Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico

Exposure to contaminated environments has important health repercussions, especially for vulnerable groups such as children. The purpose of this study is to evaluate the concentrations of PM2.5 particulate matter in two educational institutions (EI) in both indoor and outdoor environments. During th...

Full description

Autores:
Baena Hamburger, Julio
Campo Morales, Melissa
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6905
Acceso en línea:
https://hdl.handle.net/11323/6905
https://repositorio.cuc.edu.co/
Palabra clave:
School
Exposure
Particulate matter
PM2.5
Low cost sensor
Escuela
Exposición
Material particulado
PM2.5
Sensor de bajo costo
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_0d1e5f0ca170af85fefbc57dcb560da4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6905
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
title Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
spellingShingle Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
School
Exposure
Particulate matter
PM2.5
Low cost sensor
Escuela
Exposición
Material particulado
PM2.5
Sensor de bajo costo
title_short Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
title_full Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
title_fullStr Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
title_full_unstemmed Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
title_sort Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico
dc.creator.fl_str_mv Baena Hamburger, Julio
Campo Morales, Melissa
dc.contributor.advisor.spa.fl_str_mv Schneider, Ismael
dc.contributor.author.spa.fl_str_mv Baena Hamburger, Julio
Campo Morales, Melissa
dc.subject.spa.fl_str_mv School
Exposure
Particulate matter
PM2.5
Low cost sensor
Escuela
Exposición
Material particulado
PM2.5
Sensor de bajo costo
topic School
Exposure
Particulate matter
PM2.5
Low cost sensor
Escuela
Exposición
Material particulado
PM2.5
Sensor de bajo costo
description Exposure to contaminated environments has important health repercussions, especially for vulnerable groups such as children. The purpose of this study is to evaluate the concentrations of PM2.5 particulate matter in two educational institutions (EI) in both indoor and outdoor environments. During the period between June and October 2019, the concentrations were evaluated by means of low-cost PA-II-SD sensors from PurpleAir, which were validated and calibrated by parallel measurements with the Teledyne model T640X reference equipment. The PM2.5 average concentrations for the EIA were 14.46 and 17.26 µg/m3 and for the EIB of 19.18 and 18.95 µg/m3 in internal and external environments, respectively. Ventilation processes, classroom activity and vehicular traffic were the factors that most affected variations in concentrations. The Indoor/Outdoor relations at PM2.5 levels demonstrate that the EIA is less affected by external concentrations (I/O = 0.83), while the EIB has equal concentrations for both environments (I/O = 1.01). These variations are related to the location (being EIA in an urban background area and EIB an area close to the traffic influence) and the architectural conditions of the buildings evaluated. Likewise, significant differences were observed between working and non-working days and between the conditions of occupation of the classrooms. The results indicate the need to evaluate each EI individually, assuring a good air quality to children.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-11T20:59:41Z
dc.date.available.none.fl_str_mv 2020-08-11T20:59:41Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv Baena, J. y Campo, M. (2020). Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/6905
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6905
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Baena, J. y Campo, M. (2020). Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/6905
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6905
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Adgate, J. L., Ramachandran, G., Pratt, G. C., Waller, L. A., & Sexton, K. (2003). Longitudinal variability in outdoor, indoor, and personal PM2.5 exposure in healthy non-smoking adults. Atmospheric Environment, 37(7), 993–1002. https://doi.org/10.1016/S1352-2310(02)00978- 0
Akyüz, M., & Çabuk, H. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials, 170(1), 13–21. https://doi.org/10.1016/j.jhazmat.2009.05.029
Alcaldía de Barranquilla. (2020). Informe general oficina de registro de tránsito. Barranquilla.
Alcaldía de Barranquilla. (2012). DTS. Libro I: Componente General Plan de Ordenamiento Territorial Distrito Especial, Industrial y Porturario de Barranquilla, 1–407.
Alcaldía de Barranquilla. (2016). Barranquilla dispone de 3 estaciones de monitoreo de calidad de aire. Retrieved from https://www.barranquilla.gov.co/mi-barranquilla/barranquilladispone-de-3-estaciones-de-monitoreo-de-calidad-de-aire
Allen, R. W., Mar, T., Koenig, J., Liu, L.-J. S., Gould, T., Simpson, C., & Larson, T. (2008). Changes in Lung Function and Airway Inflammation Among Asthmatic Children Residing in a Woodsmoke-Impacted Urban Area. Inhalation Toxicology, 20(4), 423–433. https://doi.org/10.1080/08958370801903826
Almeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., … Pio, C. A. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45(40), 7594–7599. https://doi.org/10.1016/j.atmosenv.2010.11.052
Amato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C., … Querol, X. (2014). Sources of indoor and outdoor PM2.5 concentrations in primary schools. Science of the Total Environment, 490, 757–765. https://doi.org/10.1016/j.scitotenv.2014.05.051
Arciniégas, C. (2012). Diagnóstico y control de material particulado: partículas suspendidas totales y fracción respirable PM10. Luna Azul, (34), 195–213. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-24742012000100012
Baklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059
Barnett, A. G., Williams, G. M., Schwartz, J., Neller, A. H., Best, T. L., Petroeschevsky, A. L., & Simpson, R. W. (2005). Air Pollution and Child Respiratory Health. American Journal of Respiratory and Critical Care Medicine, 171(11), 1272–1278. https://doi.org/10.1164/rccm.200411-1586OC
Barranquilla Verde. (2018). Informe anual de calidad de aire de barranquilla.
Barría, R. M., Calvo, M., & Pino, P. (2016). Contaminación intradomiciliaria por material particulado fino (MP2,5) en hogares de recién nacidos. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/J.RCHIPE.2016.04.007
Bi, D., Qiu, Y., Cheng, H., Zhou, Q., Liu, X., Chen, J., … Zhu, Z. (2018). Seasonal characteristics of indoor and outdoor fine particles and their metallic compositions in Nanjing, China. Building and Environment, 137, 118–126. https://doi.org/10.1016/j.buildenv.2018.04.008
Bi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z., Kinney, P. L., … Liu, Y. (2020). Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA. Environmental Research, 180(August 2019), 108810. https://doi.org/10.1016/j.envres.2019.108810Brockmeyer, S., & D’Angiulli, A. (2016). How air pollution alters brain development: The role of neuroinflammation. Translational Neuroscience, 7(1), 24–30. https://doi.org/10.1515/tnsci-2016-0005
Brokamp, C., Rao, M. B., Fan, Z., & Ryan, P. H. (2015). Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmospheric Environment, 101, 226–234. https://doi.org/10.1016/j.atmosenv.2014.11.022
Canha, N., Mandin, C., Ramalho, O., Wyart, G., Ribéron, J., Dassonville, C., … Derbez, M. (2016). Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France. Indoor Air, 26(3), 350–365. https://doi.org/10.1111/ina.12222
Carrion-Matta, A., Kang, C. M., Gaffin, J. M., Hauptman, M., Phipatanakul, W., Koutrakis, P., & Gold, D. R. (2019). Classroom indoor PM2.5 sources and exposures in inner-city schools. Environment International, 131(July), 104968. https://doi.org/10.1016/j.envint.2019.104968
Chatzidiakou, L., Mumovic, D., & Summerfield, A. J. (2012). What do we know about indoor air quality in school classrooms? A critical review of the literature. Intelligent Buildings International, 4(4), 228–259. https://doi.org/10.1080/17508975.2012.725530
Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., … Zhang, R. (2015). PM2.5and PM10-2.5chemical composition and source apportionment near a Hong Kong roadway. Particuology. https://doi.org/10.1016/j.partic.2013.10.003
Contreras, R., Gidhagen, L., & Moreno, J. J. V. (2019). New monitoring methods of particulate material for the study of air quality. Conference Proceedings - Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Publica, CASAP 2019, 50(6), 3–6. https://doi.org/10.1109/CASAP.2019.8916757
DANE. (2019). Resultados Censo Nacional de Población y Vivienda 2018. Barranquilla.
Domiguez, L. G. I., Alonso, E. J. H., Guarnizo, J. A. C., Carrillo, J. A., & Guativa, J. A. V. (2019). Monitoreo de material particulado PM10 y PM2.5 en la ciudad de Villavicencio. In Conference Proceedings - Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Publica, CASAP 2019 (pp. 8–12). https://doi.org/10.1109/CASAP.2019.8916702
Echeverri Londoño, C., & Maya Vasco, G. (2008). Relación entre las partículas finas (PM 2.5) y respirables PM 10) en la ciudad de Medellín. Revista de Ingenierías: Universidad de Medellín, 7(12), 23–42.
Elbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., & Al Madhoun, W. (2013). Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms. https://doi.org/10.1016/j.atmosenv.2013.07.067
Elbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., Yahaya, A. S. Bin, Al Madhoun, W., & UlSaufie, A. Z. (2014). Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings. Atmospheric Environment, 94, 11–21. https://doi.org/10.1016/j.atmosenv.2014.05.007
Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. Der, Cocker, D., & Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216(February), 116946. https://doi.org/10.1016/j.atmosenv.2019.116946
Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., … Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmospheric Environment, 42(27), 6597–6605. https://doi.org/10.1016/j.atmosenv.2008.04.047
Gao, M., Cao, J., & Seto, E. (2015). A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environmental Pollution, 199, 56–65. https://doi.org/10.1016/j.envpol.2015.01.013
Gobernación del Atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132.
Grineski, S. E., & Collins, T. W. (2018). Geographic and social disparities in exposure to air neurotoxicants at U.S. public schools. Environmental Research, 161(September 2017), 580– 587. https://doi.org/10.1016/j.envres.2017.11.047
Guo, H., Morawska, L., He, C., Zhang, Y. L., Ayoko, G., & Cao, M. (2010). Characterization of particle number concentrations and PM2.5 in a school: Influence of outdoor air pollution on indoor air. Environmental Science and Pollution Research (Vol. 17). https://doi.org/10.1007/s11356-010-0306-2
Halek, F., Kianpour-Rad, M., & Kavousirahim, A. (2013). Parametric evaluation of indoor particulate matters in elementary schools in the central parts of Tehran. Indoor and Built Environment, 22(3), 580–585. https://doi.org/10.1177/1420326X11433224
Han, Y., Li, X., Zhu, T., Lv, D., Chen, Y., Hou, an, … Ren, M. (2016). Characteristics and Relationships between Indoor and Outdoor PM 2.5 in Beijing: A Residential Apartment Case Study. Aerosol and Air Quality Research, 16, 2386–2395. https://doi.org/10.4209/aaqr.2015.12.0682
Hasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2014.05.044
Hatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-Moreno, L., Kulka, R., … Goldberg, M. (2013). The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science and Environmental Epidemiology, 23(1), 46–51. https://doi.org/10.1038/jes.2012.85
IDEAM. (n.d.). Calidad del aire. Retrieved May 6, 2019, from http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/calidad-del-aire
Janssen, N. A. H., Van Vliet, P. H. N., Aarts, F., Harssema, H., & Brunekreef, B. (2001). Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment, 35(22), 3875–3884. https://doi.org/10.1016/S1352- 2310(01)00144-3
Ji, W., & Zhao, B. (2015). Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Building and Environment, 90, 196–205. https://doi.org/10.1016/J.BUILDENV.2015.04.006
Kalimeri, K. K., Bartzis, J. G., Sakellaris, I. A., & de Oliveira Fernandes, E. (2019). Investigation of the PM2.5, NO2 and O3 I/O ratios for office and school microenvironments. Environmental Research, 179(2), 1–8. https://doi.org/10.1016/j.envres.2019.108791
Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment. Elsevier Ltd. https://doi.org/10.1016/j.atmosenv.2015.08.087
Koenig, J. Q., Mar, T. F., Allen, R. W., Jansen, K., Lumley, T., Sullivan, J. H., … Liu, L.-J. S. (2005). Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environmental Health Perspectives, 113(4), 499–503. https://doi.org/10.1289/EHP.7511
Kouyoumdjian, H., & Saliba, N. A. (2006). Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: Effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride. Atmospheric Chemistry and Physics, 6(7), 1865–1877. https://doi.org/10.5194/acp-6-1865-2006
Larsen, B. (2003). Hygiene and Health in Developing Countries: Defining Priorities through Cost-Benefit Assessments. International journal of environmental health research (Vol. 13). Carfax publishing company. Retrieved from https://www.tib.eu/de/suchen/id/BLSE%3ARN132305857/Hygiene-and-health-indeveloping-countries-defining/
Li, H., Qin, Y., & Feng, G. (2017). The analysis of PM2.5 Outdoor Fine Particulate Matter Impact on Air Quality in the University Libraries Reading Room in Winter of North China. Procedia Engineering, 205, 3346–3352. https://doi.org/10.1016/J.PROENG.2017.09.836
Li, J., Zhang, H., Chao, C., Chien, C., Wu, C., Heng, C., … Biswas, P. (2020a). Integrating lowcost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmospheric Environment, 223(December 2019), 117293. https://doi.org/10.1016/j.atmosenv.2020.117293
Li, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., … Wang, Y. (2020b). Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 134(November 2019), 105283. https://doi.org/10.1016/j.envint.2019.105283
Liang, C. S., Duan, F. K., He, K. Bin, & Ma, Y. L. (2016). Review on recent progress in observations, source identifications and countermeasures of PM 2.5. Environment International, 86, 150–170. https://doi.org/10.1016/j.envint.2015.10.016
Lillibridge, S. (2000). Manejo de los aspectos de salud ambiental en los desastres: agua, excretas humanas y albergues. Impacto De Los Desastres en la Salud Publica
Lv, Y., Wang, H., Wei, S., Zhang, L., & Zhao, Q. (2017). The Correlation between Indoor and Outdoor Particulate Matter of Different Building Types in Daqing, China. Procedia Engineering, 205, 360–367. https://doi.org/10.1016/j.proeng.2017.10.002
MacNeill, M., Wallace, L., Kearney, J., Allen, R. W., Van Ryswyk, K., Judek, S., … Wheeler, A. (2012). Factors influencing variability in the infiltration of PM 2.5 mass and its components. Atmospheric Environment, 61, 518–532. https://doi.org/10.1016/j.atmosenv.2012.07.005
Majd, E., McCormack, M., Davis, M., Curriero, F., Berman, J., Connolly, F., … Koehler, K. (2019). Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environmental Research, 170(November 2018), 83–91. https://doi.org/10.1016/j.envres.2018.12.012
Marlier, M. E., Defries, R. S., Kim, P. S., Gaveau, D. L. A., Koplitz, S. N., Jacob, D. J., … Myers, S. S. (2015). Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ. Res. Lett, 10, 54010. https://doi.org/10.1088/1748-9326/10/5/054010
Martins, N. R., & Carrilho da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42(July), 259–275. https://doi.org/10.1016/j.scs.2018.07.011
MinAmbiente. (2020). Gobierno Nacional presenta el estado de la calidad del aire en Colombia y la primera Estrategia Nacional de Calidad del Aire del país. Medellín, Colombia.
Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2008). Manual de Operación de Sistemas de Vigilancia de la Calidad del aire, 287.
Mohammadyan, M., & Shabankhani, B. (2013). Indoor PM1, PM2.5, PM10 and outdoor PM2.5concentrations in primary schools in sari, Iran. Arhiv Za Higijenu Rada i Toksikologiju, 64(3), 371–377. https://doi.org/10.2478/10004-1254-64-2013-2346
Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116(April), 286–299. https://doi.org/10.1016/j.envint.2018.04.018
Moya, J., Bearer, C. F., & Etzel, R. a. (2004). Children’s Behavior and Physiology and How It Affects Exposure to Environmental Contaminants. Pediatrics, 113(4), 996–1006. https://doi.org/10.1542/peds.113.4.S1.996
Ocampo-Giraldo, D. M., Gonzalez-Calderon, C. A., & Posada-Henao, J. J. (2019). Assessment of trucking bans in urban areas as a strategy to reduce air pollution. Journal of Transport and Health, 14. https://doi.org/10.1016/j.jth.2019.100589
Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Morais, S. (2016). Assessment of air quality in preschool environments (3-5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environmental Pollution, 214, 430–439. https://doi.org/10.1016/j.envpol.2016.04.046
OMS. (2018a). Calidad del aire ambiente (exterior) y salud. Retrieved May 6, 2019, from https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-andhealth
OMS. (2018b). Exposure to ambient air pollution from particulate matter for 2016, (April), 6.
OMS. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.p df;jsessionid=B55CAE781E549453492E4D7D1EDAA4DA?sequence=1
Othman, M., Latif, M. T., & Matsumi, Y. (2019). The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotoxicology and Environmental Safety, 170(December 2018), 739–749. https://doi.org/10.1016/j.ecoenv.2018.12.042
Pateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The role of meteorology on different sized aerosol fractions (PM 10, PM 2.5, PM 2.5-10). Science of the Total Environment, 419, 124–135. https://doi.org/10.1016/j.scitotenv.2011.12.064
PurpleAir. (n.d.-a). How do PurpleAir sensors work?
PurpleAir. (n.d.-b). PurpleAir PA-II-SD.
Qu, Y., Wang, H., Zhu, L., & Ji, J. (2017). Concentration Distribution and Control strategy of Indoor PM2.5. Procedia Engineering, 205, 1606–1611. https://doi.org/10.1016/J.PROENG.2017.10.288
Reche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., … Querol, X. (2015). Real-time indoor and outdoor measurements of black carbon at primary schools. Atmospheric Environment, 120, 417–426. https://doi.org/10.1016/j.atmosenv.2015.08.044
Richmond-Bryant, J., Saganich, C., Bukiewicz, L., & Kalin, R. (2009). Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2009.01.046
Rivas, I., Viana, M., Moreno, T., Bouso, L., Pandolfi, M., Alvarez-Pedrerol, M., … Querol, X. (2015). Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 106, 129–138. https://doi.org/10.1016/j.atmosenv.2015.01.055
Rivas, I., Viana, M., Moreno, T., Pandolfi, M., Amato, F., Reche, C., … Querol, X. (2014). Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 69, 200–212. https://doi.org/10.1016/j.envint.2014.04.009
Rojas, N., & Galvis, B. (2005). Relación entre PM2.5 y PM10 en la ciudad de Bogotá. Revista de Ingeniería, (22), 54–60. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932005000200006
Romero, H., Irarrázaval, F., Opazo, D., Salgado, M., & Smith, P. (2010). Climas Urbanos y Contaminación Atmosférica en Santiago de Chile. Eure, 36(109), 35–62. https://doi.org/10.4067/s0250-71612010000300002
Ryu, J., Kim, J. J., Byeon, H., Go, T., & Lee, S. J. (2019). Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environmental Pollution, 245, 253–259. https://doi.org/10.1016/j.envpol.2018.11.004
Sayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., … Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution, 255. https://doi.org/10.1016/j.envpol.2019.113131
South Coast AQMD. (n.d.). PurpleAir PA-II. Retrieved June 10, 2019, from https://www.aqmd.gov/aq-spec/product/purpleair-pa-ii
Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060
Targino, A. C., Gibson, M. D., Krecl, P., Rodrigues, M. V. C., dos Santos, M. M., & de Paula Corrêa, M. (2016). Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, 218, 475–486. https://doi.org/10.1016/j.envpol.2016.07.027
Tiwari, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., & Attri, S. D. (2013). Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125–126, 50–62. https://doi.org/10.1016/j.atmosres.2013.01.011
Tryner, J., L’Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., & Volckens, J. (2020). Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmospheric Environment, 220(October 2019), 117067. https://doi.org/10.1016/j.atmosenv.2019.117067UNICEF. (2016). Clear the air for children: The impact of air pollution on children. Retrieved from www.unicef.org/environment
Wang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101. https://doi.org/10.3390/ijerph120809089
Watson, J. G., & Chow, J. (1998). Guideline on speciated particulate monitoring. U.S. Environmental Protection Agency. Retrieved from https://www.researchgate.net/publication/235341487_Guideline_On_Speciated_Particulate _Monitoring
Wichmann, J., Lind, T., Nilsson, M. A. M., & Bellander, T. (2010). PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmospheric Environment, 44(36), 4536–4544. https://doi.org/10.1016/j.atmosenv.2010.08.023
Wilson, W. E., & Brauer, M. (2006). Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. Journal of Exposure Science & Environmental Epidemiology, 16(3), 264–274. https://doi.org/10.1038/sj.jes.7500483
Xu, H., Guinot, B., Shen, Z., Ho, K. F., Niu, X., Xiao, S., … Cao, J. (2015). Characteristics of organic and elemental carbon in PM2.5 and PM0.25 in indoor and outdoor environments of a middle school: Secondary formation of organic carbon and sources identification. Atmosphere, 6(3), 361–379. https://doi.org/10.3390/atmos6030361
Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., & Diaz Suarez, M. V. (2018). Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM2.5 pollution in a mid-size South American city. Atmospheric Pollution Research, 9(1), 66–75. https://doi.org/10.1016/j.apr.2017.07.001
Zhang, C., Ni, Z., & Ni, L. (2015). Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Physica A: Statistical Mechanics and Its Applications, 438, 114–123. https://doi.org/10.1016/j.physa.2015.06.039
Zhang, L., Morisaki, H., Wei, Y., Li, Z., Yang, L., Zhou, Q., … Tang, N. (2019). Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environmental Pollution, 255, 113147. https://doi.org/10.1016/j.envpol.2019.113147
Zwoździak, A., Sówka, I., Krupińska, B., Zwoździak, J., & Nych, A. (2013). Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland? Building and Environment, 66, 173–180. https://doi.org/10.1016/j.buildenv.2013.04.023
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.publisher.program.spa.fl_str_mv Ingeniería Ambiental
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0cbc97ed-7a24-4483-8349-babde3b99a70/download
https://repositorio.cuc.edu.co/bitstreams/ce9b7080-70f9-4d14-97a9-c883351bce25/download
https://repositorio.cuc.edu.co/bitstreams/d2da5b1c-77f9-4037-b729-cb8c53ee0eef/download
https://repositorio.cuc.edu.co/bitstreams/1fa6a95f-3eac-4401-974d-700f9650bee5/download
https://repositorio.cuc.edu.co/bitstreams/b72a61e1-fee1-4414-bbc6-a4044e8f0d5b/download
https://repositorio.cuc.edu.co/bitstreams/dbeba138-1875-41d9-a977-b7bc4f57261c/download
bitstream.checksum.fl_str_mv 5cbefbb1b75f38ef215f3643c84bb09c
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
b26fd9fcf3d12148397402ab1d1e0f89
b26fd9fcf3d12148397402ab1d1e0f89
ae21431c1df545d2c00cf68ab72df553
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760832577536000
spelling Schneider, IsmaelBaena Hamburger, JulioCampo Morales, Melissa2020-08-11T20:59:41Z2020-08-11T20:59:41Z2020Baena, J. y Campo, M. (2020). Evaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, Atlántico. Trabajo de Pregrado. Recuperado de https://hdl.handle.net/11323/6905https://hdl.handle.net/11323/6905Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Exposure to contaminated environments has important health repercussions, especially for vulnerable groups such as children. The purpose of this study is to evaluate the concentrations of PM2.5 particulate matter in two educational institutions (EI) in both indoor and outdoor environments. During the period between June and October 2019, the concentrations were evaluated by means of low-cost PA-II-SD sensors from PurpleAir, which were validated and calibrated by parallel measurements with the Teledyne model T640X reference equipment. The PM2.5 average concentrations for the EIA were 14.46 and 17.26 µg/m3 and for the EIB of 19.18 and 18.95 µg/m3 in internal and external environments, respectively. Ventilation processes, classroom activity and vehicular traffic were the factors that most affected variations in concentrations. The Indoor/Outdoor relations at PM2.5 levels demonstrate that the EIA is less affected by external concentrations (I/O = 0.83), while the EIB has equal concentrations for both environments (I/O = 1.01). These variations are related to the location (being EIA in an urban background area and EIB an area close to the traffic influence) and the architectural conditions of the buildings evaluated. Likewise, significant differences were observed between working and non-working days and between the conditions of occupation of the classrooms. The results indicate the need to evaluate each EI individually, assuring a good air quality to children.La exposición a ambientes contaminados trae repercusiones importantes a la salud, sobre todo a grupos vulnerables como los niños. El presente estudio tiene como finalidad evaluar las concentraciones de material particulado PM2.5 en dos instituciones educativas (IEA y IEB) en ambientes interiores y exteriores. Las concentraciones fueron evaluadas por medio de sensores de bajo costo PA-II-SD de la empresa PurpleAir, los cuales fueron validados y calibrados por mediciones paralelas con el equipo de referencia Teledyne modelo T640X. El periodo de muestreo comprendió entre junio y octubre de 2019. Las concentraciones promedio de PM2.5 para la IEA fueron de 14,46 y 17,26 µg/m3 y para la IEB de 19,18 y 18,95 µg/m3 en ambientes internos y externos, respectivamente. Los procesos de ventilación, la actividad de las aulas y el tráfico vehicular fueron los factores que más afectaron las variaciones en las concentraciones. Las relaciones Interior/Exterior en los niveles de PM2.5 demuestran que la IEA es menos afectada por las concentraciones externas (I/E = 0,83), mientras la IEB presenta concentraciones iguales para los dos ambientes (I/E = 1,01). Estas variaciones están relacionadas con la ubicación (siendo IEA en un área de fondo urbano e IEB un área cercana a la influencia del tráfico) y las condiciones arquitectónicas de las edificaciones evaluadas. Igualmente fueron observadas diferencias significativas entre los días hábiles y no hábiles y entre las condiciones de ocupación de las aulas. Los resultados indican la necesidad de evaluar cada IE individualmente, para garantizar una buena calidad de aire a los niños.spaCorporación Universidad de la CostaIngeniería AmbientalAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2SchoolExposureParticulate matterPM2.5Low cost sensorEscuelaExposiciónMaterial particuladoPM2.5Sensor de bajo costoEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla, AtlánticoTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionAdgate, J. L., Ramachandran, G., Pratt, G. C., Waller, L. A., & Sexton, K. (2003). Longitudinal variability in outdoor, indoor, and personal PM2.5 exposure in healthy non-smoking adults. Atmospheric Environment, 37(7), 993–1002. https://doi.org/10.1016/S1352-2310(02)00978- 0Akyüz, M., & Çabuk, H. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials, 170(1), 13–21. https://doi.org/10.1016/j.jhazmat.2009.05.029Alcaldía de Barranquilla. (2020). Informe general oficina de registro de tránsito. Barranquilla.Alcaldía de Barranquilla. (2012). DTS. Libro I: Componente General Plan de Ordenamiento Territorial Distrito Especial, Industrial y Porturario de Barranquilla, 1–407.Alcaldía de Barranquilla. (2016). Barranquilla dispone de 3 estaciones de monitoreo de calidad de aire. Retrieved from https://www.barranquilla.gov.co/mi-barranquilla/barranquilladispone-de-3-estaciones-de-monitoreo-de-calidad-de-aireAllen, R. W., Mar, T., Koenig, J., Liu, L.-J. S., Gould, T., Simpson, C., & Larson, T. (2008). Changes in Lung Function and Airway Inflammation Among Asthmatic Children Residing in a Woodsmoke-Impacted Urban Area. Inhalation Toxicology, 20(4), 423–433. https://doi.org/10.1080/08958370801903826Almeida, S. M., Canha, N., Silva, A., Do Carmo Freitas, M., Pegas, P., Alves, C., … Pio, C. A. (2011). Children exposure to atmospheric particles in indoor of Lisbon primary schools. Atmospheric Environment, 45(40), 7594–7599. https://doi.org/10.1016/j.atmosenv.2010.11.052Amato, F., Rivas, I., Viana, M., Moreno, T., Bouso, L., Reche, C., … Querol, X. (2014). Sources of indoor and outdoor PM2.5 concentrations in primary schools. Science of the Total Environment, 490, 757–765. https://doi.org/10.1016/j.scitotenv.2014.05.051Arciniégas, C. (2012). Diagnóstico y control de material particulado: partículas suspendidas totales y fracción respirable PM10. Luna Azul, (34), 195–213. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1909-24742012000100012Baklanov, A., Molina, L. T., & Gauss, M. (2016). Megacities, air quality and climate. Atmospheric Environment, 126, 235–249. https://doi.org/10.1016/j.atmosenv.2015.11.059Barnett, A. G., Williams, G. M., Schwartz, J., Neller, A. H., Best, T. L., Petroeschevsky, A. L., & Simpson, R. W. (2005). Air Pollution and Child Respiratory Health. American Journal of Respiratory and Critical Care Medicine, 171(11), 1272–1278. https://doi.org/10.1164/rccm.200411-1586OCBarranquilla Verde. (2018). Informe anual de calidad de aire de barranquilla.Barría, R. M., Calvo, M., & Pino, P. (2016). Contaminación intradomiciliaria por material particulado fino (MP2,5) en hogares de recién nacidos. Revista Chilena de Pediatría, 87(5), 343–350. https://doi.org/10.1016/J.RCHIPE.2016.04.007Bi, D., Qiu, Y., Cheng, H., Zhou, Q., Liu, X., Chen, J., … Zhu, Z. (2018). Seasonal characteristics of indoor and outdoor fine particles and their metallic compositions in Nanjing, China. Building and Environment, 137, 118–126. https://doi.org/10.1016/j.buildenv.2018.04.008Bi, J., Stowell, J., Seto, E. Y. W., English, P. B., Al-Hamdan, M. Z., Kinney, P. L., … Liu, Y. (2020). Contribution of low-cost sensor measurements to the prediction of PM2.5 levels: A case study in Imperial County, California, USA. Environmental Research, 180(August 2019), 108810. https://doi.org/10.1016/j.envres.2019.108810Brockmeyer, S., & D’Angiulli, A. (2016). How air pollution alters brain development: The role of neuroinflammation. Translational Neuroscience, 7(1), 24–30. https://doi.org/10.1515/tnsci-2016-0005Brokamp, C., Rao, M. B., Fan, Z., & Ryan, P. H. (2015). Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmospheric Environment, 101, 226–234. https://doi.org/10.1016/j.atmosenv.2014.11.022Canha, N., Mandin, C., Ramalho, O., Wyart, G., Ribéron, J., Dassonville, C., … Derbez, M. (2016). Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France. Indoor Air, 26(3), 350–365. https://doi.org/10.1111/ina.12222Carrion-Matta, A., Kang, C. M., Gaffin, J. M., Hauptman, M., Phipatanakul, W., Koutrakis, P., & Gold, D. R. (2019). Classroom indoor PM2.5 sources and exposures in inner-city schools. Environment International, 131(July), 104968. https://doi.org/10.1016/j.envint.2019.104968Chatzidiakou, L., Mumovic, D., & Summerfield, A. J. (2012). What do we know about indoor air quality in school classrooms? A critical review of the literature. Intelligent Buildings International, 4(4), 228–259. https://doi.org/10.1080/17508975.2012.725530Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., … Zhang, R. (2015). PM2.5and PM10-2.5chemical composition and source apportionment near a Hong Kong roadway. Particuology. https://doi.org/10.1016/j.partic.2013.10.003Contreras, R., Gidhagen, L., & Moreno, J. J. V. (2019). New monitoring methods of particulate material for the study of air quality. Conference Proceedings - Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Publica, CASAP 2019, 50(6), 3–6. https://doi.org/10.1109/CASAP.2019.8916757DANE. (2019). Resultados Censo Nacional de Población y Vivienda 2018. Barranquilla.Domiguez, L. G. I., Alonso, E. J. H., Guarnizo, J. A. C., Carrillo, J. A., & Guativa, J. A. V. (2019). Monitoreo de material particulado PM10 y PM2.5 en la ciudad de Villavicencio. In Conference Proceedings - Congreso Colombiano y Conferencia Internacional de Calidad de Aire y Salud Publica, CASAP 2019 (pp. 8–12). https://doi.org/10.1109/CASAP.2019.8916702Echeverri Londoño, C., & Maya Vasco, G. (2008). Relación entre las partículas finas (PM 2.5) y respirables PM 10) en la ciudad de Medellín. Revista de Ingenierías: Universidad de Medellín, 7(12), 23–42.Elbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., & Al Madhoun, W. (2013). Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms. https://doi.org/10.1016/j.atmosenv.2013.07.067Elbayoumi, M., Ramli, N. A., Md Yusof, N. F. F., Yahaya, A. S. Bin, Al Madhoun, W., & UlSaufie, A. Z. (2014). Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings. Atmospheric Environment, 94, 11–21. https://doi.org/10.1016/j.atmosenv.2014.05.007Feenstra, B., Papapostolou, V., Hasheminassab, S., Zhang, H., Boghossian, B. Der, Cocker, D., & Polidori, A. (2019). Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmospheric Environment, 216(February), 116946. https://doi.org/10.1016/j.atmosenv.2019.116946Fromme, H., Diemer, J., Dietrich, S., Cyrys, J., Heinrich, J., Lang, W., … Twardella, D. (2008). Chemical and morphological properties of particulate matter (PM10, PM2.5) in school classrooms and outdoor air. Atmospheric Environment, 42(27), 6597–6605. https://doi.org/10.1016/j.atmosenv.2008.04.047Gao, M., Cao, J., & Seto, E. (2015). A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environmental Pollution, 199, 56–65. https://doi.org/10.1016/j.envpol.2015.01.013Gobernación del Atlántico. (2016). Plan de Desarrollo 2016 - 2019 de la gobernación del Atlántico “Atlántico Líder.” Gobernación Del Atlántico, 132.Grineski, S. E., & Collins, T. W. (2018). Geographic and social disparities in exposure to air neurotoxicants at U.S. public schools. Environmental Research, 161(September 2017), 580– 587. https://doi.org/10.1016/j.envres.2017.11.047Guo, H., Morawska, L., He, C., Zhang, Y. L., Ayoko, G., & Cao, M. (2010). Characterization of particle number concentrations and PM2.5 in a school: Influence of outdoor air pollution on indoor air. Environmental Science and Pollution Research (Vol. 17). https://doi.org/10.1007/s11356-010-0306-2Halek, F., Kianpour-Rad, M., & Kavousirahim, A. (2013). Parametric evaluation of indoor particulate matters in elementary schools in the central parts of Tehran. Indoor and Built Environment, 22(3), 580–585. https://doi.org/10.1177/1420326X11433224Han, Y., Li, X., Zhu, T., Lv, D., Chen, Y., Hou, an, … Ren, M. (2016). Characteristics and Relationships between Indoor and Outdoor PM 2.5 in Beijing: A Residential Apartment Case Study. Aerosol and Air Quality Research, 16, 2386–2395. https://doi.org/10.4209/aaqr.2015.12.0682Hasheminassab, S., Daher, N., Shafer, M. M., Schauer, J. J., Delfino, R. J., & Sioutas, C. (2014). Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2014.05.044Hatzopoulou, M., Weichenthal, S., Dugum, H., Pickett, G., Miranda-Moreno, L., Kulka, R., … Goldberg, M. (2013). The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. Journal of Exposure Science and Environmental Epidemiology, 23(1), 46–51. https://doi.org/10.1038/jes.2012.85IDEAM. (n.d.). Calidad del aire. Retrieved May 6, 2019, from http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/calidad-del-aireJanssen, N. A. H., Van Vliet, P. H. N., Aarts, F., Harssema, H., & Brunekreef, B. (2001). Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment, 35(22), 3875–3884. https://doi.org/10.1016/S1352- 2310(01)00144-3Ji, W., & Zhao, B. (2015). Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: A model-based estimation. Building and Environment, 90, 196–205. https://doi.org/10.1016/J.BUILDENV.2015.04.006Kalimeri, K. K., Bartzis, J. G., Sakellaris, I. A., & de Oliveira Fernandes, E. (2019). Investigation of the PM2.5, NO2 and O3 I/O ratios for office and school microenvironments. Environmental Research, 179(2), 1–8. https://doi.org/10.1016/j.envres.2019.108791Karagulian, F., Belis, C. A., Dora, C. F. C., Prüss-Ustün, A. M., Bonjour, S., Adair-Rohani, H., & Amann, M. (2015). Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmospheric Environment. Elsevier Ltd. https://doi.org/10.1016/j.atmosenv.2015.08.087Koenig, J. Q., Mar, T. F., Allen, R. W., Jansen, K., Lumley, T., Sullivan, J. H., … Liu, L.-J. S. (2005). Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environmental Health Perspectives, 113(4), 499–503. https://doi.org/10.1289/EHP.7511Kouyoumdjian, H., & Saliba, N. A. (2006). Mass concentration and ion composition of coarse and fine particles in an urban area in Beirut: Effect of calcium carbonate on the absorption of nitric and sulfuric acids and the depletion of chloride. Atmospheric Chemistry and Physics, 6(7), 1865–1877. https://doi.org/10.5194/acp-6-1865-2006Larsen, B. (2003). Hygiene and Health in Developing Countries: Defining Priorities through Cost-Benefit Assessments. International journal of environmental health research (Vol. 13). Carfax publishing company. Retrieved from https://www.tib.eu/de/suchen/id/BLSE%3ARN132305857/Hygiene-and-health-indeveloping-countries-defining/Li, H., Qin, Y., & Feng, G. (2017). The analysis of PM2.5 Outdoor Fine Particulate Matter Impact on Air Quality in the University Libraries Reading Room in Winter of North China. Procedia Engineering, 205, 3346–3352. https://doi.org/10.1016/J.PROENG.2017.09.836Li, J., Zhang, H., Chao, C., Chien, C., Wu, C., Heng, C., … Biswas, P. (2020a). Integrating lowcost air quality sensor networks with fixed and satellite monitoring systems to study ground-level PM2.5. Atmospheric Environment, 223(December 2019), 117293. https://doi.org/10.1016/j.atmosenv.2020.117293Li, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., … Wang, Y. (2020b). Exploring the regional pollution characteristics and meteorological formation mechanism of PM2.5 in North China during 2013–2017. Environment International, 134(November 2019), 105283. https://doi.org/10.1016/j.envint.2019.105283Liang, C. S., Duan, F. K., He, K. Bin, & Ma, Y. L. (2016). Review on recent progress in observations, source identifications and countermeasures of PM 2.5. Environment International, 86, 150–170. https://doi.org/10.1016/j.envint.2015.10.016Lillibridge, S. (2000). Manejo de los aspectos de salud ambiental en los desastres: agua, excretas humanas y albergues. Impacto De Los Desastres en la Salud PublicaLv, Y., Wang, H., Wei, S., Zhang, L., & Zhao, Q. (2017). The Correlation between Indoor and Outdoor Particulate Matter of Different Building Types in Daqing, China. Procedia Engineering, 205, 360–367. https://doi.org/10.1016/j.proeng.2017.10.002MacNeill, M., Wallace, L., Kearney, J., Allen, R. W., Van Ryswyk, K., Judek, S., … Wheeler, A. (2012). Factors influencing variability in the infiltration of PM 2.5 mass and its components. Atmospheric Environment, 61, 518–532. https://doi.org/10.1016/j.atmosenv.2012.07.005Majd, E., McCormack, M., Davis, M., Curriero, F., Berman, J., Connolly, F., … Koehler, K. (2019). Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environmental Research, 170(November 2018), 83–91. https://doi.org/10.1016/j.envres.2018.12.012Marlier, M. E., Defries, R. S., Kim, P. S., Gaveau, D. L. A., Koplitz, S. N., Jacob, D. J., … Myers, S. S. (2015). Regional air quality impacts of future fire emissions in Sumatra and Kalimantan. Environ. Res. Lett, 10, 54010. https://doi.org/10.1088/1748-9326/10/5/054010Martins, N. R., & Carrilho da Graça, G. (2018). Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 42(July), 259–275. https://doi.org/10.1016/j.scs.2018.07.011MinAmbiente. (2020). Gobierno Nacional presenta el estado de la calidad del aire en Colombia y la primera Estrategia Nacional de Calidad del Aire del país. Medellín, Colombia.Ministerio de Ambiente Vivienda y Desarrollo Territorial. (2008). Manual de Operación de Sistemas de Vigilancia de la Calidad del aire, 287.Mohammadyan, M., & Shabankhani, B. (2013). Indoor PM1, PM2.5, PM10 and outdoor PM2.5concentrations in primary schools in sari, Iran. Arhiv Za Higijenu Rada i Toksikologiju, 64(3), 371–377. https://doi.org/10.2478/10004-1254-64-2013-2346Morawska, L., Thai, P. K., Liu, X., Asumadu-Sakyi, A., Ayoko, G., Bartonova, A., … Williams, R. (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: How far have they gone? Environment International, 116(April), 286–299. https://doi.org/10.1016/j.envint.2018.04.018Moya, J., Bearer, C. F., & Etzel, R. a. (2004). Children’s Behavior and Physiology and How It Affects Exposure to Environmental Contaminants. Pediatrics, 113(4), 996–1006. https://doi.org/10.1542/peds.113.4.S1.996Ocampo-Giraldo, D. M., Gonzalez-Calderon, C. A., & Posada-Henao, J. J. (2019). Assessment of trucking bans in urban areas as a strategy to reduce air pollution. Journal of Transport and Health, 14. https://doi.org/10.1016/j.jth.2019.100589Oliveira, M., Slezakova, K., Delerue-Matos, C., Pereira, M. C., & Morais, S. (2016). Assessment of air quality in preschool environments (3-5 years old children) with emphasis on elemental composition of PM10 and PM2.5. Environmental Pollution, 214, 430–439. https://doi.org/10.1016/j.envpol.2016.04.046OMS. (2018a). Calidad del aire ambiente (exterior) y salud. Retrieved May 6, 2019, from https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-andhealthOMS. (2018b). Exposure to ambient air pollution from particulate matter for 2016, (April), 6.OMS. (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. Retrieved from http://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.p df;jsessionid=B55CAE781E549453492E4D7D1EDAA4DA?sequence=1Othman, M., Latif, M. T., & Matsumi, Y. (2019). The exposure of children to PM2.5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotoxicology and Environmental Safety, 170(December 2018), 739–749. https://doi.org/10.1016/j.ecoenv.2018.12.042Pateraki, S., Asimakopoulos, D. N., Flocas, H. A., Maggos, T., & Vasilakos, C. (2012). The role of meteorology on different sized aerosol fractions (PM 10, PM 2.5, PM 2.5-10). Science of the Total Environment, 419, 124–135. https://doi.org/10.1016/j.scitotenv.2011.12.064PurpleAir. (n.d.-a). How do PurpleAir sensors work?PurpleAir. (n.d.-b). PurpleAir PA-II-SD.Qu, Y., Wang, H., Zhu, L., & Ji, J. (2017). Concentration Distribution and Control strategy of Indoor PM2.5. Procedia Engineering, 205, 1606–1611. https://doi.org/10.1016/J.PROENG.2017.10.288Reche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., … Querol, X. (2015). Real-time indoor and outdoor measurements of black carbon at primary schools. Atmospheric Environment, 120, 417–426. https://doi.org/10.1016/j.atmosenv.2015.08.044Richmond-Bryant, J., Saganich, C., Bukiewicz, L., & Kalin, R. (2009). Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2009.01.046Rivas, I., Viana, M., Moreno, T., Bouso, L., Pandolfi, M., Alvarez-Pedrerol, M., … Querol, X. (2015). Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment, 106, 129–138. https://doi.org/10.1016/j.atmosenv.2015.01.055Rivas, I., Viana, M., Moreno, T., Pandolfi, M., Amato, F., Reche, C., … Querol, X. (2014). Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environment International, 69, 200–212. https://doi.org/10.1016/j.envint.2014.04.009Rojas, N., & Galvis, B. (2005). Relación entre PM2.5 y PM10 en la ciudad de Bogotá. Revista de Ingeniería, (22), 54–60. Retrieved from http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-49932005000200006Romero, H., Irarrázaval, F., Opazo, D., Salgado, M., & Smith, P. (2010). Climas Urbanos y Contaminación Atmosférica en Santiago de Chile. Eure, 36(109), 35–62. https://doi.org/10.4067/s0250-71612010000300002Ryu, J., Kim, J. J., Byeon, H., Go, T., & Lee, S. J. (2019). Removal of fine particulate matter (PM2.5) via atmospheric humidity caused by evapotranspiration. Environmental Pollution, 245, 253–259. https://doi.org/10.1016/j.envpol.2018.11.004Sayahi, T., Kaufman, D., Becnel, T., Kaur, K., Butterfield, A. E., Collingwood, S., … Kelly, K. E. (2019). Development of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environmental Pollution, 255. https://doi.org/10.1016/j.envpol.2019.113131South Coast AQMD. (n.d.). PurpleAir PA-II. Retrieved June 10, 2019, from https://www.aqmd.gov/aq-spec/product/purpleair-pa-iiTai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984. https://doi.org/10.1016/j.atmosenv.2010.06.060Targino, A. C., Gibson, M. D., Krecl, P., Rodrigues, M. V. C., dos Santos, M. M., & de Paula Corrêa, M. (2016). Hotspots of black carbon and PM2.5 in an urban area and relationships to traffic characteristics. Environmental Pollution, 218, 475–486. https://doi.org/10.1016/j.envpol.2016.07.027Tiwari, S., Srivastava, A. K., Bisht, D. S., Parmita, P., Srivastava, M. K., & Attri, S. D. (2013). Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmospheric Research, 125–126, 50–62. https://doi.org/10.1016/j.atmosres.2013.01.011Tryner, J., L’Orange, C., Mehaffy, J., Miller-Lionberg, D., Hofstetter, J. C., Wilson, A., & Volckens, J. (2020). Laboratory evaluation of low-cost PurpleAir PM monitors and in-field correction using co-located portable filter samplers. Atmospheric Environment, 220(October 2019), 117067. https://doi.org/10.1016/j.atmosenv.2019.117067UNICEF. (2016). Clear the air for children: The impact of air pollution on children. Retrieved from www.unicef.org/environmentWang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health, 12(8), 9089–9101. https://doi.org/10.3390/ijerph120809089Watson, J. G., & Chow, J. (1998). Guideline on speciated particulate monitoring. U.S. Environmental Protection Agency. Retrieved from https://www.researchgate.net/publication/235341487_Guideline_On_Speciated_Particulate _MonitoringWichmann, J., Lind, T., Nilsson, M. A. M., & Bellander, T. (2010). PM2.5, soot and NO2 indoor-outdoor relationships at homes, pre-schools and schools in Stockholm, Sweden. Atmospheric Environment, 44(36), 4536–4544. https://doi.org/10.1016/j.atmosenv.2010.08.023Wilson, W. E., & Brauer, M. (2006). Estimation of ambient and non-ambient components of particulate matter exposure from a personal monitoring panel study. Journal of Exposure Science & Environmental Epidemiology, 16(3), 264–274. https://doi.org/10.1038/sj.jes.7500483Xu, H., Guinot, B., Shen, Z., Ho, K. F., Niu, X., Xiao, S., … Cao, J. (2015). Characteristics of organic and elemental carbon in PM2.5 and PM0.25 in indoor and outdoor environments of a middle school: Secondary formation of organic carbon and sources identification. Atmosphere, 6(3), 361–379. https://doi.org/10.3390/atmos6030361Zalakeviciute, R., Rybarczyk, Y., López-Villada, J., & Diaz Suarez, M. V. (2018). Quantifying decade-long effects of fuel and traffic regulations on urban ambient PM2.5 pollution in a mid-size South American city. Atmospheric Pollution Research, 9(1), 66–75. https://doi.org/10.1016/j.apr.2017.07.001Zhang, C., Ni, Z., & Ni, L. (2015). Multifractal detrended cross-correlation analysis between PM2.5 and meteorological factors. Physica A: Statistical Mechanics and Its Applications, 438, 114–123. https://doi.org/10.1016/j.physa.2015.06.039Zhang, L., Morisaki, H., Wei, Y., Li, Z., Yang, L., Zhou, Q., … Tang, N. (2019). Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environmental Pollution, 255, 113147. https://doi.org/10.1016/j.envpol.2019.113147Zwoździak, A., Sówka, I., Krupińska, B., Zwoździak, J., & Nych, A. (2013). Infiltration or indoor sources as determinants of the elemental composition of particulate matter inside a school in Wrocław, Poland? Building and Environment, 66, 173–180. https://doi.org/10.1016/j.buildenv.2013.04.023PublicationORIGINALEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdfEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdfapplication/pdf5106379https://repositorio.cuc.edu.co/bitstreams/0cbc97ed-7a24-4483-8349-babde3b99a70/download5cbefbb1b75f38ef215f3643c84bb09cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/ce9b7080-70f9-4d14-97a9-c883351bce25/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d2da5b1c-77f9-4037-b729-cb8c53ee0eef/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdf.jpgEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdf.jpgimage/jpeg33612https://repositorio.cuc.edu.co/bitstreams/1fa6a95f-3eac-4401-974d-700f9650bee5/downloadb26fd9fcf3d12148397402ab1d1e0f89MD54THUMBNAILEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdf.jpgEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdf.jpgimage/jpeg33612https://repositorio.cuc.edu.co/bitstreams/b72a61e1-fee1-4414-bbc6-a4044e8f0d5b/downloadb26fd9fcf3d12148397402ab1d1e0f89MD54TEXTEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdf.txtEvaluación de las concentraciones internas y externas de material particulado PM2.5 en dos instituciones educativas de la ciudad de Barranquilla.pdf.txttext/plain219481https://repositorio.cuc.edu.co/bitstreams/dbeba138-1875-41d9-a977-b7bc4f57261c/downloadae21431c1df545d2c00cf68ab72df553MD5511323/6905oai:repositorio.cuc.edu.co:11323/69052024-09-17 14:07:22.588http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==