Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks

This paper presents a prediction model of solar radiation for dimensioning photovoltaic generation systems in the Atlantic Coast of Colombia, using artificial neural networks. As a case of study is presented the municipality "El Carmen de Bolivar" located in this region. To obtain the mode...

Full description

Autores:
Noriega Angarita, Eliana Maria
Sousa Santos, Vladimir
Quintero Duran, Michell Josep
Gil Arrieta, Cesar Javier
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/817
Acceso en línea:
http://hdl.handle.net/11323/817
https://repositorio.cuc.edu.co/
Palabra clave:
Artificial neural networks
Modelling
Photovoltaic generation systems
Prediction
Solar radiation
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_0dae0e03199f57a91091392686119d07
oai_identifier_str oai:repositorio.cuc.edu.co:11323/817
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
title Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
spellingShingle Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
Artificial neural networks
Modelling
Photovoltaic generation systems
Prediction
Solar radiation
title_short Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
title_full Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
title_fullStr Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
title_full_unstemmed Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
title_sort Solar radiation prediction for dimensioning photovoltaic systems using artificial neural networks
dc.creator.fl_str_mv Noriega Angarita, Eliana Maria
Sousa Santos, Vladimir
Quintero Duran, Michell Josep
Gil Arrieta, Cesar Javier
dc.contributor.author.spa.fl_str_mv Noriega Angarita, Eliana Maria
Sousa Santos, Vladimir
Quintero Duran, Michell Josep
Gil Arrieta, Cesar Javier
dc.subject.eng.fl_str_mv Artificial neural networks
Modelling
Photovoltaic generation systems
Prediction
Solar radiation
topic Artificial neural networks
Modelling
Photovoltaic generation systems
Prediction
Solar radiation
description This paper presents a prediction model of solar radiation for dimensioning photovoltaic generation systems in the Atlantic Coast of Colombia, using artificial neural networks. As a case of study is presented the municipality "El Carmen de Bolivar" located in this region. To obtain the model, the average data of daily temperature, relative humidity and solar radiation from the last ten years, reported by weather stations in this city were used. Six neural networks were designed with six variants of input variables (temperature, humidity and month) and the output variable (solar radiation). The best result was obtained using all input variables. In the training process, the correlation index (R) between solar radiation estimated by the model and the recorded data was 0.8. In validating the correlation index was 0.77.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2018-11-09T19:23:36Z
dc.date.available.none.fl_str_mv 2018-11-09T19:23:36Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 23198613
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/817
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 23198613
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/817
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] M. Van der Hoeven, World Energy Outlook 2014. Paris, 2014. [2] A. Vélez-Pereira, E. Vásquez, W. Coronell, and Et.al, “Determinación de un modelo paramétrico para estimar la radiación solar,” Ingenium, vol. 7, no. 18, pp. 11–17, 2013. [3] A. Angstrom, “Solar and terrestrial radiation,” J. R. Meteorol. Soc., vol. 50, no. 210, pp. 121–126, 1924. [4] H. Li, Y. Lian, X. Wang, W. Ma, and L. Zhao, “Solar constant values for estimating solar radiation,” Energy, vol. 36, no. 3, pp. 1785– 1789, Mar. 2011. [5] M. Yorukoglu and A. N. Celik, “A critical review on the estimation of daily global solar radiation from sunshine duration,” Energy Convers. Manag., vol. 47, no. 15–16, pp. 2441–2450, Sep. 2006. [6] H. Li, W. Ma, Y. Lian, and X. Wang, “Estimating daily global solar radiation by day of year in China,” Appl. Energy, vol. 87, no. 10, pp. 3011–3017, Oct. 2010. [7] Z. Jin, W. Yezheng, and Y. Gang, “General formula for estimation of monthly average daily global solar radiation in China,” Energy Convers. Manag., vol. 46, no. 2, pp. 257–268, Jan. 2005. [8] J. R. Trapero, N. Kourentzes, and A. Martin, “Short-term solar irradiation forecasting based on Dynamic Harmonic Regression,” Energy, vol. 84, pp. 289–295, May 2015. [9] M. El-Metwally, “Simple new methods to estimate global solar radiation based on meteorological data in Egypt,” Atmos. Res., vol. 69, no. 3–4, pp. 217–239, Jan. 2004. [10] V. Badescu, C. A. Gueymard, S. Cheval, C. Oprea, M. Baciu, A. Dumitrescu, F. Iacobescu, I. Milos, and C. Rada, “Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1636–1656, Apr. 2012. [11] J. Almorox, C. Hontoria, and M. Benito, “Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain),” Appl. Energy, vol. 88, no. 5, pp. 1703–1709, May 2011. [12] G. Winter Althaus, B. Gonzalez Landin, A. Pulido Alonso, B. Galvan Gonzalez, M. Maarouf, J. Gonzalez Guerra, and M. Cruz Perez, “Predicción de la demanda de la energía eléctrica a largo plazo: un reto en ingeniería computacional,” Dyna Ing. e Ind., vol. 90, no. 3, pp. 582–584, 2015. [13] J. Garcia Martin, “Clasificación del tratamiento térmico de aceros con ensayos no destructivos por corrientes inducidas mediante redes neuronales,” Dyna Ing. e Ind., vol. 89, no. 3, pp. 526–532, 2014. [14] A. K. Yadav, H. Malik, and S. S. Chandel, “Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models,” Renew. Sustain. Energy Rev., vol. 31, pp. 509–519, Mar. 2014. [15] P. L. Zervas, H. Sarimveis, J. A. Palyvos, and N. C. G. Markatos, “Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques,” Renew. Energy, vol. 33, no. 8, pp. 1796–1803, Aug. 2008. [16] S. Rehman and M. Mohandes, “Artificial neural network estimation of global solar radiation using air temperature and relative humidity,” Energy Policy, vol. 36, no. 2, pp. 571–576, Feb. 2008. [17] Y. Jiang, “Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models,” Energy Policy, vol. 36, no. 10, pp. 3833–3837, Oct. 2008. [18] N. D. Kaushika, R. K. Tomar, and S. C. Kaushik, “Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations,” Sol. Energy, vol. 103, pp. 327–342, May 2014. [19] M. Benghanem, A. Mellit, and S. N. Alamri, “ANN-based modelling and estimation of daily global solar radiation data: A case study,” Energy Convers. Manag., vol. 50, no. 7, pp. 1644–1655, Jul. 2009. [20] S. Sayago, M. Bocco, G. Ovando, and Et.al, “Radiación solar horaria: modelos de estimación a partir de variables meteorológicas básicas,” Av. en Energías Renov. y Medio Ambient., vol. 15, no. 1, pp. 51–57, 2011. [21] J. Bonilla, J. Ramírez, and O. Ramírez, “Metodología para el diseño de un modelo univariado de red neuronal para el pronóstico de la temperatura mínima en la zona de Mosquera (Cundinamarca, Colombia),” Meteorol. Colomb., vol. 1, no. 10, pp. 111–120, 2006. [22] N. Obregón, F. Monsalve, and S. Garavito, “Predicción de series de tiempo hídricas mediante modelos de redes neuronales artificiales y modelos de árboles de decisión,” in Memorias del Seminario Internacional La Hidroinformática en la Gestión Integrada de los Recursos Hídricos, 2003. [23] A. González-Rodríguez, “Modelo para la predicción de la radiación solar a partir de redes neuronales artificiales,” Escuela de Ingeniería de Antioquia, 2014. [24] J. R. G. Sarduy, K. G. Di Santo, and M. A. Saidel, “Linear and non-linear methods for prediction of peak load at University of São Paulo,” Measurement, vol. 78, pp. 187–201, Jan. 2016.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv International Journal of Engineering and Technology
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/50ee2b05-c3ec-44f4-bfec-d9e0abe43159/download
https://repositorio.cuc.edu.co/bitstreams/c01f9610-de91-482e-a274-8ac38cc115c2/download
https://repositorio.cuc.edu.co/bitstreams/8144d86d-5998-4f5e-b11f-e3562931ae5f/download
https://repositorio.cuc.edu.co/bitstreams/ae58aacd-71f5-4ce0-b193-9a71f89e4f0d/download
bitstream.checksum.fl_str_mv c7153b93f18e21e69c34c4ae757cae82
8a4605be74aa9ea9d79846c1fba20a33
ec494eeb5c005d157af5eb78e7cad487
2f0e3bac792c831c912287010804af09
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760676134191104
spelling Noriega Angarita, Eliana MariaSousa Santos, VladimirQuintero Duran, Michell JosepGil Arrieta, Cesar Javier2018-11-09T19:23:36Z2018-11-09T19:23:36Z201623198613http://hdl.handle.net/11323/817Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a prediction model of solar radiation for dimensioning photovoltaic generation systems in the Atlantic Coast of Colombia, using artificial neural networks. As a case of study is presented the municipality "El Carmen de Bolivar" located in this region. To obtain the model, the average data of daily temperature, relative humidity and solar radiation from the last ten years, reported by weather stations in this city were used. Six neural networks were designed with six variants of input variables (temperature, humidity and month) and the output variable (solar radiation). The best result was obtained using all input variables. In the training process, the correlation index (R) between solar radiation estimated by the model and the recorded data was 0.8. In validating the correlation index was 0.77.Noriega Angarita, Eliana Maria-0000-0003-4580-2050-600Sousa Santos, Vladimir-0000-0001-8808-1914-600Quintero Duran, Michell Josep-97c79d40-a005-47ef-84cd-90d38ce9ce95-0Gil Arrieta, Cesar Javier-909723be-2777-4527-a571-c7f983f515ab-0engInternational Journal of Engineering and TechnologyAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Artificial neural networksModellingPhotovoltaic generation systemsPredictionSolar radiationSolar radiation prediction for dimensioning photovoltaic systems using artificial neural networksArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] M. Van der Hoeven, World Energy Outlook 2014. Paris, 2014. [2] A. Vélez-Pereira, E. Vásquez, W. Coronell, and Et.al, “Determinación de un modelo paramétrico para estimar la radiación solar,” Ingenium, vol. 7, no. 18, pp. 11–17, 2013. [3] A. Angstrom, “Solar and terrestrial radiation,” J. R. Meteorol. Soc., vol. 50, no. 210, pp. 121–126, 1924. [4] H. Li, Y. Lian, X. Wang, W. Ma, and L. Zhao, “Solar constant values for estimating solar radiation,” Energy, vol. 36, no. 3, pp. 1785– 1789, Mar. 2011. [5] M. Yorukoglu and A. N. Celik, “A critical review on the estimation of daily global solar radiation from sunshine duration,” Energy Convers. Manag., vol. 47, no. 15–16, pp. 2441–2450, Sep. 2006. [6] H. Li, W. Ma, Y. Lian, and X. Wang, “Estimating daily global solar radiation by day of year in China,” Appl. Energy, vol. 87, no. 10, pp. 3011–3017, Oct. 2010. [7] Z. Jin, W. Yezheng, and Y. Gang, “General formula for estimation of monthly average daily global solar radiation in China,” Energy Convers. Manag., vol. 46, no. 2, pp. 257–268, Jan. 2005. [8] J. R. Trapero, N. Kourentzes, and A. Martin, “Short-term solar irradiation forecasting based on Dynamic Harmonic Regression,” Energy, vol. 84, pp. 289–295, May 2015. [9] M. El-Metwally, “Simple new methods to estimate global solar radiation based on meteorological data in Egypt,” Atmos. Res., vol. 69, no. 3–4, pp. 217–239, Jan. 2004. [10] V. Badescu, C. A. Gueymard, S. Cheval, C. Oprea, M. Baciu, A. Dumitrescu, F. Iacobescu, I. Milos, and C. Rada, “Computing global and diffuse solar hourly irradiation on clear sky. Review and testing of 54 models,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1636–1656, Apr. 2012. [11] J. Almorox, C. Hontoria, and M. Benito, “Models for obtaining daily global solar radiation with measured air temperature data in Madrid (Spain),” Appl. Energy, vol. 88, no. 5, pp. 1703–1709, May 2011. [12] G. Winter Althaus, B. Gonzalez Landin, A. Pulido Alonso, B. Galvan Gonzalez, M. Maarouf, J. Gonzalez Guerra, and M. Cruz Perez, “Predicción de la demanda de la energía eléctrica a largo plazo: un reto en ingeniería computacional,” Dyna Ing. e Ind., vol. 90, no. 3, pp. 582–584, 2015. [13] J. Garcia Martin, “Clasificación del tratamiento térmico de aceros con ensayos no destructivos por corrientes inducidas mediante redes neuronales,” Dyna Ing. e Ind., vol. 89, no. 3, pp. 526–532, 2014. [14] A. K. Yadav, H. Malik, and S. S. Chandel, “Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models,” Renew. Sustain. Energy Rev., vol. 31, pp. 509–519, Mar. 2014. [15] P. L. Zervas, H. Sarimveis, J. A. Palyvos, and N. C. G. Markatos, “Prediction of daily global solar irradiance on horizontal surfaces based on neural-network techniques,” Renew. Energy, vol. 33, no. 8, pp. 1796–1803, Aug. 2008. [16] S. Rehman and M. Mohandes, “Artificial neural network estimation of global solar radiation using air temperature and relative humidity,” Energy Policy, vol. 36, no. 2, pp. 571–576, Feb. 2008. [17] Y. Jiang, “Prediction of monthly mean daily diffuse solar radiation using artificial neural networks and comparison with other empirical models,” Energy Policy, vol. 36, no. 10, pp. 3833–3837, Oct. 2008. [18] N. D. Kaushika, R. K. Tomar, and S. C. Kaushik, “Artificial neural network model based on interrelationship of direct, diffuse and global solar radiations,” Sol. Energy, vol. 103, pp. 327–342, May 2014. [19] M. Benghanem, A. Mellit, and S. N. Alamri, “ANN-based modelling and estimation of daily global solar radiation data: A case study,” Energy Convers. Manag., vol. 50, no. 7, pp. 1644–1655, Jul. 2009. [20] S. Sayago, M. Bocco, G. Ovando, and Et.al, “Radiación solar horaria: modelos de estimación a partir de variables meteorológicas básicas,” Av. en Energías Renov. y Medio Ambient., vol. 15, no. 1, pp. 51–57, 2011. [21] J. Bonilla, J. Ramírez, and O. Ramírez, “Metodología para el diseño de un modelo univariado de red neuronal para el pronóstico de la temperatura mínima en la zona de Mosquera (Cundinamarca, Colombia),” Meteorol. Colomb., vol. 1, no. 10, pp. 111–120, 2006. [22] N. Obregón, F. Monsalve, and S. Garavito, “Predicción de series de tiempo hídricas mediante modelos de redes neuronales artificiales y modelos de árboles de decisión,” in Memorias del Seminario Internacional La Hidroinformática en la Gestión Integrada de los Recursos Hídricos, 2003. [23] A. González-Rodríguez, “Modelo para la predicción de la radiación solar a partir de redes neuronales artificiales,” Escuela de Ingeniería de Antioquia, 2014. [24] J. R. G. Sarduy, K. G. Di Santo, and M. A. Saidel, “Linear and non-linear methods for prediction of peak load at University of São Paulo,” Measurement, vol. 78, pp. 187–201, Jan. 2016.PublicationORIGINALSolar Radiation Prediction for.pdfSolar Radiation Prediction for.pdfapplication/pdf359396https://repositorio.cuc.edu.co/bitstreams/50ee2b05-c3ec-44f4-bfec-d9e0abe43159/downloadc7153b93f18e21e69c34c4ae757cae82MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c01f9610-de91-482e-a274-8ac38cc115c2/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILSolar Radiation Prediction for.pdf.jpgSolar Radiation Prediction for.pdf.jpgimage/jpeg66821https://repositorio.cuc.edu.co/bitstreams/8144d86d-5998-4f5e-b11f-e3562931ae5f/downloadec494eeb5c005d157af5eb78e7cad487MD54TEXTSolar Radiation Prediction for.pdf.txtSolar Radiation Prediction for.pdf.txttext/plain27605https://repositorio.cuc.edu.co/bitstreams/ae58aacd-71f5-4ce0-b193-9a71f89e4f0d/download2f0e3bac792c831c912287010804af09MD5511323/817oai:repositorio.cuc.edu.co:11323/8172024-09-16 16:43:19.896open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=