Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia
This study discusses the technical, environmental, and economic feasibility of using absorption chillers driven by solar energy and/or natural gas, in selected shopping malls in Barranquilla, Caribbean region of Colombia. The high solar irradiation and the low prices of natural gas in the cities of...
- Autores:
-
Rodriguez Toscano, Andres
Amaris, Carlos
Sagastume, Alexis
Bourouis, Mahmoud
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9014
- Acceso en línea:
- https://hdl.handle.net/11323/9014
https://doi.org/10.1016/j.csite.2021.101743
https://repositorio.cuc.edu.co/
- Palabra clave:
- Absorption cooling
Solar thermal energy
Natural gas
Shopping malls
Solar cooling
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_0d84aff102448823ab8d97bdfb731a75 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9014 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
title |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
spellingShingle |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia Absorption cooling Solar thermal energy Natural gas Shopping malls Solar cooling |
title_short |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
title_full |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
title_fullStr |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
title_full_unstemmed |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
title_sort |
Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of Colombia |
dc.creator.fl_str_mv |
Rodriguez Toscano, Andres Amaris, Carlos Sagastume, Alexis Bourouis, Mahmoud |
dc.contributor.author.spa.fl_str_mv |
Rodriguez Toscano, Andres Amaris, Carlos Sagastume, Alexis Bourouis, Mahmoud |
dc.subject.spa.fl_str_mv |
Absorption cooling Solar thermal energy Natural gas Shopping malls Solar cooling |
topic |
Absorption cooling Solar thermal energy Natural gas Shopping malls Solar cooling |
description |
This study discusses the technical, environmental, and economic feasibility of using absorption chillers driven by solar energy and/or natural gas, in selected shopping malls in Barranquilla, Caribbean region of Colombia. The high solar irradiation and the low prices of natural gas in the cities of the Caribbean region of Colombia are attractive conditions for the use of absorption chillers. To prove the feasibility of absorption chillers in the Caribbean region of Colombia, the use of water/LiBr absorption chillers of 352 kW cooling capacity was investigated considering the cooling loads in selected malls. A thermodynamic model was developed to study the performance of the absorption chiller and evaluate different scenarios proposed. The results evidenced that the absorption chiller could reach a maximum COP and SCOP of 0.77 and 0.52, respectively. The different alternatives could reduce gas emissions between 17% and 76% depending on the cooling load covered by the absorption chillers and driving energy input as compared to the current use of mechanical compression chillers. The economic results indicated that the best scenario, considering a lifetime of 20 years, is the gas-driven absorption chiller with IRR varying from 40% to 54.6% depending on the mall cooling load covered. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-01-28T21:12:38Z |
dc.date.available.none.fl_str_mv |
2022-01-28T21:12:38Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2214-157X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9014 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.csite.2021.101743 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2214-157X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9014 https://doi.org/10.1016/j.csite.2021.101743 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] IEA, Perspectivas energ´eticas mundiales 2019 - An´ alisis - IEA, Perspect. Energ´eticas Mundiales 2019, 2019. [2] A. Altamirano, N. Le Pierr`es, B. Stutz, Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: theoretical, experimental and commercial cycles, Int. J. Refrig. 106 (2019) 350–373, https://doi.org/10.1016/j.ijrefrig.2019.06.033. [3] IEA, Produccion ´ de electricidad a partir de fuentes de petroleo, ´ gas y carbon ´ (% del total) Data, 2015, 2015, p. 1. [4] International Energy Agency - IEA, Energy Technology Perspectives 2010, International Energy Agency, 2010. www.iea.org/etp2010. [5] L. P´erez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build. 40 (2008) 394–398, https://doi.org/10.1016/J. ENBUILD.2007.03.007. [6] H. Li, X. Li, Benchmarking energy performance for cooling in large commercial buildings, Energy Build. 176 (2018) 179–193, https://doi.org/10.1016/j. enbuild.2018.07.039. [7] J.S. Hassan, R.M. Zin, M.Z.A. Majid, S. Balubaid, M.R. Hainin, Building energy consumption in Malaysia: an overview, J. Teknol. 70 (2014) 33–38, https://doi. org/10.11113/jt.v70.3574. [8] J. Adel, F. AlFaris, F. Montoya, F. Manzano-Agugliaroa, Energy benchmarking for shopping centers in Gulf Coast region, Energy Pol. (2016) 247–255. [9] A.A. Al-Ugla, M.A.I. El-Shaarawi, S.A.M. Said, A.M. Al-Qutub, Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia, Renew. Sustain. Energy Rev. 54 (2016) 1301–1310, https://doi.org/10.1016/j.rser.2015.10.047. [10] K.F. Fong, T.T. Chow, C.K. Lee, Z. Lin, L.S. Chan, Comparative study of different solar cooling systems for buildings in subtropical city, Sol. Energy 84 (2010) 227–244, https://doi.org/10.1016/J.SOLENER.2009.11.002. [11] B. Ghorbani, R. Shirmohammadi, M. Mehrpooya, A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles – economic and exergy analyses, Appl. Therm. Eng. 132 (2018) 283–295, https://doi.org/10.1016/j.applthermaleng.2017.12.099. [12] K. Ravi Kumar, N.V.V. Krishna Chaitanya, N. Sendhil Kumar, Solar thermal energy technologies and its applications for process heating and power generation – a review, J. Clean. Prod. 282 (2021), 125296, https://doi.org/10.1016/j.jclepro.2020.125296. [13] R. Nikbakhti, X. Wang, A.K. Hussein, A. Iranmanesh, Absorption cooling systems – review of various techniques for energy performance enhancement, Alex. Eng. J. 59 (2020) 707–738, https://doi.org/10.1016/J.AEJ.2020.01.036. [14] C. Amaris, B.C. Miranda, M. Balbis-Morejon, ´ Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. 20 (2020), https://doi.org/10.1016/j.tsep.2020.100684. [15] M. Yousefzadeh, M. Lenzen, E.K. Tyedmers, S.M. Hassan Ali, An integrated combined power and cooling strategy for small islands, J. Clean. Prod. 276 (2020), 122840, https://doi.org/10.1016/j.jclepro.2020.122840. [16] A. Dispenza, V. La Rocca, A. Messineo, M. Morale, D. Panno, Absorption equipment for energy savings: a case study in Sicily, Sustain. Energy Technol. Assessments 3 (2013) 17–26, https://doi.org/10.1016/j.seta.2013.05.002. [17] W. Sparber, A. Napolitano, P. Melograno, Overview on world wide installed solar cooling systems, in: 2nd Int. Conf. Sol. Air Cond, 2007, pp. 1–6. [18] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013. https://www.tdx.cat/handle/10803/128504. [19] C. Amaris, M. Vall`es, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy 231 (2018) 826–853, https://doi.org/10.1016/j.apenergy.2018.09.071. [20] C. Amaris, M. Bourouis, Boiling process assessment for absorption heat pumps: a review, Int. J. Heat Mass Tran. 179 (2021), 121723, https://doi.org/10.1016/J. IJHEATMASSTRANSFER.2021.121723. [21] C. Amaris, M. Bourouis, M. Vall`es, D. Salavera, A. Coronas, Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems, Heat Tran. Eng. 36 (2015) 388–395, https://doi.org/10.1080/01457632.2014.923983. [22] A. Allouhi, T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, Y. Zeraouli, Solar driven cooling systems: an updated review, Renew. Sustain. Energy Rev. 44 (2015) 159–181, https://doi.org/10.1016/J.RSER.2014.12.014. [23] O. Ayadi, S. Al-Dahidi, Comparison of solar thermal and solar electric space heating and cooling systems for buildings in different climatic regions, Sol. Energy 188 (2019) 545–560, https://doi.org/10.1016/j.solener.2019.06.033. [24] E. Bellos, C. Tzivanidis, Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates, Appl. Therm. Eng. 126 (2017) 809–821, https://doi.org/10.1016/j.applthermaleng.2017.08.005. [25] F. Assilzadeh, S.A. Kalogirou, Y. Ali, K. Sopian, Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors, Renew. Energy 30 (2005) 1143–1159, https://doi.org/10.1016/j.renene.2004.09.017. [26] A. Shirazi, R.A. Taylor, G.L. Morrison, S.D. White, Solar-powered absorption chillers: a comprehensive and critical review, Energy Convers. Manag. 171 (2018) 59–81, https://doi.org/10.1016/j.enconman.2018.05.091. [27] S.S. Alrwashdeh, H. Ammari, Life cycle cost analysis of two different refrigeration systems powered by solar energy, Case Stud. Therm. Eng. 16 (2019), https:// doi.org/10.1016/j.csite.2019.100559. [28] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289, https://doi.org/10.1016/J.TSEP.2018.04.017. [29] G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Modelling and simulation of an absorption solar cooling system for Cyprus, Sol. Energy 72 (2002) 43–51, https://doi.org/10.1016/S0038-092X(01)00081-0. [30] A. Shafieian, M. Khiadani, A multipurpose desalination, cooling, and air-conditioning system powered by waste heat recovery from diesel exhaust fumes and cooling water, Case Stud. Therm. Eng. 21 (2020), 100702, https://doi.org/10.1016/J.CSITE.2020.100702. [31] M. Balghouthi, M.H. Chahbani, A. Guizani, Feasibility of solar absorption air conditioning in Tunisia, Build. Environ. 43 (2008) 1459–1470, https://doi.org/ 10.1016/J.BUILDENV.2007.08.003. [32] F. Calise, Thermoeconomic analysis and optimization of high efficiency solar heating and cooling systems for different Italian school buildings and climates, Energy Build. 42 (2010) 992–1003, https://doi.org/10.1016/j.enbuild.2010.01.011. [33] R. Gomri, Simulation study on the performance of solar/natural gas absorption cooling chillers, Energy Convers. Manag. 65 (2013) 675–681, https://doi.org/ 10.1016/J.ENCONMAN.2011.10.030. [34] A. Lubis, J. Jeong, K. Saito, N. Giannetti, H. Yabase, M. Idrus Alhamid, Nasruddin, Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates, Renew. Energy 99 (2016) 825–835, https://doi.org/10.1016/J.RENENE.2016.07.055. [35] M.I. Alhamid, A. Coronas, A. Lubis, D.S. Ayou, Nasruddin, K. Saito, H. Yabase, Operation strategy of a solar-gas fired single/double effect absorption chiller for space cooling in Indonesia, Appl. Therm. Eng. 178 (2020), 115524, https://doi.org/10.1016/j.applthermaleng.2020.115524. [36] A. Saleh, M. Mosa, Optimization study of a single-effect water–lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions, Energy Convers. Manag. 87 (2014) 29–36, https://doi.org/10.1016/J.ENCONMAN.2014.06.098. [37] A. Al-Falahi, F. Alobaid, B. Epple, Design and thermo-economic comparisons of large scale solar absorption air conditioning cycles, Case Stud. Therm. Eng. 22 (2020), 100763, https://doi.org/10.1016/j.csite.2020.100763. [38] F.A. Ghaith, H. ul H. Razzaq, Performance of solar powered cooling system using Parabolic Trough Collector in UAE, Sustain. Energy Technol. Assessments 23 (2017) 21–32, https://doi.org/10.1016/j.seta.2017.08.005. [39] R. Narayanan, G.K. Harilal, S. Golder, Feasibility study on the solar absorption cooling system for a residential complex in the Australian subtropical region, Case Stud. Therm. Eng. 27 (2021), 101202, https://doi.org/10.1016/J.CSITE.2021.101202. [40] A. García, Bajar costos: reto de la refrigeracion ´ solar | ACR Latinoam´erica, Bajar Costos Reto La Refrig. Sol, 2012, p. 1. [41] EPM, Tarifario del mes | Gases del Caribe, Tarif, Del Mes, 2020, p. 1. [42] Universidad Nacional, Caracterizacion ´ del Consumo de Energía Final en Los Sectores Terciario, 2007. GRANDES ESTABLECIMIENTOS COMERCIALES, CENTROS COMERCIALES Y DETERMINACION ´ DE CONSUMOS PARA SUS RESPECTIVOS EQUIPOS DE USO DE ENERG´IA FINAL. [43] M. De Minas, Y. Energía, U. De, P. Minero, E. Caracterizacion, ´ E. De Los, S. Residencial, C.Y. Terciario, República de Colombia, 2007. [44] Weather Underground, Barranquilla, Colombia Weather Conditions, Weather Underground, 2020, p. 1. [45] A.O. Castro, An´ alisis del potential energ´etico solar en la Region ´ Caribe para el diseno ˜ de un sistema fotovoltaico, INGE CUC 6 (2010) 95–102. [46] IDEAM, Boletín Climatologico ´ Mensual - Climatologico ´ Mensual - IDEAM, Boletín Clim. Mens. - Clim. Mens. - IDEAM, 2020. [47] S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci. 30 (2004) 231–295, https://doi.org/10.1016/J.PECS.2004.02.001. [48] J. Asadi, P. Amani, M. Amani, A. Kasaeian, M. Bahiraei, Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors, Energy Convers. Manag. 173 (2018) 715–727, https://doi.org/10.1016/j.enconman.2018.08.013. [49] E. Bellos, C. Tzivanidis, C. Symeou, K.A. Antonopoulos, Energetic, exergetic and financial evaluation of a solar driven absorption chiller – a dynamic approach, Energy Convers. Manag. 137 (2017) 34–48, https://doi.org/10.1016/j.enconman.2017.01.041. [50] J. P´ atek, J. Klomfar, A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range, Int. J. Refrig. 29 (2006) 566–578, https://doi.org/10.1016/j.ijrefrig.2005.10.007. [51] Comision ´ del Cambio Clim´ atico, Guía pr´ actica para el c´ alculo de emisiones de gases de efecto invernadero (GEI) Guía Pr´ actica Para El Calculo ´ De Emisiones De Gases De Efecto Invernadero (GEI), 2011. Catalunya. [52] J. Jiang, W. Gao, X. Wei, Y. Li, S. Kuroki, Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system, Energy Convers. Manag. 199 (2019), 111988, https://doi.org/10.1016/j.enconman.2019.111988. [53] A. Ghafoor, A. Munir, Worldwide overview of solar thermal cooling technologies, Renew. Sustain. Energy Rev. 43 (2015) 763–774, https://doi.org/10.1016/j. rser.2014.11.073. [54] B. Ghorbani, R. Shirmohammadi, M. Mehrpooya, A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles – economic and exergy analyses, Appl. Therm. Eng. 132 (2018) 283–295, https://doi.org/10.1016/j.applthermaleng.2017.12.099. [55] EPM, Gas Natural, 2020. [56] U. Eicker, D. Pietruschka, Optimization and economics of solar cooling systems, Adv. Build. Energy Res. 3 (2009) 45–81, https://doi.org/10.3763/ aber.2009.0303. [57] Absorsistem, Plantas enfriadoras de agua por ciclo de absorcion, ´ accionadas por agua caliente, 2014. [58] M.F. Elberry, A.A. Elsayed, M.A. Teamah, A.A. Abdel-Rahman, A.F. Elsafty, Performance improvement of power plants using absorption cooling system, Alex. Eng. J. 57 (2018) 2679–2686, https://doi.org/10.1016/j.aej.2017.10.004. [59] Z. Khan, Z.A. Khan, Thermodynamic performance of a novel shell-and-tube heat exchanger incorporating paraffin as thermal storage solution for domestic and commercial applications, Appl. Therm. Eng. 160 (2019), https://doi.org/10.1016/j.applthermaleng.2019.114007. [60] K. Herold, R. Radermacher, S. Klein, Applications of Absorption Chillers and Heat Pumps, 2016, https://doi.org/10.1201/b19625-14. [61] G. Reniers, L. Talarico, N. Paltrinieri, Cost-Benefit analysis of safety measures, in: Dyn. Risk Anal. Chem. Pet. Ind. Evol. Interact. with Parallel Discip. Perspect. Ind. Appl., Elsevier Inc., Oxford, United Kingdom, 2016, pp. 195–205, https://doi.org/10.1016/B978-0-12-803765-2.00016-0. [62] M. Ebrahimi, A. Keshavarz, CCHP evaluation criteria, in: Comb. Cool. Heat. Power, Elsevier, Amsterdam, Netherlands, 2015, pp. 93–102, https://doi.org/ 10.1016/b978-0-08-099985-2.00003-2. [63] J. Arias-Gaviria, S.X. Carvajal-Quintero, S. Arango-Aramburo, Understanding dynamics and policy for renewable energy diffusion in Colombia, Renew. Energy 139 (2019) 1111–1119, https://doi.org/10.1016/j.renene.2019.02.138. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Case Studies in Thermal Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2214157X21009060 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c978f5ed-74b6-4bae-b9d5-8beb355f73ae/download https://repositorio.cuc.edu.co/bitstreams/07b65b74-bcb7-437a-a706-d11a5f826f39/download https://repositorio.cuc.edu.co/bitstreams/083628c4-005f-4e9a-9a48-21e5c9688301/download https://repositorio.cuc.edu.co/bitstreams/e7d749e2-5f2d-4040-8f81-a58f49ff6eea/download https://repositorio.cuc.edu.co/bitstreams/c369f56e-eb27-4955-a476-cdf2222dfa16/download |
bitstream.checksum.fl_str_mv |
29863443b0f4f70d3503ed2eda10f046 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad b228d7dfc93cba97ef0b424dd9dc6b8d 5d23c880994bd4b54f199a99a5bf7a68 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760775343112192 |
spelling |
Rodriguez Toscano, AndresAmaris, CarlosSagastume, AlexisBourouis, Mahmoud2022-01-28T21:12:38Z2022-01-28T21:12:38Z20222214-157Xhttps://hdl.handle.net/11323/9014https://doi.org/10.1016/j.csite.2021.101743Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This study discusses the technical, environmental, and economic feasibility of using absorption chillers driven by solar energy and/or natural gas, in selected shopping malls in Barranquilla, Caribbean region of Colombia. The high solar irradiation and the low prices of natural gas in the cities of the Caribbean region of Colombia are attractive conditions for the use of absorption chillers. To prove the feasibility of absorption chillers in the Caribbean region of Colombia, the use of water/LiBr absorption chillers of 352 kW cooling capacity was investigated considering the cooling loads in selected malls. A thermodynamic model was developed to study the performance of the absorption chiller and evaluate different scenarios proposed. The results evidenced that the absorption chiller could reach a maximum COP and SCOP of 0.77 and 0.52, respectively. The different alternatives could reduce gas emissions between 17% and 76% depending on the cooling load covered by the absorption chillers and driving energy input as compared to the current use of mechanical compression chillers. The economic results indicated that the best scenario, considering a lifetime of 20 years, is the gas-driven absorption chiller with IRR varying from 40% to 54.6% depending on the mall cooling load covered.Rodriguez Toscano, Andres-will be generated-orcid-0000-0001-7470-3284-600Amaris, CarlosSagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600Bourouis, Mahmoud-will be generated-orcid-0000-0003-2476-5967-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Case Studies in Thermal Engineeringhttps://www.sciencedirect.com/science/article/pii/S2214157X21009060Absorption coolingSolar thermal energyNatural gasShopping mallsSolar coolingTechnical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls in the Caribbean region of ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] IEA, Perspectivas energ´eticas mundiales 2019 - An´ alisis - IEA, Perspect. Energ´eticas Mundiales 2019, 2019.[2] A. Altamirano, N. Le Pierr`es, B. Stutz, Review of small-capacity single-stage continuous absorption systems operating on binary working fluids for cooling: theoretical, experimental and commercial cycles, Int. J. Refrig. 106 (2019) 350–373, https://doi.org/10.1016/j.ijrefrig.2019.06.033.[3] IEA, Produccion ´ de electricidad a partir de fuentes de petroleo, ´ gas y carbon ´ (% del total) Data, 2015, 2015, p. 1.[4] International Energy Agency - IEA, Energy Technology Perspectives 2010, International Energy Agency, 2010. www.iea.org/etp2010.[5] L. P´erez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build. 40 (2008) 394–398, https://doi.org/10.1016/J. ENBUILD.2007.03.007.[6] H. Li, X. Li, Benchmarking energy performance for cooling in large commercial buildings, Energy Build. 176 (2018) 179–193, https://doi.org/10.1016/j. enbuild.2018.07.039.[7] J.S. Hassan, R.M. Zin, M.Z.A. Majid, S. Balubaid, M.R. Hainin, Building energy consumption in Malaysia: an overview, J. Teknol. 70 (2014) 33–38, https://doi. org/10.11113/jt.v70.3574.[8] J. Adel, F. AlFaris, F. Montoya, F. Manzano-Agugliaroa, Energy benchmarking for shopping centers in Gulf Coast region, Energy Pol. (2016) 247–255.[9] A.A. Al-Ugla, M.A.I. El-Shaarawi, S.A.M. Said, A.M. Al-Qutub, Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia, Renew. Sustain. Energy Rev. 54 (2016) 1301–1310, https://doi.org/10.1016/j.rser.2015.10.047.[10] K.F. Fong, T.T. Chow, C.K. Lee, Z. Lin, L.S. Chan, Comparative study of different solar cooling systems for buildings in subtropical city, Sol. Energy 84 (2010) 227–244, https://doi.org/10.1016/J.SOLENER.2009.11.002.[11] B. Ghorbani, R. Shirmohammadi, M. Mehrpooya, A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles – economic and exergy analyses, Appl. Therm. Eng. 132 (2018) 283–295, https://doi.org/10.1016/j.applthermaleng.2017.12.099.[12] K. Ravi Kumar, N.V.V. Krishna Chaitanya, N. Sendhil Kumar, Solar thermal energy technologies and its applications for process heating and power generation – a review, J. Clean. Prod. 282 (2021), 125296, https://doi.org/10.1016/j.jclepro.2020.125296.[13] R. Nikbakhti, X. Wang, A.K. Hussein, A. Iranmanesh, Absorption cooling systems – review of various techniques for energy performance enhancement, Alex. Eng. J. 59 (2020) 707–738, https://doi.org/10.1016/J.AEJ.2020.01.036.[14] C. Amaris, B.C. Miranda, M. Balbis-Morejon, ´ Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system, Therm. Sci. Eng. Prog. 20 (2020), https://doi.org/10.1016/j.tsep.2020.100684.[15] M. Yousefzadeh, M. Lenzen, E.K. Tyedmers, S.M. Hassan Ali, An integrated combined power and cooling strategy for small islands, J. Clean. Prod. 276 (2020), 122840, https://doi.org/10.1016/j.jclepro.2020.122840.[16] A. Dispenza, V. La Rocca, A. Messineo, M. Morale, D. Panno, Absorption equipment for energy savings: a case study in Sicily, Sustain. Energy Technol. Assessments 3 (2013) 17–26, https://doi.org/10.1016/j.seta.2013.05.002.[17] W. Sparber, A. Napolitano, P. Melograno, Overview on world wide installed solar cooling systems, in: 2nd Int. Conf. Sol. Air Cond, 2007, pp. 1–6.[18] C. Amaris, Intensification of NH3 Bubble Absorption Process Using Advanced Surfaces and Carbon Nanotubes for NH3/LiNO3 Absorption Chillers, Universitat Rovira i Virgili, Tarragona, Spain, 2013. https://www.tdx.cat/handle/10803/128504.[19] C. Amaris, M. Vall`es, M. Bourouis, Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: a review, Appl. Energy 231 (2018) 826–853, https://doi.org/10.1016/j.apenergy.2018.09.071.[20] C. Amaris, M. Bourouis, Boiling process assessment for absorption heat pumps: a review, Int. J. Heat Mass Tran. 179 (2021), 121723, https://doi.org/10.1016/J. IJHEATMASSTRANSFER.2021.121723.[21] C. Amaris, M. Bourouis, M. Vall`es, D. Salavera, A. Coronas, Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems, Heat Tran. Eng. 36 (2015) 388–395, https://doi.org/10.1080/01457632.2014.923983.[22] A. Allouhi, T. Kousksou, A. Jamil, P. Bruel, Y. Mourad, Y. Zeraouli, Solar driven cooling systems: an updated review, Renew. Sustain. Energy Rev. 44 (2015) 159–181, https://doi.org/10.1016/J.RSER.2014.12.014.[23] O. Ayadi, S. Al-Dahidi, Comparison of solar thermal and solar electric space heating and cooling systems for buildings in different climatic regions, Sol. Energy 188 (2019) 545–560, https://doi.org/10.1016/j.solener.2019.06.033.[24] E. Bellos, C. Tzivanidis, Energetic and financial analysis of solar cooling systems with single effect absorption chiller in various climates, Appl. Therm. Eng. 126 (2017) 809–821, https://doi.org/10.1016/j.applthermaleng.2017.08.005.[25] F. Assilzadeh, S.A. Kalogirou, Y. Ali, K. Sopian, Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors, Renew. Energy 30 (2005) 1143–1159, https://doi.org/10.1016/j.renene.2004.09.017.[26] A. Shirazi, R.A. Taylor, G.L. Morrison, S.D. White, Solar-powered absorption chillers: a comprehensive and critical review, Energy Convers. Manag. 171 (2018) 59–81, https://doi.org/10.1016/j.enconman.2018.05.091.[27] S.S. Alrwashdeh, H. Ammari, Life cycle cost analysis of two different refrigeration systems powered by solar energy, Case Stud. Therm. Eng. 16 (2019), https:// doi.org/10.1016/j.csite.2019.100559.[28] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, S.A. Tassou, Waste heat recovery technologies and applications, Therm. Sci. Eng. Prog. 6 (2018) 268–289, https://doi.org/10.1016/J.TSEP.2018.04.017.[29] G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Modelling and simulation of an absorption solar cooling system for Cyprus, Sol. Energy 72 (2002) 43–51, https://doi.org/10.1016/S0038-092X(01)00081-0.[30] A. Shafieian, M. Khiadani, A multipurpose desalination, cooling, and air-conditioning system powered by waste heat recovery from diesel exhaust fumes and cooling water, Case Stud. Therm. Eng. 21 (2020), 100702, https://doi.org/10.1016/J.CSITE.2020.100702.[31] M. Balghouthi, M.H. Chahbani, A. Guizani, Feasibility of solar absorption air conditioning in Tunisia, Build. Environ. 43 (2008) 1459–1470, https://doi.org/ 10.1016/J.BUILDENV.2007.08.003.[32] F. Calise, Thermoeconomic analysis and optimization of high efficiency solar heating and cooling systems for different Italian school buildings and climates, Energy Build. 42 (2010) 992–1003, https://doi.org/10.1016/j.enbuild.2010.01.011.[33] R. Gomri, Simulation study on the performance of solar/natural gas absorption cooling chillers, Energy Convers. Manag. 65 (2013) 675–681, https://doi.org/ 10.1016/J.ENCONMAN.2011.10.030.[34] A. Lubis, J. Jeong, K. Saito, N. Giannetti, H. Yabase, M. Idrus Alhamid, Nasruddin, Solar-assisted single-double-effect absorption chiller for use in Asian tropical climates, Renew. Energy 99 (2016) 825–835, https://doi.org/10.1016/J.RENENE.2016.07.055.[35] M.I. Alhamid, A. Coronas, A. Lubis, D.S. Ayou, Nasruddin, K. Saito, H. Yabase, Operation strategy of a solar-gas fired single/double effect absorption chiller for space cooling in Indonesia, Appl. Therm. Eng. 178 (2020), 115524, https://doi.org/10.1016/j.applthermaleng.2020.115524.[36] A. Saleh, M. Mosa, Optimization study of a single-effect water–lithium bromide absorption refrigeration system powered by flat-plate collector in hot regions, Energy Convers. Manag. 87 (2014) 29–36, https://doi.org/10.1016/J.ENCONMAN.2014.06.098.[37] A. Al-Falahi, F. Alobaid, B. Epple, Design and thermo-economic comparisons of large scale solar absorption air conditioning cycles, Case Stud. Therm. Eng. 22 (2020), 100763, https://doi.org/10.1016/j.csite.2020.100763.[38] F.A. Ghaith, H. ul H. Razzaq, Performance of solar powered cooling system using Parabolic Trough Collector in UAE, Sustain. Energy Technol. Assessments 23 (2017) 21–32, https://doi.org/10.1016/j.seta.2017.08.005.[39] R. Narayanan, G.K. Harilal, S. Golder, Feasibility study on the solar absorption cooling system for a residential complex in the Australian subtropical region, Case Stud. Therm. Eng. 27 (2021), 101202, https://doi.org/10.1016/J.CSITE.2021.101202.[40] A. García, Bajar costos: reto de la refrigeracion ´ solar | ACR Latinoam´erica, Bajar Costos Reto La Refrig. Sol, 2012, p. 1.[41] EPM, Tarifario del mes | Gases del Caribe, Tarif, Del Mes, 2020, p. 1.[42] Universidad Nacional, Caracterizacion ´ del Consumo de Energía Final en Los Sectores Terciario, 2007. GRANDES ESTABLECIMIENTOS COMERCIALES, CENTROS COMERCIALES Y DETERMINACION ´ DE CONSUMOS PARA SUS RESPECTIVOS EQUIPOS DE USO DE ENERG´IA FINAL.[43] M. De Minas, Y. Energía, U. De, P. Minero, E. Caracterizacion, ´ E. De Los, S. Residencial, C.Y. Terciario, República de Colombia, 2007.[44] Weather Underground, Barranquilla, Colombia Weather Conditions, Weather Underground, 2020, p. 1.[45] A.O. Castro, An´ alisis del potential energ´etico solar en la Region ´ Caribe para el diseno ˜ de un sistema fotovoltaico, INGE CUC 6 (2010) 95–102.[46] IDEAM, Boletín Climatologico ´ Mensual - Climatologico ´ Mensual - IDEAM, Boletín Clim. Mens. - Clim. Mens. - IDEAM, 2020.[47] S.A. Kalogirou, Solar thermal collectors and applications, Prog. Energy Combust. Sci. 30 (2004) 231–295, https://doi.org/10.1016/J.PECS.2004.02.001.[48] J. Asadi, P. Amani, M. Amani, A. Kasaeian, M. Bahiraei, Thermo-economic analysis and multi-objective optimization of absorption cooling system driven by various solar collectors, Energy Convers. Manag. 173 (2018) 715–727, https://doi.org/10.1016/j.enconman.2018.08.013.[49] E. Bellos, C. Tzivanidis, C. Symeou, K.A. Antonopoulos, Energetic, exergetic and financial evaluation of a solar driven absorption chiller – a dynamic approach, Energy Convers. Manag. 137 (2017) 34–48, https://doi.org/10.1016/j.enconman.2017.01.041.[50] J. P´ atek, J. Klomfar, A computationally effective formulation of the thermodynamic properties of LiBr-H2O solutions from 273 to 500 K over full composition range, Int. J. Refrig. 29 (2006) 566–578, https://doi.org/10.1016/j.ijrefrig.2005.10.007.[51] Comision ´ del Cambio Clim´ atico, Guía pr´ actica para el c´ alculo de emisiones de gases de efecto invernadero (GEI) Guía Pr´ actica Para El Calculo ´ De Emisiones De Gases De Efecto Invernadero (GEI), 2011. Catalunya.[52] J. Jiang, W. Gao, X. Wei, Y. Li, S. Kuroki, Reliability and cost analysis of the redundant design of a combined cooling, heating and power (CCHP) system, Energy Convers. Manag. 199 (2019), 111988, https://doi.org/10.1016/j.enconman.2019.111988.[53] A. Ghafoor, A. Munir, Worldwide overview of solar thermal cooling technologies, Renew. Sustain. Energy Rev. 43 (2015) 763–774, https://doi.org/10.1016/j. rser.2014.11.073.[54] B. Ghorbani, R. Shirmohammadi, M. Mehrpooya, A novel energy efficient LNG/NGL recovery process using absorption and mixed refrigerant refrigeration cycles – economic and exergy analyses, Appl. Therm. Eng. 132 (2018) 283–295, https://doi.org/10.1016/j.applthermaleng.2017.12.099.[55] EPM, Gas Natural, 2020.[56] U. Eicker, D. Pietruschka, Optimization and economics of solar cooling systems, Adv. Build. Energy Res. 3 (2009) 45–81, https://doi.org/10.3763/ aber.2009.0303.[57] Absorsistem, Plantas enfriadoras de agua por ciclo de absorcion, ´ accionadas por agua caliente, 2014.[58] M.F. Elberry, A.A. Elsayed, M.A. Teamah, A.A. Abdel-Rahman, A.F. Elsafty, Performance improvement of power plants using absorption cooling system, Alex. Eng. J. 57 (2018) 2679–2686, https://doi.org/10.1016/j.aej.2017.10.004.[59] Z. Khan, Z.A. Khan, Thermodynamic performance of a novel shell-and-tube heat exchanger incorporating paraffin as thermal storage solution for domestic and commercial applications, Appl. Therm. Eng. 160 (2019), https://doi.org/10.1016/j.applthermaleng.2019.114007.[60] K. Herold, R. Radermacher, S. Klein, Applications of Absorption Chillers and Heat Pumps, 2016, https://doi.org/10.1201/b19625-14.[61] G. Reniers, L. Talarico, N. Paltrinieri, Cost-Benefit analysis of safety measures, in: Dyn. Risk Anal. Chem. Pet. Ind. Evol. Interact. with Parallel Discip. Perspect. Ind. Appl., Elsevier Inc., Oxford, United Kingdom, 2016, pp. 195–205, https://doi.org/10.1016/B978-0-12-803765-2.00016-0.[62] M. Ebrahimi, A. Keshavarz, CCHP evaluation criteria, in: Comb. Cool. Heat. Power, Elsevier, Amsterdam, Netherlands, 2015, pp. 93–102, https://doi.org/ 10.1016/b978-0-08-099985-2.00003-2.[63] J. Arias-Gaviria, S.X. Carvajal-Quintero, S. Arango-Aramburo, Understanding dynamics and policy for renewable energy diffusion in Colombia, Renew. Energy 139 (2019) 1111–1119, https://doi.org/10.1016/j.renene.2019.02.138.PublicationORIGINALTechnical, environmental, and economic evaluation of a solar-gas driven absorption chiller for shopping malls in the Caribbean region of Colombia.pdfTechnical, environmental, and economic evaluation of a solar-gas driven absorption chiller for shopping malls in the Caribbean region of Colombia.pdfapplication/pdf4628789https://repositorio.cuc.edu.co/bitstreams/c978f5ed-74b6-4bae-b9d5-8beb355f73ae/download29863443b0f4f70d3503ed2eda10f046MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/07b65b74-bcb7-437a-a706-d11a5f826f39/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/083628c4-005f-4e9a-9a48-21e5c9688301/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILTechnical, environmental, and economic evaluation of a solar-gas driven absorption chiller for shopping malls in the Caribbean region of Colombia.pdf.jpgTechnical, environmental, and economic evaluation of a solar-gas driven absorption chiller for shopping malls in the Caribbean region of Colombia.pdf.jpgimage/jpeg40454https://repositorio.cuc.edu.co/bitstreams/e7d749e2-5f2d-4040-8f81-a58f49ff6eea/downloadb228d7dfc93cba97ef0b424dd9dc6b8dMD54TEXTTechnical, environmental, and economic evaluation of a solar-gas driven absorption chiller for shopping malls in the Caribbean region of Colombia.pdf.txtTechnical, environmental, and economic evaluation of a solar-gas driven absorption chiller for shopping malls in the Caribbean region of Colombia.pdf.txttext/plain67131https://repositorio.cuc.edu.co/bitstreams/c369f56e-eb27-4955-a476-cdf2222dfa16/download5d23c880994bd4b54f199a99a5bf7a68MD5511323/9014oai:repositorio.cuc.edu.co:11323/90142024-09-17 11:05:51.027http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |