.1016/j.jece:2021.105676.[65] D.S.P. Franco, J. Georgin, M.S. Netto, D. Allasia, M.L.S. Oliveira, E.L. Foletto, G.L. Dotto, Highly effective adsorption of synthetic phenol effluent by a novel activated carbon prepared from fruit wastes of the Ceiba speciosa forest species, J. Environ. Chem. Eng. 9 (5) (2021) 105927, https://doi.org/10.1016/ j.jece:2021.105927.[66] N. Soltani, A. Bahrami, M.I. Pech-Canul, L.A. González, Review on the physicochemical treatments of rice husk for production of advanced materials, Chem. Eng. J. 264 (2015) 899–935, https://doi.org/10.1016/j. cej.2014.11.056.[67] A.F.M.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S.S. Oliveira, G.L. Dotto, Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry, Chemosphere 262 (2020), https://doi.org/ 10.1016/j.chemosphere.2020.128322 128322.[68] Y.L. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022) 117990, https://doi.org/10.1016/j.molliq.2021.117990.[69] C. Anchieta, A. Cancelier, M. Mazutti, S. Jahn, R. Kuhn, A. Gündel, O. ChiavoneFilho, E. Foletto, Effects of Solvent Diols on the Synthesis of ZnFe2O4 Particles and Their Use as Heterogeneous Photo-Fenton Catalysts, Materials (Basel) 7 (2014) 6281–6290, https://doi.org/10.3390/ma7096281.[70] A. Sionkowska, M. Wisniewski, J. Skopinska, C.J. Kennedy, T.J. Wess, Molecular interactions in collagen and chitosan blends, Biomaterials 25 (2004) 795–801, https://doi.org/10.1016/S0142-9612(03)00595-7.[71] A. Elena, I. Gozescu, A. Dabici, P. Sfirloaga, Z. Szabadai, Organic Compounds FTIR Spectroscopy, in: Macro To Nano Spectrosc, InTech, 2012, https://doi.org/ 10.5772/50183.[72] S. Xue, B. Tu, Z. Li, X. Ma, Y. Xu, M. Li, C. Fang, H. Tao, Enhanced adsorption of Rhodamine B over Zoysia sinica Hance-based carbon activated by amminium chloride and sodium hydroxide treatments, Colloids Surf. A Physicochem. Eng. Asp. 618 (2021) 126489, https://doi.org/10.1016/j.colsurfa.2021.126489.[73] L. Sellaoui, S. Knani, A. Erto, M.A. Hachicha, A., Ben Lamine, Equilibrium isotherm simulation of tetrachlorethylene on activated carbon using the double layer model with two energies: Steric and energetic interpretations, Fluid Phase Equilib. 408 (2016) 259–264, https://doi.org/10.1016/j. fluid.2015.09.022.[74] L. Sellaoui, D.S.P. Franco, G.L. Dotto, É.C. Lima, A. Ben Lamine, Single and binary adsorption of cobalt and methylene blue on modified chitin: Application of the Hill and exclusive extended Hill models, J. Mol. Liq. 233 (2017) 543–550, https://doi.org/10.1016/j.molliq.2016.10.079.[75] A. Yazidi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A.C. Fröhlich, A. Ben Lamine, Monolayer and multilayer adsorption of pharmaceuticals on activated carbon: Application of advanced statistical physics models, J. Mol. Liq. 283 (2019) 276–286, https://doi.org/10.1016/j.molliq.2019.03.101.[76] M. Khalfaoui, A. Nakhli, C. Aguir, A. Omri, M.F. M’henni, A. Ben Lamine, Statistical thermodynamics of adsorption of dye DR75 onto natural materials and its modifications: Double-layer model with two adsorption energies, Environ. Sci. Pollut. Res. 21 (4) (2014) 3134–3144, https://doi.org/10.1007/ s11356-013-2263-z.[77] L. Sellaoui, T. Depci, A.R. Kul, S. Knani, A. Ben Lamine, A new statistical physics model to interpret the binary adsorption isotherms of lead and zinc on activated carbon, J. Mol. Liq. 214 (2016) 220–230, https://doi.org/10.1016/ j.molliq.2015.12.080.[78] S. Knani, M. Khalfaoui, M.A. Hachicha, M. Mathlouthi, A., Ben Lamine, Interpretation of psychophysics response curves using statistical physics, Food Chem. 151 (2014) 487–499, https://doi.org/10.1016/j.foodchem.2013.11.114.[79] A. Nakhli, M. Khalfaoui, C. Aguir, M. Bergaoui, M.F. M’henni, A. Ben Lamine, Statistical Physics Studies of Multilayer Adsorption on Solid Surface: Adsorption of Basic Blue 41 Dye onto Functionalized Posidonia Biomass, Sep. Sci. Technol. 49 (16) (2014) 2525–2533, https://doi.org/10.1080/ 01496395.2014.929703.[80] A. Nakhli, M. Bergaoui, C. Aguir, M. Khalfaoui, M.F. M’henni, A. Ben Lamine, Adsorption thermodynamics in the framework of the statistical physics formalism: basic blue 41 adsorption onto Posidonia biomass, Desalin. Water Treat. 57 (27) (2016) 12730–12742, https://doi.org/10.1080/ 19443994.2015.1052564.[81] M. Bergaoui, C. Aguir, M. Khalfaoui, E. Enciso, L. Duclaux, L. Reinert, J.L.G. Fierro, New insights in the adsorption of Bovine Serum Albumin onto carbon nanoparticles derived from organic resin: Experimental and theoretical studies, Microporous Mesoporous Mater. 241 (2017) 418–428, https://doi. org/10.1016/j.micromeso.2016.12.017.[82] D.R. Delgado, M.A. Ruidiaz, S.M. Gómez, M. Gantiva, F. Martínez, Thermodynamic study of the solubility of sodium naproxen in some ethanol + water mixtures, Quim. Nova. 33 (2010) 1923–1927, https://doi. org/10.1590/S0100-40422010000900019.[83] A.H. Almuqrin, S. Wjihi, F. Aouaini, A.B. Lamine, New insights on physicochemical investigation of bisphosphonate adsorption isotherm into apatite substrate using statistical physics treatment, J. Mol. Liq. 310 (2020) 113230, https://doi.org/10.1016/j.molliq.2020.113230.121119021356Activated carbonsAdsorption modelingNaproxenPhysics statisticsPublicationORIGINALPreparation of activated carbons from fruit residues for the removal of.pdfPreparation of activated carbons from fruit residues for the removal of.pdfArtículoapplication/pdf970071https://repositorio.cuc.edu.co/bitstreams/a42cab65-a9d0-40ff-a4dc-5c84f31dfd72/download172a582ce1f7215678e4884b50cf4509MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/bb477331-255d-4998-9d71-2b12bffc3798/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTPreparation of activated carbons from fruit residues for the removal of.pdf.txtPreparation of activated carbons from fruit residues for the removal of.pdf.txtExtracted texttext/plain66570https://repositorio.cuc.edu.co/bitstreams/36eeb402-d286-481c-ab93-6c6177bcfa1f/downloada2ab019312c606ac1d30e57f2b8a7129MD53THUMBNAILPreparation of activated carbons from fruit residues for the removal of.pdf.jpgPreparation of activated carbons from fruit residues for the removal of.pdf.jpgGenerated Thumbnailimage/jpeg16082https://repositorio.cuc.edu.co/bitstreams/12fa2446-cd47-4a6b-a4ae-3cb0054c3ece/download9b1084fd28cf1841abe79a87c43fade2MD5411323/10904oai:repositorio.cuc.edu.co:11323/109042024-09-17 10:51:06.068https://creativecommons.org/licenses/by-nc/4.0/Copyright 2022 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=