An analysis of nanoparticles derived from coal fly ash incorporated into concrete
The environmental benefits of incorporating coal fly ash (CFA) into the concrete manufacturing process as a partial substitute for Portland cement are well known. What is less studied is the potential release of CFA derived nanomineral and amorphous nanoparticles during this process of incorporation...
- Autores:
-
Neckel, Alcindo
Pinto, Diana
Adelodun, Bashir
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9239
- Acceso en línea:
- https://hdl.handle.net/11323/9239
https://doi.org/10.3390/su14073943
https://repositorio.cuc.edu.co/
- Palabra clave:
- Al–Ca–Fe–Mg–Si spheres
Complex structure
Future projects
Coal fly ash
Mineralogy
- Rights
- openAccess
- License
- © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
id |
RCUC2_0bc06c0ece6a5c4850ef9246423c0eab |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9239 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
title |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
spellingShingle |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete Al–Ca–Fe–Mg–Si spheres Complex structure Future projects Coal fly ash Mineralogy |
title_short |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
title_full |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
title_fullStr |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
title_full_unstemmed |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
title_sort |
An analysis of nanoparticles derived from coal fly ash incorporated into concrete |
dc.creator.fl_str_mv |
Neckel, Alcindo Pinto, Diana Adelodun, Bashir Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Neckel, Alcindo Pinto, Diana Adelodun, Bashir Dotto, Guilherme Luiz |
dc.subject.proposal.eng.fl_str_mv |
Al–Ca–Fe–Mg–Si spheres Complex structure Future projects Coal fly ash Mineralogy |
topic |
Al–Ca–Fe–Mg–Si spheres Complex structure Future projects Coal fly ash Mineralogy |
description |
The environmental benefits of incorporating coal fly ash (CFA) into the concrete manufacturing process as a partial substitute for Portland cement are well known. What is less studied is the potential release of CFA derived nanomineral and amorphous nanoparticles during this process of incorporation. A thorough understanding of this makes it possible to understand the risks of exposure to particulates that are harmful to human health when CFA is mixed into concrete. The general objective of this study is to analyze airborne particulates released when CFA is mixed into concrete at the point of manufacture, focusing on the levels of nanominerals, amorphous nanoparticles and hazardous elements (HEs) contained within that are considered harmful to human health. These airborne particulates can be easily inhaled by plant workers in the absence of personal protective equipment. The authors analyzed samples of ash itself and collected actual airborne particulates using self-made passive samplers installed at the manufacturing plant. Regarding the ash analyzed, iron (Fe) was found in large amounts in relation to calcium (Ca), magnesium (Mg) and silicon (Si). The transport, disposal and application of CFA in civil construction projects can provide an increased efficiency and reduce overall costs associated with the production of concrete. However, CFA poses a threat to human health due to the significant amount of HEs, nanominerals, and amorphous nanoparticles found to be released into the environment at the manufacturing plant. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-13T01:14:38Z |
dc.date.available.none.fl_str_mv |
2022-06-13T01:14:38Z |
dc.date.issued.none.fl_str_mv |
2022-03-26 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Neckel, Alcindo, Diana Pinto, Bashir Adelodun, and Guilherme L. Dotto. 2022. "An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete" Sustainability 14, no. 7: 3943. https://doi.org/10.3390/su14073943 |
dc.identifier.issn.spa.fl_str_mv |
2071-1050 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9239 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.3390/su14073943 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/su14073943 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Neckel, Alcindo, Diana Pinto, Bashir Adelodun, and Guilherme L. Dotto. 2022. "An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete" Sustainability 14, no. 7: 3943. https://doi.org/10.3390/su14073943 2071-1050 10.3390/su14073943 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9239 https://doi.org/10.3390/su14073943 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Sustainability |
dc.relation.references.spa.fl_str_mv |
MME—Ministry of Mines and Energy, BRAZIL, National Energy Matrix—2030. 2019. Available online: http://antigo.mme.gov.br/pt/web/guest/secretarias/planejamento-e-desenvolvimento-energetico/publicacoes/matriz-energetica-nacional-2030 (accessed on 12 November 2021). ANEEL—National Electric Energy Agency. 2021. Available online: https://www.aneel.gov.br (accessed on 13 November 2021). Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50, 413–423. Martinello, K.; Oliveira, M.L.S.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F.O. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470, 444–452. Lee, Y.R.; Soe, J.T.; Zhang, S.; Ahn, J.W.; Park, M.B.; Ahn, W.S. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chem. Eng. J. 2017, 317, 821–843. Kikuchi, R. Application of coal ash to environmental improvement. Resour. Conserv. Recycl. 1999, 27, 333–346. Teixeira, E.R.; Mateus, R.; Camões, A.F.; Bragança, L.; Branco, F.G. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 2016, 112, 2221–2230. Liu, Y.; Lu, C.P.; Zhang, H.; Wang, H.Y. Numerical investigation of slip and fracture instability mechanism of coal- rock parting-coal structure (CRCS). J. Struct. Geol. 2019, 118, 265–278. Hossain, M.d.U.; Dong, Y.; Ng, S.T. Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong. Case Stud. Constr. Mater. 2021, 15, e00659. Mozgawa, W.; Król, M.; Dyczek, J.; Deja, J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132, 889–894. Ahmed, S.; Arocho, I. Analysis of cost comparison and effects of change orders during construction: Study of a mass timber and a concrete building project. J. Build. Eng. 2021, 33, 101856. Harihanandh, M.; Viswanathan, K.; Krishnaraja, A. Comparative study on chemical and morphology properties of nano fly ash in concrete. Mater. Today Proc. 2021, 45, 3132–3136. Ribeiro, J.; DaBoit, K.; Flores, D.; Kronbauer, M.A.; Silva, L.F. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 2013, 452, 98–107. Babu, K.; Nageswara Rao, G. Efficiency of fly ash in concrete. Cem. Concr. Compos. 1993, 15, 223–229. Colangelo, F.; Messina, F.; Palma, L.d.; Cioffi, R. Recycling of non-metallic automotive shredder residues and coal fly-ash in cold-bonded aggregates for sustainable concrete. Compos. Part B Eng. 2017, 116, 46–52. Silva, L.F.O.; Boit, K.M.d. Nanominerals and nanoparticles in feed coal and bottom ash: Implications for human health effects. Environ. Monit. Assess. 2010, 174, 187–197. Banfield, J.F.; Zhang, H. Nanoparticles in the Environment. Rev. Mineral. Geochem. 2001, 44, 1–58. Oliveira, M.L.S.; Ward, C.R.; Sampaio, C.H.; Querol, X.; Cutruneo, C.M.N.L.; Taffarel, S.R.; Silva, L.F.O. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. Int. J. Coal Geol. 2013, 116, 75–92. Silva, L.F.O.; Pinto, D.; Neckel, A.; Dotto, G.L.; Oliveira, M.L.S. The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere 2020, 251, 126838. Oliveira, M.L.S.; Flores, E.M.M.; Dotto, G.L.; Neckel, A.; Silva, L.F.O. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982. Trejos, E.M.; Silva, L.F.O.; Hower, J.C.; Flores, E.M.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755. Silva, L.F.O.; Moreno, T.; Querol, X. An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ. 2009, 407, 4972–4974. Quispe, D.; Pérez-López, R.; Silva, L.F.O.; Nieto, J.M. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 2012, 94, 495–503. Cutruneo, C.M.N.L.; Oliveira, M.L.S.; Ward, C.R.; Hower, J.C.; Brum, I.A.S.d.; Sampaio, C.H.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F.O. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 2014, 130, 33–52. Cerqueira, B.; Vega, F.A.; Serra, C.; Silva, L.F.O.; Andrade, M.L. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: A preliminary study of the distribution of Cu2+ and cu2+/pb2+ on a BT horizon surfaces. J. Hazard. Mater. 2011, 195, 422–431. Silva, L.F.O.; Hower, J.; Izquierdo, M.; Querol, X. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Sci. Total Environ. 2010, 408, 5117–5122. Silva, L.F.O.; Jasper, A.; Andrade, M.L.; Sampaio, C.H.; Dai, S.; Li, X.; Li, T.; Chen, W.; Wang, X.; Liu, H.; et al. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Sci. Total Environ. 2012, 419, 250–264. Silva, L.F.O.; Oliveira, M.L.S.; Sampaio, C.H.; De Brum, I.A.S.; Hower, J.C. Vanadium and nickel speciation in pulverized coal and petroleum coke co-combustion. Energy Fuels 2013, 27, 1194–1203. Ramos, C.G.; Querol, X.; Oliveira, M.L.S.; Pires, K.; Kautzmann, R.M.; Silva, L.F. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci. Total Environ. 2015, 512, 371–380. Schneider, I.L.; Teixeira, E.C.; Silva, L.F.O.; Wiegand, F. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 2015, 6, 877–885. Wilcox, J.; Wang, B.; Rupp, E.; Taggart, R.; Hsu-Kim, H.; Oliveira, M.; Cutruneo, C.; Taffarel, S.; Silva, L.F.; Hopps, S.; et al. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: Environmental processes recorded at the macro and nanometer scale. Energy Fuels 2015, 29, 7168–7177. Civeira, M.S.; Ramos, C.G.; Oliveira, M.L.S.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 2016, 145, 142–147. Dalmora, A.C.; Ramos, C.G.; Querol, X.; Kautzmann, R.M.; Oliveira, M.L.S.; Taffarel, S.R.; Moreno, T.; Silva, L.F. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 2016, 144, 2013–2017. Dalmora, A.C.; Ramos, C.; Oliveira, M.; Teixeira, E.; Kautzmann, R.; Taffarel, S.; De Brum, I.; Silva, L.F. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes. Sci. Total Environ. 2016, 539, 560–565. León-Mejía, G.; Silva, L.F.O.; Civeira, M.S.; Da Silva, J.; Henriques, J.A.P. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 2016, 23, 24019–24031. Rodriguez-Iruretagoiena, A.; De Vallejuelo, S.; De Diego, A.; De Leão, F.; De Medeiros, D.; Oliveira, M.; Taffarel, S.; Arana, G.; Madariaga, J.; Silva, L.F. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Sci. Total Environ. 2016, 565, 721–729. Sehn, J.; De Leão, F.; Da Boit, K.; Oliveira, M.; Hidalgo, G.; Sampaio, C.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443. Dutta, M.; Saikia, J.; Taffarel, S.R.; Waanders, F.B.; De Medeiros, D.; Cutruneo, C.M.; Saikia, B.K. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front. 2017, 8, 1285–1297. Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.L.; Da Boit, K.; Tutikian, B.; Crissien, T.; Pinto, D.; Serrano, I.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055. León-Mejía, G.; Machado, M.N.; Okuro, R.T.; Silva, L.F.; Telles, C.; Dias, J.; Niekraszewicz, L.; Da Silva, J.; Henriques, J.A.P.; Zin, W.A. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 2018, 625, 589–599. Nordin, A.P.; Da Silva, J.; De Souza, C.; Niekraszewicz, L.A.B.; Dias, J.F.; Da Boit, K.; Oliveira, M.L.S.; Grivicich, I.; Garcia, A.L.; Silva, L.F.; et al. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 2018, 346, 263–272. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S.; Sampaio, C.H. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 2020, 254, 126822. Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060. Lima, B.D.; Teixeira, E.C.; Hower, J.C.; Civeira, M.S.; Ramírez, O.; Yang, C.; Oliveira, M.L.S.; Silva, L.F.O. Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geosci. Front. 2021, 12, 101129. Neckel, A.; Oliveira, M.L.S.; Bolaño, L.J.C.; Maculan, L.S.; Moro, L.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925. Oliveira, M.L.; Neckel, A.; Silva, L.F.; Dotto, G.L.; Maculan, L.S. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias—Colombia. Chemosphere 2021, 265, 129119. Ravindra Babu, S.; Nguyen, L.S.P.; Sheu, G.R.; Griffith, S.M.; Pani, S.K.; Huang, H.Y.; Lin, N.H. Long-range transport of La Soufrière volcanic plume to the western North Pacific: Influence on atmospheric mercury and aerosol properties. Atmos. Environ. 2022, 268, 118806. Zhu, Q.; Li, J.; Li, G.; Wen, S.; Yu, R.; Tang, C.; Feng, X.; Liu, X. Characteristics of Sandstone-type Uranium Mineralization in the Hangjinqi Region of the Northeastern Ordos Basin: Clues from Clay Mineral Studies. Ore Geol. Rev. 2021, 141, 104642. Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. Pore structure evolution characteristics of sandstone uranium ore during acid leaching. Nucl. Eng. Technol. 2021, 53, 4033–4041. Yue, L.; Jiao, Y.; Fayek, M.; Wu, L.; Rong, H. Micromorphologies and sulfur isotopic compositions of pyrite in sandstone-hosted uranium deposits: A review and implications for ore genesis. Ore Geol. Rev. 2021, 139, 104512. Zhang, J.; Cheng, J.C.P.; Lo, I.M.C. Life cycle carbon footprint measurement of Portland cement and ready mix concrete for a city with local scarcity of resources like Hong Kong. Int. J. Life Cycle Assess. 2014, 19, 745–757. Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016, 116, 15–24. Gao, Z.F.; Long, H.M.; Dai, B.; Gao, X.P. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion. J. Hazard. Mater. 2019, 373, 335–346. Oliveira, M.L.S.; Ward, C.R.; Izquierdo, M.; Sampaio, C.H.; Brum, I.A.S.d.; Kautzmann, R.M.; Sabedot, S.; Querol, X.; Silva, L.F.O. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Sci. Total Environ. 2012, 430, 34–47. Oliveira, M.L.S.; Ward, C.R.; French, D.; Hower, J.C.; Querol, X.; Silva, L.F.O. Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 2012, 94, 314–325. Mench, M.; Lepp, N.; Bert, V.; Schwitzguébel, J.P.; Gawronski, S.W.; Schröder, P.; Vangronsveld, J. Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from cost action 859. J. Soils Sediments 2010, 10, 1039–1070. Lee, S.H.; Lee, J.S.; Choi, Y.J.; Kim, J.G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 2009, 77, 1069–1075. Ŝaltauskaitė, J.; Kniuipytė, I.; Praspaliauskas, M. Earthworm Eisenia fetida potential for sewage sludge amended soil valorization by heavy metal remediation and soil quality improvement. J. Hazard. Mater. 2022, 424, 127316. He, J.; Cai, Y.; Lv, J.; Zhang, L. Primary investigation of quartz as a possible carcinogen in coals of Xuanwei and Fuyuan, high lung cancer incidence area in China. Environ. Earth Sci. 2012, 67, 1679–1684. Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Tromp, P.; Wu, G.; Wei, F.; Xu, J.; Seow, W.J.; Chapman, R.S. Quartz in ash, and air in a high lung cancer incidence area in China. Environ. Pollut. 2017, 221, 318–325. Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Wu, G.; Wei, F.; Chapman, R.S.; Portengen, L.; Qing, L.; Vermeulen, R. Polycyclic Aromatic Hydrocarbon Exposure in Household Air Pollution from Solid Fuel Combustion among the Female Population of Xuanwei and Fuyuan Counties, China. Environ. Sci. Technol. 2014, 48, 14632–14641. Onchoke, K.K. 13C NMR chemical shift assignments of nitrated benzo[a]pyrenes based on two-dimensional techniques and DFT/GIAO calculations. Results Chem. 2021, 3, 100099. Navarrete, I.; Vargas, F.; Martinez, P.; Paul, A.; Lopez, M. Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials. J. Clean. Prod. 2021, 283, 124646. Ramakrishnan, K.; Depak, S.R.; Hariharan, K.R.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Amran, Y.H.M.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857. Zhao, Y.; Zhang, J.; Sun, J.; Bai, X.; Zheng, C. Mineralogy, Chemical Composition, and Microstructure of Ferrospheres in Fly Ashes from Coal Combustion. Energy Fuels 2006, 20, 1490–1497. Strzałkowska, E. Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. Int. J. Coal Geol. 2021, 240, 103746. Matjie, R.H.; French, D.; Ward, C.R.; Pistorius, P.C.; Li, Z. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process. Fuel Process. Technol. 2011, 92, 1426–1433. Valentim, B.; Shreya, N.; Paul, B.; Gomes, C.S.; Sant’ovaia, H.; Guedes, A.; Ribeiro, J.; Flores, D.; Pinho, S.; Suárez-Ruiz, I. Characteristics of ferrospheres in fly ashes derived from Bokaro and Jharia (Jharkand, India) coals. Int. J. Coal Geol. 2016, 153, 52–74. Sharonova, O.M.; Anshits, N.N.; Solovyov, L.A.; Salanov, A.N.; Anshits, A.G. Relationship between composition and structure of globules in narrow fractions of ferrospheres. Fuel 2013, 111, 332–343. Vassilev, S.V.; Menendez, R.; Borrego, A.G.; Diaz-Somoano, M.; Martinez-Tarazona, M.R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates. Fuel 2004, 83, 1563–1583. |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
7 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.rights.spa.fl_str_mv |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2071-1050/14/7/3943 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/5e5aeff3-7ad3-4ef9-9d31-df67199dae05/download https://repositorio.cuc.edu.co/bitstreams/6232b962-9cca-4936-befb-c70aca7a6972/download https://repositorio.cuc.edu.co/bitstreams/55f6ee1d-26b8-4a10-b7e3-2fba55eb399a/download https://repositorio.cuc.edu.co/bitstreams/5623e03c-c7fa-4b90-8f4e-46b8309f4e74/download |
bitstream.checksum.fl_str_mv |
5c6a75ba0ef49ab9e4afa5be5c95c615 e30e9215131d99561d40d6b0abbe9bad 6c6e0a94cfa3fdce92e6ba8a3e97ecce 3378d2de71559aa937a9dab1103761a4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760760060116992 |
spelling |
Neckel, AlcindoPinto, DianaAdelodun, BashirDotto, Guilherme Luiz2022-06-13T01:14:38Z2022-06-13T01:14:38Z2022-03-26Neckel, Alcindo, Diana Pinto, Bashir Adelodun, and Guilherme L. Dotto. 2022. "An Analysis of Nanoparticles Derived from Coal Fly Ash Incorporated into Concrete" Sustainability 14, no. 7: 3943. https://doi.org/10.3390/su140739432071-1050https://hdl.handle.net/11323/9239https://doi.org/10.3390/su1407394310.3390/su14073943Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The environmental benefits of incorporating coal fly ash (CFA) into the concrete manufacturing process as a partial substitute for Portland cement are well known. What is less studied is the potential release of CFA derived nanomineral and amorphous nanoparticles during this process of incorporation. A thorough understanding of this makes it possible to understand the risks of exposure to particulates that are harmful to human health when CFA is mixed into concrete. The general objective of this study is to analyze airborne particulates released when CFA is mixed into concrete at the point of manufacture, focusing on the levels of nanominerals, amorphous nanoparticles and hazardous elements (HEs) contained within that are considered harmful to human health. These airborne particulates can be easily inhaled by plant workers in the absence of personal protective equipment. The authors analyzed samples of ash itself and collected actual airborne particulates using self-made passive samplers installed at the manufacturing plant. Regarding the ash analyzed, iron (Fe) was found in large amounts in relation to calcium (Ca), magnesium (Mg) and silicon (Si). The transport, disposal and application of CFA in civil construction projects can provide an increased efficiency and reduce overall costs associated with the production of concrete. However, CFA poses a threat to human health due to the significant amount of HEs, nanominerals, and amorphous nanoparticles found to be released into the environment at the manufacturing plant.11 páginasapplication/pdfengMDPISwitzerland© 2022 by the authors. Licensee MDPI, Basel, Switzerland.Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2An analysis of nanoparticles derived from coal fly ash incorporated into concreteArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2071-1050/14/7/3943SustainabilityMME—Ministry of Mines and Energy, BRAZIL, National Energy Matrix—2030. 2019. Available online: http://antigo.mme.gov.br/pt/web/guest/secretarias/planejamento-e-desenvolvimento-energetico/publicacoes/matriz-energetica-nacional-2030 (accessed on 12 November 2021).ANEEL—National Electric Energy Agency. 2021. Available online: https://www.aneel.gov.br (accessed on 13 November 2021).Querol, X.; Moreno, N.; Umaña, J.C.; Alastuey, A.; Hernández, E.; López-Soler, A.; Plana, F. Synthesis of zeolites from coal fly ash: An overview. Int. J. Coal Geol. 2002, 50, 413–423.Martinello, K.; Oliveira, M.L.S.; Molossi, F.A.; Ramos, C.G.; Teixeira, E.C.; Kautzmann, R.M.; Silva, L.F.O. Direct identification of hazardous elements in ultra-fine and nanominerals from coal fly ash produced during diesel co-firing. Sci. Total Environ. 2014, 470, 444–452.Lee, Y.R.; Soe, J.T.; Zhang, S.; Ahn, J.W.; Park, M.B.; Ahn, W.S. Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chem. Eng. J. 2017, 317, 821–843.Kikuchi, R. Application of coal ash to environmental improvement. Resour. Conserv. Recycl. 1999, 27, 333–346.Teixeira, E.R.; Mateus, R.; Camões, A.F.; Bragança, L.; Branco, F.G. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 2016, 112, 2221–2230.Liu, Y.; Lu, C.P.; Zhang, H.; Wang, H.Y. Numerical investigation of slip and fracture instability mechanism of coal- rock parting-coal structure (CRCS). J. Struct. Geol. 2019, 118, 265–278.Hossain, M.d.U.; Dong, Y.; Ng, S.T. Influence of supplementary cementitious materials in sustainability performance of concrete industry: A case study in Hong Kong. Case Stud. Constr. Mater. 2021, 15, e00659.Mozgawa, W.; Król, M.; Dyczek, J.; Deja, J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 132, 889–894.Ahmed, S.; Arocho, I. Analysis of cost comparison and effects of change orders during construction: Study of a mass timber and a concrete building project. J. Build. Eng. 2021, 33, 101856.Harihanandh, M.; Viswanathan, K.; Krishnaraja, A. Comparative study on chemical and morphology properties of nano fly ash in concrete. Mater. Today Proc. 2021, 45, 3132–3136.Ribeiro, J.; DaBoit, K.; Flores, D.; Kronbauer, M.A.; Silva, L.F. Extensive FE-SEM/EDS, HR-TEM/EDS and ToF-SIMS studies of micron- to nano-particles in anthracite fly ash. Sci. Total Environ. 2013, 452, 98–107.Babu, K.; Nageswara Rao, G. Efficiency of fly ash in concrete. Cem. Concr. Compos. 1993, 15, 223–229.Colangelo, F.; Messina, F.; Palma, L.d.; Cioffi, R. Recycling of non-metallic automotive shredder residues and coal fly-ash in cold-bonded aggregates for sustainable concrete. Compos. Part B Eng. 2017, 116, 46–52.Silva, L.F.O.; Boit, K.M.d. Nanominerals and nanoparticles in feed coal and bottom ash: Implications for human health effects. Environ. Monit. Assess. 2010, 174, 187–197.Banfield, J.F.; Zhang, H. Nanoparticles in the Environment. Rev. Mineral. Geochem. 2001, 44, 1–58.Oliveira, M.L.S.; Ward, C.R.; Sampaio, C.H.; Querol, X.; Cutruneo, C.M.N.L.; Taffarel, S.R.; Silva, L.F.O. Partitioning of mineralogical and inorganic geochemical components of coals from Santa Catarina, Brazil, by industrial beneficiation processes. Int. J. Coal Geol. 2013, 116, 75–92.Silva, L.F.O.; Pinto, D.; Neckel, A.; Dotto, G.L.; Oliveira, M.L.S. The impact of air pollution on the rate of degradation of the fortress of Florianópolis Island, Brazil. Chemosphere 2020, 251, 126838.Oliveira, M.L.S.; Flores, E.M.M.; Dotto, G.L.; Neckel, A.; Silva, L.F.O. Nanomineralogy of mortars and ceramics from the Forum of Caesar and Nerva (Rome, Italy): The protagonist of black crusts produced on historic buildings. J. Clean. Prod. 2021, 278, 123982.Trejos, E.M.; Silva, L.F.O.; Hower, J.C.; Flores, E.M.M.; González, C.M.; Pachón, J.E.; Aristizábal, B.H. Volcanic emissions and atmospheric pollution: A study of nanoparticles. Geosci. Front. 2021, 12, 746–755.Silva, L.F.O.; Moreno, T.; Querol, X. An introductory TEM study of Fe-nanominerals within coal fly ash. Sci. Total Environ. 2009, 407, 4972–4974.Quispe, D.; Pérez-López, R.; Silva, L.F.O.; Nieto, J.M. Changes in mobility of hazardous elements during coal combustion in Santa Catarina power plant (Brazil). Fuel 2012, 94, 495–503.Cutruneo, C.M.N.L.; Oliveira, M.L.S.; Ward, C.R.; Hower, J.C.; Brum, I.A.S.d.; Sampaio, C.H.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F.O. A mineralogical and geochemical study of three Brazilian coal cleaning rejects: Demonstration of electron beam applications. Int. J. Coal Geol. 2014, 130, 33–52.Cerqueira, B.; Vega, F.A.; Serra, C.; Silva, L.F.O.; Andrade, M.L. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: A preliminary study of the distribution of Cu2+ and cu2+/pb2+ on a BT horizon surfaces. J. Hazard. Mater. 2011, 195, 422–431.Silva, L.F.O.; Hower, J.; Izquierdo, M.; Querol, X. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure. Sci. Total Environ. 2010, 408, 5117–5122.Silva, L.F.O.; Jasper, A.; Andrade, M.L.; Sampaio, C.H.; Dai, S.; Li, X.; Li, T.; Chen, W.; Wang, X.; Liu, H.; et al. Applied investigation on the interaction of hazardous elements binding on ultrafine and nanoparticles in Chinese anthracite-derived fly ash. Sci. Total Environ. 2012, 419, 250–264.Silva, L.F.O.; Oliveira, M.L.S.; Sampaio, C.H.; De Brum, I.A.S.; Hower, J.C. Vanadium and nickel speciation in pulverized coal and petroleum coke co-combustion. Energy Fuels 2013, 27, 1194–1203.Ramos, C.G.; Querol, X.; Oliveira, M.L.S.; Pires, K.; Kautzmann, R.M.; Silva, L.F. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer. Sci. Total Environ. 2015, 512, 371–380.Schneider, I.L.; Teixeira, E.C.; Silva, L.F.O.; Wiegand, F. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 2015, 6, 877–885.Wilcox, J.; Wang, B.; Rupp, E.; Taggart, R.; Hsu-Kim, H.; Oliveira, M.; Cutruneo, C.; Taffarel, S.; Silva, L.F.; Hopps, S.; et al. Observations and assessment of fly ashes from high-sulfur bituminous coals and blends of high-sulfur bituminous and subbituminous coals: Environmental processes recorded at the macro and nanometer scale. Energy Fuels 2015, 29, 7168–7177.Civeira, M.S.; Ramos, C.G.; Oliveira, M.L.S.; Kautzmann, R.M.; Taffarel, S.R.; Teixeira, E.C.; Silva, L.F. Nano-mineralogy of suspended sediment during the beginning of coal rejects spill. Chemosphere 2016, 145, 142–147.Dalmora, A.C.; Ramos, C.G.; Querol, X.; Kautzmann, R.M.; Oliveira, M.L.S.; Taffarel, S.R.; Moreno, T.; Silva, L.F. Nanoparticulate mineral matter from basalt dust wastes. Chemosphere 2016, 144, 2013–2017.Dalmora, A.C.; Ramos, C.; Oliveira, M.; Teixeira, E.; Kautzmann, R.; Taffarel, S.; De Brum, I.; Silva, L.F. Chemical characterization, nano-particle mineralogy and particle size distribution of basalt dust wastes. Sci. Total Environ. 2016, 539, 560–565.León-Mejía, G.; Silva, L.F.O.; Civeira, M.S.; Da Silva, J.; Henriques, J.A.P. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells. Environ. Sci. Pollut. Res. 2016, 23, 24019–24031.Rodriguez-Iruretagoiena, A.; De Vallejuelo, S.; De Diego, A.; De Leão, F.; De Medeiros, D.; Oliveira, M.; Taffarel, S.; Arana, G.; Madariaga, J.; Silva, L.F. The mobilization of hazardous elements after a tropical storm event in a polluted estuary. Sci. Total Environ. 2016, 565, 721–729.Sehn, J.; De Leão, F.; Da Boit, K.; Oliveira, M.; Hidalgo, G.; Sampaio, C.; Silva, L.F. Nanomineralogy in the real world: A perspective on nanoparticles in the environmental impacts of coal fire. Chemosphere 2016, 147, 439–443.Dutta, M.; Saikia, J.; Taffarel, S.R.; Waanders, F.B.; De Medeiros, D.; Cutruneo, C.M.; Saikia, B.K. Environmental assessment and nano-mineralogical characterization of coal, overburden and sediment from Indian coal mining acid drainage. Geosci. Front. 2017, 8, 1285–1297.Sánchez-Peña, N.E.; Narváez-Semanate, J.L.; Pabón-Patiño, D.; Fernández-Mera, J.E.; Oliveira, M.L.; Da Boit, K.; Tutikian, B.; Crissien, T.; Pinto, D.; Serrano, I.; et al. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 2018, 191, 1048–1055.León-Mejía, G.; Machado, M.N.; Okuro, R.T.; Silva, L.F.; Telles, C.; Dias, J.; Niekraszewicz, L.; Da Silva, J.; Henriques, J.A.P.; Zin, W.A. Intratracheal instillation of coal and coal fly ash particles in mice induces DNA damage and translocation of metals to extrapulmonary tissues. Sci. Total Environ. 2018, 625, 589–599.Nordin, A.P.; Da Silva, J.; De Souza, C.; Niekraszewicz, L.A.B.; Dias, J.F.; Da Boit, K.; Oliveira, M.L.S.; Grivicich, I.; Garcia, A.L.; Silva, L.F.; et al. In vitro genotoxic effect of secondary minerals crystallized in rocks from coal mine drainage. J. Hazard. Mater. 2018, 346, 263–272.Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S.; Sampaio, C.H. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 2020, 254, 126822.Silva, L.F.O.; Pinto, D.; Neckel, A.; Oliveira, M.L.S. An analysis of vehicular exhaust derived nanoparticles and historical Belgium fortress building interfaces. Geosci. Front. 2020, 11, 2053–2060.Lima, B.D.; Teixeira, E.C.; Hower, J.C.; Civeira, M.S.; Ramírez, O.; Yang, C.; Oliveira, M.L.S.; Silva, L.F.O. Metal-enriched nanoparticles and black carbon: A perspective from the Brazil railway system air pollution. Geosci. Front. 2021, 12, 101129.Neckel, A.; Oliveira, M.L.S.; Bolaño, L.J.C.; Maculan, L.S.; Moro, L.; Bodah, E.T.; Moreno-Ríos, A.L.; Bodah, B.W.; Silva, L.F. Biophysical matter in a marine estuary identified by the Sentinel-3B OLCI satellite and the presence of terrestrial iron (Fe) nanoparticles. Mar. Pollut. Bull. 2021, 173, 112925.Oliveira, M.L.; Neckel, A.; Silva, L.F.; Dotto, G.L.; Maculan, L.S. Environmental aspects of the depreciation of the culturally significant Wall of Cartagena de Indias—Colombia. Chemosphere 2021, 265, 129119.Ravindra Babu, S.; Nguyen, L.S.P.; Sheu, G.R.; Griffith, S.M.; Pani, S.K.; Huang, H.Y.; Lin, N.H. Long-range transport of La Soufrière volcanic plume to the western North Pacific: Influence on atmospheric mercury and aerosol properties. Atmos. Environ. 2022, 268, 118806.Zhu, Q.; Li, J.; Li, G.; Wen, S.; Yu, R.; Tang, C.; Feng, X.; Liu, X. Characteristics of Sandstone-type Uranium Mineralization in the Hangjinqi Region of the Northeastern Ordos Basin: Clues from Clay Mineral Studies. Ore Geol. Rev. 2021, 141, 104642.Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. Pore structure evolution characteristics of sandstone uranium ore during acid leaching. Nucl. Eng. Technol. 2021, 53, 4033–4041.Yue, L.; Jiao, Y.; Fayek, M.; Wu, L.; Rong, H. Micromorphologies and sulfur isotopic compositions of pyrite in sandstone-hosted uranium deposits: A review and implications for ore genesis. Ore Geol. Rev. 2021, 139, 104512.Zhang, J.; Cheng, J.C.P.; Lo, I.M.C. Life cycle carbon footprint measurement of Portland cement and ready mix concrete for a city with local scarcity of resources like Hong Kong. Int. J. Life Cycle Assess. 2014, 19, 745–757.Rafieizonooz, M.; Mirza, J.; Salim, M.R.; Hussin, M.W.; Khankhaje, E. Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Constr. Build. Mater. 2016, 116, 15–24.Gao, Z.F.; Long, H.M.; Dai, B.; Gao, X.P. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion. J. Hazard. Mater. 2019, 373, 335–346.Oliveira, M.L.S.; Ward, C.R.; Izquierdo, M.; Sampaio, C.H.; Brum, I.A.S.d.; Kautzmann, R.M.; Sabedot, S.; Querol, X.; Silva, L.F.O. Chemical composition and minerals in pyrite ash of an abandoned sulphuric acid production plant. Sci. Total Environ. 2012, 430, 34–47.Oliveira, M.L.S.; Ward, C.R.; French, D.; Hower, J.C.; Querol, X.; Silva, L.F.O. Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil. Int. J. Coal Geol. 2012, 94, 314–325.Mench, M.; Lepp, N.; Bert, V.; Schwitzguébel, J.P.; Gawronski, S.W.; Schröder, P.; Vangronsveld, J. Successes and limitations of phytotechnologies at field scale: Outcomes, assessment and outlook from cost action 859. J. Soils Sediments 2010, 10, 1039–1070.Lee, S.H.; Lee, J.S.; Choi, Y.J.; Kim, J.G. In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere 2009, 77, 1069–1075.Ŝaltauskaitė, J.; Kniuipytė, I.; Praspaliauskas, M. Earthworm Eisenia fetida potential for sewage sludge amended soil valorization by heavy metal remediation and soil quality improvement. J. Hazard. Mater. 2022, 424, 127316.He, J.; Cai, Y.; Lv, J.; Zhang, L. Primary investigation of quartz as a possible carcinogen in coals of Xuanwei and Fuyuan, high lung cancer incidence area in China. Environ. Earth Sci. 2012, 67, 1679–1684.Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Tromp, P.; Wu, G.; Wei, F.; Xu, J.; Seow, W.J.; Chapman, R.S. Quartz in ash, and air in a high lung cancer incidence area in China. Environ. Pollut. 2017, 221, 318–325.Downward, G.S.; Hu, W.; Rothman, N.; Reiss, B.; Wu, G.; Wei, F.; Chapman, R.S.; Portengen, L.; Qing, L.; Vermeulen, R. Polycyclic Aromatic Hydrocarbon Exposure in Household Air Pollution from Solid Fuel Combustion among the Female Population of Xuanwei and Fuyuan Counties, China. Environ. Sci. Technol. 2014, 48, 14632–14641.Onchoke, K.K. 13C NMR chemical shift assignments of nitrated benzo[a]pyrenes based on two-dimensional techniques and DFT/GIAO calculations. Results Chem. 2021, 3, 100099.Navarrete, I.; Vargas, F.; Martinez, P.; Paul, A.; Lopez, M. Flue gas desulfurization (FGD) fly ash as a sustainable, safe alternative for cement-based materials. J. Clean. Prod. 2021, 283, 124646.Ramakrishnan, K.; Depak, S.R.; Hariharan, K.R.; Abid, S.R.; Murali, G.; Cecchin, D.; Fediuk, R.; Amran, Y.H.M.; Abdelgader, H.S.; Khatib, J.M. Standard and modified falling mass impact tests on preplaced aggregate fibrous concrete and slurry infiltrated fibrous concrete. Constr. Build. Mater. 2021, 298, 123857.Zhao, Y.; Zhang, J.; Sun, J.; Bai, X.; Zheng, C. Mineralogy, Chemical Composition, and Microstructure of Ferrospheres in Fly Ashes from Coal Combustion. Energy Fuels 2006, 20, 1490–1497.Strzałkowska, E. Morphology, chemical and mineralogical composition of magnetic fraction of coal fly ash. Int. J. Coal Geol. 2021, 240, 103746.Matjie, R.H.; French, D.; Ward, C.R.; Pistorius, P.C.; Li, Z. Behaviour of coal mineral matter in sintering and slagging of ash during the gasification process. Fuel Process. Technol. 2011, 92, 1426–1433.Valentim, B.; Shreya, N.; Paul, B.; Gomes, C.S.; Sant’ovaia, H.; Guedes, A.; Ribeiro, J.; Flores, D.; Pinho, S.; Suárez-Ruiz, I. Characteristics of ferrospheres in fly ashes derived from Bokaro and Jharia (Jharkand, India) coals. Int. J. Coal Geol. 2016, 153, 52–74.Sharonova, O.M.; Anshits, N.N.; Solovyov, L.A.; Salanov, A.N.; Anshits, A.G. Relationship between composition and structure of globules in narrow fractions of ferrospheres. Fuel 2013, 111, 332–343.Vassilev, S.V.; Menendez, R.; Borrego, A.G.; Diaz-Somoano, M.; Martinez-Tarazona, M.R. Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization. 3. Characterization of magnetic and char concentrates. Fuel 2004, 83, 1563–1583.111714Al–Ca–Fe–Mg–Si spheresComplex structureFuture projectsCoal fly ashMineralogyPublicationORIGINALsustainability-14-03943.pdfsustainability-14-03943.pdfapplication/pdf3129229https://repositorio.cuc.edu.co/bitstreams/5e5aeff3-7ad3-4ef9-9d31-df67199dae05/download5c6a75ba0ef49ab9e4afa5be5c95c615MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6232b962-9cca-4936-befb-c70aca7a6972/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTsustainability-14-03943.pdf.txtsustainability-14-03943.pdf.txttext/plain53934https://repositorio.cuc.edu.co/bitstreams/55f6ee1d-26b8-4a10-b7e3-2fba55eb399a/download6c6e0a94cfa3fdce92e6ba8a3e97ecceMD53THUMBNAILsustainability-14-03943.pdf.jpgsustainability-14-03943.pdf.jpgimage/jpeg15901https://repositorio.cuc.edu.co/bitstreams/5623e03c-c7fa-4b90-8f4e-46b8309f4e74/download3378d2de71559aa937a9dab1103761a4MD5411323/9239oai:repositorio.cuc.edu.co:11323/92392024-09-17 11:01:10.191https://creativecommons.org/licenses/by-nc-sa/4.0/© 2022 by the authors. Licensee MDPI, Basel, Switzerland.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |