Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution

Having a better understanding of air pollutants in railway systems is crucial to ensure a clean public transport. This study measured, for the first time in Brazil, nanoparticles (NPs) and black carbon (BC) on two ground-level platforms and inside trains of the Metropolitan Area of Porto Alegre (MAP...

Full description

Autores:
Lima, Bianca D.
Teixeira, Elba C.
Hower, James C.
Civeira, Matheus S.
Ramírez, Omar
Yang, Xue-cheng
Silva Oliveira, Marcos Leandro
Silva Oliveira, Luis Felipe
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7676
Acceso en línea:
https://hdl.handle.net/11323/7676
https://doi.org/10.1016/j.gsf.2020.12.010
https://repositorio.cuc.edu.co/
Palabra clave:
Nanoparticles
Potential hazardous elements
Environmental chemistry
Human health
Railway environment
Indoor air quality
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_0c2cfae2c22e57316b9480034446aab4
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7676
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
title Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
spellingShingle Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
Nanoparticles
Potential hazardous elements
Environmental chemistry
Human health
Railway environment
Indoor air quality
title_short Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
title_full Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
title_fullStr Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
title_full_unstemmed Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
title_sort Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution
dc.creator.fl_str_mv Lima, Bianca D.
Teixeira, Elba C.
Hower, James C.
Civeira, Matheus S.
Ramírez, Omar
Yang, Xue-cheng
Silva Oliveira, Marcos Leandro
Silva Oliveira, Luis Felipe
dc.contributor.author.spa.fl_str_mv Lima, Bianca D.
Teixeira, Elba C.
Hower, James C.
Civeira, Matheus S.
Ramírez, Omar
Yang, Xue-cheng
Silva Oliveira, Marcos Leandro
Silva Oliveira, Luis Felipe
dc.subject.spa.fl_str_mv Nanoparticles
Potential hazardous elements
Environmental chemistry
Human health
Railway environment
Indoor air quality
topic Nanoparticles
Potential hazardous elements
Environmental chemistry
Human health
Railway environment
Indoor air quality
description Having a better understanding of air pollutants in railway systems is crucial to ensure a clean public transport. This study measured, for the first time in Brazil, nanoparticles (NPs) and black carbon (BC) on two ground-level platforms and inside trains of the Metropolitan Area of Porto Alegre (MAPA). An intense sampling campaign during thirteen consecutive months was carried out and the chemical composition of NPs was examined by advanced microscopy techniques. The results showed that highest concentrations of the pollutants occur in colder seasons and influenced by variables such as frequency of the trains and passenger densities. Also, internal and external sources of pollution at the stations were identified. The predominance of NPs enriched with metals that increase oxidative stress like Cd, Fe, Pb, Cr, Zn, Ni, V, Hg, Sn, and Ba both on the platforms and inside trains, including Fe-minerals as hematite and magnetite, represents a critical risk to the health of passengers and employees of the system. This interdisciplinary and multi-analytical study aims to provide an improved understanding of reported adverse health effects induced by railway system aerosols.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-12T17:04:25Z
dc.date.available.none.fl_str_mv 2021-01-12T17:04:25Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1674-9871
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7676
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.gsf.2020.12.010
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1674-9871
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7676
https://doi.org/10.1016/j.gsf.2020.12.010
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Aarnio, P., Yli-Tuomi, T., 2005. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 39, 5059–5066.
Abbasi, S., Wahlström, J., Olander, L., Larsson, Ch., Olofsson, U., Sellgren, U., 2011. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 273, 93–99.
Abbasi, S., Jansson, A., Sellgren, U., Olofsson, U., 2013. Particle emissions from rail traffic: a literature review. Crit. Rev. Env. Sci. Tec. 43, 2511–2544.
Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.
Bolognin, S., Messori, L., Zatta, P., 2009. Metal ion physiopathology in neurodegenerative disorders. Neuromol. Med. 11, 223–238.
Cartenì, A., Cascetta, F., Campana, S., 2015. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 101, 328–337.
Cepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, Ch., Dhana, K., Bramer, W., Franco, O., 2017. Levels of ambient air pollution according to mode of transport: a systematic review. The Lancet Public Health 2, 23–34.
Cerletti, P., Eze, I.C., Schaffner, E., Imboden, M., Probst-Hensch, N., 2020. The independent association of source-specific transportation noise exposure, noise annoyance and noise sensitivity with health-related quality of life. Environ. Int. 143, 105960.
Cha, Y., Tu, M., Elmgren, M., Silvergren, S., Olofsson, U., 2018. Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles. Environ. Res. 166, 16–24.
Chen, X.C., Zhang, Z.S., Engling, G., Zhang, R.J., Tao, J., Lin, M., 2014. Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmos. Pollut. Res. 5, 361–370.
Chen, X.C., Cao, J.J., Ward, T.J., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci. Total Environ. 742, 140501.
Civeira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2016. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.
CNT - National Confederation of Transport, 2014. Statistical report March 2014. https:// web.archive.org/web/20150923205053/http://www.cnt.org.br/boletim_marco_ 2014. (Accessed 5 May 2020) (in Portuguese).
Cusack, M., Talbot, N., Ondráček, J., Minguillón, M.C., Martins, V., Klouda, K., Ždímal, V., 2015. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 188, 176–183.
De Miranda, R.M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P.A., Saldiva, P., 2011. Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual. Atmos. Health 5, 63–77.
De Paoli, F., Agudelo-Castañeda, D., Teixeira, E., Silva, L., Kumar, P., 2018. Number concentrations and size distributions of nanoparticles during the use of hand tools in refurbishment activities. J. Nanopart. Res. 20, 264.
Font, O., Moreno, T., Querol, X., Martins, V., Sánchez Rodas, D., de Miguel, E., Capdevila, M., 2019. Origin and speciation of major and trace PM elements in the Barcelona subway system. Transport. Res. D:Tr. E. 72, 17–35.
Font, A., Tremper, A., Lin, Ch., Priestman, M., Marsh, D., Woods, M., Heal, M., Green, D., 2020. Air quality in enclosed railway stations: Quantifying the impact of diesel trains through deployment of multi-site measurement and random forest modelling. Environ. Pollut. 262, 114284.
Garshick, E., Laden, F., Hart, J.E., Rosner, B., Davis, M.E., Eisen, E.A., Smith, T.J., 2008. Lung cancer and vehicle exhaust in trucking industry workers. Environ. Health Perspectives 116, 1327–1332.
Givoni, M., Brand, C., Watkiss, P., 2009. Are railways “climate friendly”? Built Environ. 35, 70–86.
Guha, N., Straif, K., Benbrahim-Tallaa, L., 2011. The IARC monographs on the carcinogenicity of crystalline silica. Med. Lav. 102, 310–320.
Ham, W., Vijayan, A., Schulte, N., Herner, J.D., 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento. California. Atmos. Environ. 167, 335–345.
Heal, M.R., Kumar, P., Harrison, R.M., 2012. Particles, air quality, policy and health. Chem. Soc. Rev. 41, 6606–6630.
Islam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10- associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053.
Jeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52.
Johansson, C., Johansson, P.Å., 2003. Particulate matter in the underground of Stockholm. Atmos. Environ. 37, 3–9.
Johansson, C., Norman, M., Gidhagen, L., 2007. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 127, 477–487.
Kang, S., Hwang, H., Park, Y., Kim, H., Ro, C.U., 2008. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. Technol. 42, 9051–9057.
Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M., 2015. Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos. Environ. 120, 475–483.
Karlsson, H.L., Holgersson, Å., Möller, L., 2008. Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol. 21, 726–731.
Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526.
Knibbs, L., Cole-Hunter, T., Morawska, L., 2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 45, 2611–2622.
Krall, J.R., Ladva, C.N., Russell, A.G., Golan, R., Peng, X., Shi, G., 2018. Source-specific pollution exposure and associations with pulmonary response in the Atlanta commuters exposure studies. J. Expo. Sci. Environ. Epidemiol. 28, 337–347.
Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmosheric environment: a review. J. Aerosol Sci 42, 580–603.
Kumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A., de Lusignan, S., Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environ. Int. 133, 105181.
Kwon, S.-B., Park, D., Cho, Y., Park, E.-Y., 2010. Measurement of natural ventilation rate in Seoul Metropolitan Subway Cabin. Indoor Built Environ. 19, 366–374.
Kwon, S.B., Jeong, W., Park, D., Kim, K.T., Cho, K.H., 2015. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations. Korea. J. Hazard. Mater. 297, 295–303.
Lee, H.W., Namgung, H.G., Kwon, S.B., 2018. Effect of train velocity on the amount of airborne wear particles generated from wheel–rail contacts. Wear 414, 296–302.
Li, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N., 2015. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 524, 237–245.
Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., 2019. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 381, 705–715.
Lundbäck, M., 2009. Cardiovascular effects of exposure to diesel exhaust - mechanistic and interventional studies. Medical Dissertation, Department of Public Health and Clinical Medicine, Respiratory Medicine and Allergy. Umeå University, Umeå, Sweden.
Martins, V., 2016. Air quality in subway systems: particulate matter concentrations, chemical composition, sources and personal exposure. Ph.D. thesis. University of Barcelona 234p.
Martins, V., Cruz Minguillón, M., Moreno, T., Querol, X., de Miguel, E., Capdevila, M., Lazaridis, M., 2015. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. Aerosol Sci. 90, 103–113.
Mendes, L., Gini, M.I., Biskos, G., Colbeck, I., Eleftheriadis, K., 2018. Airborne ultrafine particles in a naturally ventilated metro station: dominant sources and mixing state determined by particle size distribution and volatility measurements. Environ. Pollut. 239, 82–94.
Minguillón, M.C., Reche, C., Martins, V., Amato, F., de Miguel, E., Capdevila, M., Moreno, T., 2018. Aerosol sources in subway environments. Environ. Res. 167, 314–328.
Mohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents - a critical review. J. Hazard. Mater. 142, 1–53.
Mohsen, M., Ahmed, M.B., Zhou, J.L., 2018. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney. Australia. Transport. Res. D:Tr. E. 62, 112–124.
Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42, 8113–8138.
Moreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Gibbons, W., 2014. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 92, 461–468.
Moreno, T., Martins, V., Querol, X., Jones, T., BéruBé, K., Minguillón, M.C., Gibbons, W., 2015. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 505, 367–375.
Morillas, H., Maguregui, M., García-Florentino, C., Marcaida, I., Madariaga, J.M., 2016. Study of particulate matter from primary/secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 550, 285–296.
Pacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9, 269–298.
Park, D.U., Ha, K.C., 2008. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul. Korea. Environ. Int. 34, 629–634.
Petzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., Zhang, X.-Y., 2013. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13, 8365–8379.
Pun, V.C., Tian, L., Yu, I.T., Kioumourtzoglou, M.A., Qiu, H., 2015. Differential distributed lag patterns of source-specific particulate matter on respiratory emergency hospitalizations. Environ. Sci. Technol. 49, 3830–3838.
Querol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Font, O., Gil, J., De Miguel, E., Capdevilla, M., 2012. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 12, 5055–5076.
Quispe, D., Pérez-López, R., Silva, L.F.O., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503.
Rahim, M.F., Pal, D., Ariya, P.A., 2019. Physicochemical studies of aerosols at Montreal Trudeau Airport: the importance of airborne nanoparticles containing metal contaminants. Environ. Pollut. 246, 734–744.
Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655
Reche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X., 2015. Real-time indoor and outdoor measurements of black carbon at primary schools. Atmos. Environ. 120, 417–426.
Reche, C., Moreno, T., Martins, V., Minguillón, M.C., Jones, T., de Miguel, E., Capdevila, M., Centelles, S., Querol, X., 2017. Factors controlling particle number concentration and size at metro stations. Atmos. Environ. 156, 169–181.
Ribeiro, J., Flores, D., Ward, C.R., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–6041.
Rice, M.B., Ljungman, P.L., Wilker, E.H., Gold, D.R., Schwartz, J.D., Koutrakis, P., 2013. Shortterm exposure to air pollution and lung function in the Framingham heart study. Am. J. Respir. Crit. Care Med. 188, 1351–1357.
Richmond-Bryant, J., Long, T.C., 2020. Influence of exposure measurement errors on results from epidemiologic studies of different designs. J. Expo. Sci. Environ. Epidemiol. 30, 420–429.
Ripanucci, G., Grana, M., Vicentini, L., Magrini, A., Bergamaschi, A., 2006. Dust in the underground railway tunnels of an Italian town. J. Occup. Environ. Hyg. 3, 16–25.
Ris, C., 2007. U.S. EPA Health assessment for diesel engine exhaust: a review. Inhal. Toxicol 19 (Supplement 1), 229–239.
Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.
Ross, M., Nolan, R.P., Langer, M.A., Cooper, W.C., 1993. Health effects of mineral dusts. In: Guthrie Jr., G.D., Mossman, B.T. (Eds.), Reviews in Mineralogy and Geochemistry. Book Crafters, Inc., Chelsea, Michigan, p. 361.
Salma, I., Weidinger, T., Maenhaut, W., 2007. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 41, 8391–8405.
Shakya, K.M., Saad, A., Aharonian, A., 2020. Commuter exposure to particulate matter at underground subway stations in Philadelphia. Build. Environ. 186, 107322.
Silva, L.F.O., Milanes, C., Pinto, D., Ramírez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.
Sundh, J., Olofsson, U., Olander, L., Jansson, A., 2009. Wear rate testing in relation to airborne particles generated in a wheel-rail contact. Lubr. Sci. 21, 135–150.
Tan, S.H., Roth, M., Velasco, E., 2017. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 170, 245–258.
Teixeira, E.C., Agudelo-Castañeda, D.M., Guimarães, J.M., Leal, K.A., de Oliveira, K., Wiegand, F., 2012. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS. Brazil. Atmos. Res. 118, 390–403.
Tezza, V.B., Scarpato, M., Oliveira, L.F.S., Bernardin, A.M., 2015. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 276, 60–65.
Tian, Y., Liu, H., Liang, T., Xiang, X., Li, M., Juan, J., 2019. Fine particulate air pollution and adult hospital admissions in 200 Chinese cities: a time-series analysis. Int. J. Epidemiol. 48, 1142–1151. Tokarek, S., Bernis, A., 2006. An example of particle concentration reduction in Parisian subway stations by electrostatic precipitation. Environ. Technol. 27, 1279–1287.
Van Ryswyk, K., Anastasopolos, A.T., Evans, G., Sun, L., Sabaliauskas, K., Kulka, R., Weichenthal, S., 2017. Metro commuter exposures to particulate air pollution and PM2.5-associated elements in three Canadian cities: the urban transportation exposure study. Environ. Sci. Technol. 51, 5713–5720.
Vilcassim, M.J., Thurston, G.D., Peltier, R.E., Gordon, T., 2014. Black carbon and particulate matter (PM2.5) concentrations in New York City’s Subway Stations. Environ. Sci. Technol. 48, 14738–14745.
Wang, F., Costabileb, F., Li, H., Fang, D., Alligrini, I., 2010. Measurements of ultrafine particle size distribution near Rome. Atmos. Res. 98, 69–77.
Wang, X., Westerdahl, D., Wu, Y., Pan, X., Zhang, K.M., 2011. On-road emission factor distributions of individual diesel vehicles in and around Beijing. China. Atmos. Environ. 45, 503–513.
Wang, B.Q., Liu, J.F., Ren, Z.H., Chen, R.H., 2016. Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environ. Sci. Pollut. Res. 23, 22647–22657.
Waychunas, G.A., Kim, C.S., Banfield, J.F., 2005. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433.
WHO, 2013. Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project. The WHO Regional Office for Europe. Technical Report, Copenhagen, Denmark.
Xu, B., Hao, J., 2017. Air quality inside subway metro indoor environment worldwide: a review. Environ. Int. 107, 33–46.
Young, L.-H., Wang, Y.-T., Hsu, H.-C., Lin, C.-H., Liou, Y.-J., Lai, Y.-C., Cheng, M.-T., 2012. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district. Sci. Total Environ. 425, 135–145.
Zhao, X., Ke, Y., Zuo, J., Xiong, W., Wu, P., 2020. Evaluation of sustainable transport research in 2000-2019. J. Clean. Prod. 256, 120404.
Zhu, Y., Kuhn, T., Mayo, P., Hinds, W.C., 2006. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ. Sci. Technol. 40, 2531–2536
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Geoscience Frontiers
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1674987120302693?via%3Dihub#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c5780a12-3f9e-4104-8d34-b8690b895dfa/download
https://repositorio.cuc.edu.co/bitstreams/efe86551-9de6-466a-92d3-1a2b75862c95/download
https://repositorio.cuc.edu.co/bitstreams/d41844c9-b4f3-4e33-8c3c-2559ab1ceb9a/download
https://repositorio.cuc.edu.co/bitstreams/f6c7fc5b-adb0-48ab-849c-306640f7ebfb/download
https://repositorio.cuc.edu.co/bitstreams/ea86d304-c8af-4b49-b1fe-5e2bc6de1ffb/download
bitstream.checksum.fl_str_mv d7535b8fe65c2b73a1675e63ce842c11
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
451b63af8e4a31c102411fc25b985c0a
ac57690cac55fc36bc31be951bb3a7f0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760843676712960
spelling Lima, Bianca D.Teixeira, Elba C.Hower, James C.Civeira, Matheus S.Ramírez, OmarYang, Xue-chengSilva Oliveira, Marcos LeandroSilva Oliveira, Luis Felipe2021-01-12T17:04:25Z2021-01-12T17:04:25Z20211674-9871https://hdl.handle.net/11323/7676https://doi.org/10.1016/j.gsf.2020.12.010Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Having a better understanding of air pollutants in railway systems is crucial to ensure a clean public transport. This study measured, for the first time in Brazil, nanoparticles (NPs) and black carbon (BC) on two ground-level platforms and inside trains of the Metropolitan Area of Porto Alegre (MAPA). An intense sampling campaign during thirteen consecutive months was carried out and the chemical composition of NPs was examined by advanced microscopy techniques. The results showed that highest concentrations of the pollutants occur in colder seasons and influenced by variables such as frequency of the trains and passenger densities. Also, internal and external sources of pollution at the stations were identified. The predominance of NPs enriched with metals that increase oxidative stress like Cd, Fe, Pb, Cr, Zn, Ni, V, Hg, Sn, and Ba both on the platforms and inside trains, including Fe-minerals as hematite and magnetite, represents a critical risk to the health of passengers and employees of the system. This interdisciplinary and multi-analytical study aims to provide an improved understanding of reported adverse health effects induced by railway system aerosols.Lima, Bianca D.Teixeira, Elba C.Hower, James C.Civeira, Matheus S.Ramírez, OmarYang, Xue-cheng-will be generated-orcid-0000-0002-6860-7330-600Silva Oliveira, Marcos LeandroSilva Oliveira, Luis Felipeapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S1674987120302693?via%3Dihub#!NanoparticlesPotential hazardous elementsEnvironmental chemistryHuman healthRailway environmentIndoor air qualityMetal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollutionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAarnio, P., Yli-Tuomi, T., 2005. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 39, 5059–5066.Abbasi, S., Wahlström, J., Olander, L., Larsson, Ch., Olofsson, U., Sellgren, U., 2011. A study of airborne wear particles generated from organic railway brake pads and brake discs. Wear 273, 93–99.Abbasi, S., Jansson, A., Sellgren, U., Olofsson, U., 2013. Particle emissions from rail traffic: a literature review. Crit. Rev. Env. Sci. Tec. 43, 2511–2544.Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I.L., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543, 161–170.Bolognin, S., Messori, L., Zatta, P., 2009. Metal ion physiopathology in neurodegenerative disorders. Neuromol. Med. 11, 223–238.Cartenì, A., Cascetta, F., Campana, S., 2015. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 101, 328–337.Cepeda, M., Schoufour, J., Freak-Poli, R., Koolhaas, Ch., Dhana, K., Bramer, W., Franco, O., 2017. Levels of ambient air pollution according to mode of transport: a systematic review. The Lancet Public Health 2, 23–34.Cerletti, P., Eze, I.C., Schaffner, E., Imboden, M., Probst-Hensch, N., 2020. The independent association of source-specific transportation noise exposure, noise annoyance and noise sensitivity with health-related quality of life. Environ. Int. 143, 105960.Cha, Y., Tu, M., Elmgren, M., Silvergren, S., Olofsson, U., 2018. Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles. Environ. Res. 166, 16–24.Chen, X.C., Zhang, Z.S., Engling, G., Zhang, R.J., Tao, J., Lin, M., 2014. Characterization of fine particulate black carbon in Guangzhou, a megacity of South China. Atmos. Pollut. Res. 5, 361–370.Chen, X.C., Cao, J.J., Ward, T.J., Qu, L., Ho, K.F., 2020. Characteristics and toxicological effects of commuter exposure to black carbon and metal components of fine particles (PM2.5) in Hong Kong. Sci. Total Environ. 742, 140501.Civeira, M.S., Ramos, C.G., Oliveira, M.L.S., Kautzmann, R.M., Taffarel, S.R., Teixeira, E.C., Silva, L.F.O., 2016. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 145, 142–147.CNT - National Confederation of Transport, 2014. Statistical report March 2014. https:// web.archive.org/web/20150923205053/http://www.cnt.org.br/boletim_marco_ 2014. (Accessed 5 May 2020) (in Portuguese).Cusack, M., Talbot, N., Ondráček, J., Minguillón, M.C., Martins, V., Klouda, K., Ždímal, V., 2015. Variability of aerosols and chemical composition of PM10, PM2.5 and PM1 on a platform of the Prague underground metro. Atmos. Environ. 188, 176–183.De Miranda, R.M., de Fatima Andrade, M., Fornaro, A., Astolfo, R., de Andre, P.A., Saldiva, P., 2011. Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual. Atmos. Health 5, 63–77.De Paoli, F., Agudelo-Castañeda, D., Teixeira, E., Silva, L., Kumar, P., 2018. Number concentrations and size distributions of nanoparticles during the use of hand tools in refurbishment activities. J. Nanopart. Res. 20, 264.Font, O., Moreno, T., Querol, X., Martins, V., Sánchez Rodas, D., de Miguel, E., Capdevila, M., 2019. Origin and speciation of major and trace PM elements in the Barcelona subway system. Transport. Res. D:Tr. E. 72, 17–35.Font, A., Tremper, A., Lin, Ch., Priestman, M., Marsh, D., Woods, M., Heal, M., Green, D., 2020. Air quality in enclosed railway stations: Quantifying the impact of diesel trains through deployment of multi-site measurement and random forest modelling. Environ. Pollut. 262, 114284.Garshick, E., Laden, F., Hart, J.E., Rosner, B., Davis, M.E., Eisen, E.A., Smith, T.J., 2008. Lung cancer and vehicle exhaust in trucking industry workers. Environ. Health Perspectives 116, 1327–1332.Givoni, M., Brand, C., Watkiss, P., 2009. Are railways “climate friendly”? Built Environ. 35, 70–86.Guha, N., Straif, K., Benbrahim-Tallaa, L., 2011. The IARC monographs on the carcinogenicity of crystalline silica. Med. Lav. 102, 310–320.Ham, W., Vijayan, A., Schulte, N., Herner, J.D., 2017. Commuter exposure to PM2.5, BC, and UFP in six common transport microenvironments in Sacramento. California. Atmos. Environ. 167, 335–345.Heal, M.R., Kumar, P., Harrison, R.M., 2012. Particles, air quality, policy and health. Chem. Soc. Rev. 41, 6606–6630.Islam, N., Rabha, S., Silva, L.F.O., Saikia, B.K., 2019. Air quality and PM10- associated polyaromatic hydrocarbons around the railway traffic area: statistical and air mass trajectory approaches. Environ. Geochem. Health 41, 2039–2053.Jeong, C.H., Traub, A., Evans, G.J., 2017. Exposure to ultrafine particles and black carbon in diesel-powered commuter trains. Atmos. Environ. 155, 46–52.Johansson, C., Johansson, P.Å., 2003. Particulate matter in the underground of Stockholm. Atmos. Environ. 37, 3–9.Johansson, C., Norman, M., Gidhagen, L., 2007. Spatial & temporal variations of PM10 and particle number concentrations in urban air. Environ. Monit. Assess. 127, 477–487.Kang, S., Hwang, H., Park, Y., Kim, H., Ro, C.U., 2008. Chemical compositions of subway particles in Seoul, Korea determined by a quantitative single particle analysis. Environ. Sci. Technol. 42, 9051–9057.Karagulian, F., Belis, C.A., Dora, C.F.C., Prüss-Ustün, A.M., Bonjour, S., Adair-Rohani, H., Amann, M., 2015. Contributions to cities’ ambient particulate matter (PM): a systematic review of local source contributions at global level. Atmos. Environ. 120, 475–483.Karlsson, H.L., Holgersson, Å., Möller, L., 2008. Mechanisms related to the genotoxicity of particles in the subway and from other sources. Chem. Res. Toxicol. 21, 726–731.Kelly, F.J., Fussell, J.C., 2012. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 60, 504–526.Knibbs, L., Cole-Hunter, T., Morawska, L., 2011. A review of commuter exposure to ultrafine particles and its health effects. Atmos. Environ. 45, 2611–2622.Krall, J.R., Ladva, C.N., Russell, A.G., Golan, R., Peng, X., Shi, G., 2018. Source-specific pollution exposure and associations with pulmonary response in the Atlanta commuters exposure studies. J. Expo. Sci. Environ. Epidemiol. 28, 337–347.Kumar, P., Ketzel, M., Vardoulakis, S., Pirjola, L., Britter, R., 2011. Dynamics and dispersion modelling of nanoparticles from road traffic in the urban atmosheric environment: a review. J. Aerosol Sci 42, 580–603.Kumar, P., Druckman, A., Gallagher, J., Gatersleben, B., Allison, S., Eisenman, T., Hoang, U., Hama, S., Tiwari, A., Sharma, A., Abhijith, K., Adlakha, D., McNabola, A., Astell-Burt, T., Feng, X., Skeldon, A., de Lusignan, S., Morawska, L., 2019. The nexus between air pollution, green infrastructure and human health. Environ. Int. 133, 105181.Kwon, S.-B., Park, D., Cho, Y., Park, E.-Y., 2010. Measurement of natural ventilation rate in Seoul Metropolitan Subway Cabin. Indoor Built Environ. 19, 366–374.Kwon, S.B., Jeong, W., Park, D., Kim, K.T., Cho, K.H., 2015. A multivariate study for characterizing particulate matter (PM10, PM2.5, and PM1) in Seoul metropolitan subway stations. Korea. J. Hazard. Mater. 297, 295–303.Lee, H.W., Namgung, H.G., Kwon, S.B., 2018. Effect of train velocity on the amount of airborne wear particles generated from wheel–rail contacts. Wear 414, 296–302.Li, B., Lei, X., Xiu, G., Gao, C., Gao, S., Qian, N., 2015. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 524, 237–245.Liu, C., Chen, R., Sera, F., Vicedo-Cabrera, A.M., Guo, Y., Tong, S., 2019. Ambient particulate air pollution and daily mortality in 652 cities. N. Engl. J. Med. 381, 705–715.Lundbäck, M., 2009. Cardiovascular effects of exposure to diesel exhaust - mechanistic and interventional studies. Medical Dissertation, Department of Public Health and Clinical Medicine, Respiratory Medicine and Allergy. Umeå University, Umeå, Sweden.Martins, V., 2016. Air quality in subway systems: particulate matter concentrations, chemical composition, sources and personal exposure. Ph.D. thesis. University of Barcelona 234p.Martins, V., Cruz Minguillón, M., Moreno, T., Querol, X., de Miguel, E., Capdevila, M., Lazaridis, M., 2015. Deposition of aerosol particles from a subway microenvironment in the human respiratory tract. J. Aerosol Sci. 90, 103–113.Mendes, L., Gini, M.I., Biskos, G., Colbeck, I., Eleftheriadis, K., 2018. Airborne ultrafine particles in a naturally ventilated metro station: dominant sources and mixing state determined by particle size distribution and volatility measurements. Environ. Pollut. 239, 82–94.Minguillón, M.C., Reche, C., Martins, V., Amato, F., de Miguel, E., Capdevila, M., Moreno, T., 2018. Aerosol sources in subway environments. Environ. Res. 167, 314–328.Mohan, D., Pittman, C.U., 2007. Arsenic removal from water/wastewater using adsorbents - a critical review. J. Hazard. Mater. 142, 1–53.Mohsen, M., Ahmed, M.B., Zhou, J.L., 2018. Particulate matter concentrations and heavy metal contamination levels in the railway transport system of Sydney. Australia. Transport. Res. D:Tr. E. 62, 112–124.Morawska, L., Ristovski, Z., Jayaratne, E.R., Keogh, D.U., Ling, X., 2008. Ambient nano and ultrafine particles from motor vehicle emissions: Characteristics, ambient processing and implications on human exposure. Atmos. Environ. 42, 8113–8138.Moreno, T., Pérez, N., Reche, C., Martins, V., de Miguel, E., Capdevila, M., Gibbons, W., 2014. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design. Atmos. Environ. 92, 461–468.Moreno, T., Martins, V., Querol, X., Jones, T., BéruBé, K., Minguillón, M.C., Gibbons, W., 2015. A new look at inhalable metalliferous airborne particles on rail subway platforms. Sci. Total Environ. 505, 367–375.Morillas, H., Maguregui, M., García-Florentino, C., Marcaida, I., Madariaga, J.M., 2016. Study of particulate matter from primary/secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci. Total Environ. 550, 285–296.Pacyna, J.M., Pacyna, E.G., 2001. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9, 269–298.Park, D.U., Ha, K.C., 2008. Characteristics of PM10, PM2.5, CO2 and CO monitored in interiors and platforms of subway train in Seoul. Korea. Environ. Int. 34, 629–634.Petzold, A., Ogren, J.A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U., Holzer-Popp, T., Kinne, S., Pappalardo, G., Sugimoto, N., Wehrli, C., Wiedensohler, A., Zhang, X.-Y., 2013. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 13, 8365–8379.Pun, V.C., Tian, L., Yu, I.T., Kioumourtzoglou, M.A., Qiu, H., 2015. Differential distributed lag patterns of source-specific particulate matter on respiratory emergency hospitalizations. Environ. Sci. Technol. 49, 3830–3838.Querol, X., Moreno, T., Karanasiou, A., Reche, C., Alastuey, A., Viana, M., Font, O., Gil, J., De Miguel, E., Capdevilla, M., 2012. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 12, 5055–5076.Quispe, D., Pérez-López, R., Silva, L.F.O., Nieto, J.M., 2012. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 94, 495–503.Rahim, M.F., Pal, D., Ariya, P.A., 2019. Physicochemical studies of aerosols at Montreal Trudeau Airport: the importance of airborne nanoparticles containing metal contaminants. Environ. Pollut. 246, 734–744.Ramírez, O., da Boit, K., Blanco, E., Silva, L.F.O., 2020. Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Clim. 33, 100655Reche, C., Rivas, I., Pandolfi, M., Viana, M., Bouso, L., Àlvarez-Pedrerol, M., Alastuey, A., Sunyer, J., Querol, X., 2015. Real-time indoor and outdoor measurements of black carbon at primary schools. Atmos. Environ. 120, 417–426.Reche, C., Moreno, T., Martins, V., Minguillón, M.C., Jones, T., de Miguel, E., Capdevila, M., Centelles, S., Querol, X., 2017. Factors controlling particle number concentration and size at metro stations. Atmos. Environ. 156, 169–181.Ribeiro, J., Flores, D., Ward, C.R., Silva, L.F.O., 2010. Identification of nanominerals and nanoparticles in burning coal waste piles from Portugal. Sci. Total Environ. 408, 6032–6041.Rice, M.B., Ljungman, P.L., Wilker, E.H., Gold, D.R., Schwartz, J.D., Koutrakis, P., 2013. Shortterm exposure to air pollution and lung function in the Framingham heart study. Am. J. Respir. Crit. Care Med. 188, 1351–1357.Richmond-Bryant, J., Long, T.C., 2020. Influence of exposure measurement errors on results from epidemiologic studies of different designs. J. Expo. Sci. Environ. Epidemiol. 30, 420–429.Ripanucci, G., Grana, M., Vicentini, L., Magrini, A., Bergamaschi, A., 2006. Dust in the underground railway tunnels of an Italian town. J. Occup. Environ. Hyg. 3, 16–25.Ris, C., 2007. U.S. EPA Health assessment for diesel engine exhaust: a review. Inhal. Toxicol 19 (Supplement 1), 229–239.Rojas, J.C., Sánchez, N.E., Schneider, I., Oliveira, M.L.S., Teixeira, E.C., Silva, L.F.O., 2019. Exposure to nanometric pollutants in primary schools: Environmental implications. Urban Clim. 27, 412–419.Ross, M., Nolan, R.P., Langer, M.A., Cooper, W.C., 1993. Health effects of mineral dusts. In: Guthrie Jr., G.D., Mossman, B.T. (Eds.), Reviews in Mineralogy and Geochemistry. Book Crafters, Inc., Chelsea, Michigan, p. 361.Salma, I., Weidinger, T., Maenhaut, W., 2007. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 41, 8391–8405.Shakya, K.M., Saad, A., Aharonian, A., 2020. Commuter exposure to particulate matter at underground subway stations in Philadelphia. Build. Environ. 186, 107322.Silva, L.F.O., Milanes, C., Pinto, D., Ramírez, O., Lima, B.D., 2020. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.Sundh, J., Olofsson, U., Olander, L., Jansson, A., 2009. Wear rate testing in relation to airborne particles generated in a wheel-rail contact. Lubr. Sci. 21, 135–150.Tan, S.H., Roth, M., Velasco, E., 2017. Particle exposure and inhaled dose during commuting in Singapore. Atmos. Environ. 170, 245–258.Teixeira, E.C., Agudelo-Castañeda, D.M., Guimarães, J.M., Leal, K.A., de Oliveira, K., Wiegand, F., 2012. Source identification and seasonal variation of polycyclic aromatic hydrocarbons associated with atmospheric fine and coarse particles in the Metropolitan Area of Porto Alegre, RS. Brazil. Atmos. Res. 118, 390–403.Tezza, V.B., Scarpato, M., Oliveira, L.F.S., Bernardin, A.M., 2015. Effect of firing temperature on the photocatalytic activity of anatase ceramic glazes. Powder Technol. 276, 60–65.Tian, Y., Liu, H., Liang, T., Xiang, X., Li, M., Juan, J., 2019. Fine particulate air pollution and adult hospital admissions in 200 Chinese cities: a time-series analysis. Int. J. Epidemiol. 48, 1142–1151. Tokarek, S., Bernis, A., 2006. An example of particle concentration reduction in Parisian subway stations by electrostatic precipitation. Environ. Technol. 27, 1279–1287.Van Ryswyk, K., Anastasopolos, A.T., Evans, G., Sun, L., Sabaliauskas, K., Kulka, R., Weichenthal, S., 2017. Metro commuter exposures to particulate air pollution and PM2.5-associated elements in three Canadian cities: the urban transportation exposure study. Environ. Sci. Technol. 51, 5713–5720.Vilcassim, M.J., Thurston, G.D., Peltier, R.E., Gordon, T., 2014. Black carbon and particulate matter (PM2.5) concentrations in New York City’s Subway Stations. Environ. Sci. Technol. 48, 14738–14745.Wang, F., Costabileb, F., Li, H., Fang, D., Alligrini, I., 2010. Measurements of ultrafine particle size distribution near Rome. Atmos. Res. 98, 69–77.Wang, X., Westerdahl, D., Wu, Y., Pan, X., Zhang, K.M., 2011. On-road emission factor distributions of individual diesel vehicles in and around Beijing. China. Atmos. Environ. 45, 503–513.Wang, B.Q., Liu, J.F., Ren, Z.H., Chen, R.H., 2016. Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environ. Sci. Pollut. Res. 23, 22647–22657.Waychunas, G.A., Kim, C.S., Banfield, J.F., 2005. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J. Nanopart. Res. 7, 409–433.WHO, 2013. Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project. The WHO Regional Office for Europe. Technical Report, Copenhagen, Denmark.Xu, B., Hao, J., 2017. Air quality inside subway metro indoor environment worldwide: a review. Environ. Int. 107, 33–46.Young, L.-H., Wang, Y.-T., Hsu, H.-C., Lin, C.-H., Liou, Y.-J., Lai, Y.-C., Cheng, M.-T., 2012. Spatiotemporal variability of submicrometer particle number size distributions in an air quality management district. Sci. Total Environ. 425, 135–145.Zhao, X., Ke, Y., Zuo, J., Xiong, W., Wu, P., 2020. Evaluation of sustainable transport research in 2000-2019. J. Clean. Prod. 256, 120404.Zhu, Y., Kuhn, T., Mayo, P., Hinds, W.C., 2006. Comparison of daytime and nighttime concentration profiles and size distributions of ultrafine particles near a major highway. Environ. Sci. Technol. 40, 2531–2536PublicationORIGINALMetal-enriched nanoparticles and black carbon. A perspective from the Brazil railway system air pollution.pdfMetal-enriched nanoparticles and black carbon. A perspective from the Brazil railway system air pollution.pdfapplication/pdf3580092https://repositorio.cuc.edu.co/bitstreams/c5780a12-3f9e-4104-8d34-b8690b895dfa/downloadd7535b8fe65c2b73a1675e63ce842c11MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/efe86551-9de6-466a-92d3-1a2b75862c95/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d41844c9-b4f3-4e33-8c3c-2559ab1ceb9a/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILMetal-enriched nanoparticles and black carbon. A perspective from the Brazil railway system air pollution.pdf.jpgMetal-enriched nanoparticles and black carbon. A perspective from the Brazil railway system air pollution.pdf.jpgimage/jpeg68905https://repositorio.cuc.edu.co/bitstreams/f6c7fc5b-adb0-48ab-849c-306640f7ebfb/download451b63af8e4a31c102411fc25b985c0aMD54TEXTMetal-enriched nanoparticles and black carbon. A perspective from the Brazil railway system air pollution.pdf.txtMetal-enriched nanoparticles and black carbon. A perspective from the Brazil railway system air pollution.pdf.txttext/plain62197https://repositorio.cuc.edu.co/bitstreams/ea86d304-c8af-4b49-b1fe-5e2bc6de1ffb/downloadac57690cac55fc36bc31be951bb3a7f0MD5511323/7676oai:repositorio.cuc.edu.co:11323/76762024-09-17 14:09:34.365http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==