A novel data dissemination model for organic data flows
The number of computing devices of the IoT are expected to grow exponentially. To address the communication needs of the IoT, research is being done to develop new networking architectures and to extend existing architectures. An area that lacks attention in these efforts is the emphasis on utilisat...
- Autores:
-
Foerster, Anna
Udugama, Asanga
Görg, Carmelita
Kuladinithi, Koojana
Timm-Giel, Andreas
Cama Pinto, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/974
- Acceso en línea:
- https://hdl.handle.net/11323/974
https://repositorio.cuc.edu.co/
- Palabra clave:
- Internet of things
Opportunistic networks
Organic data flows
Reinforcement algorithms
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_0b416b8a57f96fc10d438d21bd5f5149 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/974 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A novel data dissemination model for organic data flows |
title |
A novel data dissemination model for organic data flows |
spellingShingle |
A novel data dissemination model for organic data flows Internet of things Opportunistic networks Organic data flows Reinforcement algorithms |
title_short |
A novel data dissemination model for organic data flows |
title_full |
A novel data dissemination model for organic data flows |
title_fullStr |
A novel data dissemination model for organic data flows |
title_full_unstemmed |
A novel data dissemination model for organic data flows |
title_sort |
A novel data dissemination model for organic data flows |
dc.creator.fl_str_mv |
Foerster, Anna Udugama, Asanga Görg, Carmelita Kuladinithi, Koojana Timm-Giel, Andreas Cama Pinto, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Foerster, Anna Udugama, Asanga Görg, Carmelita Kuladinithi, Koojana Timm-Giel, Andreas Cama Pinto, Alejandro |
dc.subject.eng.fl_str_mv |
Internet of things Opportunistic networks Organic data flows Reinforcement algorithms |
topic |
Internet of things Opportunistic networks Organic data flows Reinforcement algorithms |
description |
The number of computing devices of the IoT are expected to grow exponentially. To address the communication needs of the IoT, research is being done to develop new networking architectures and to extend existing architectures. An area that lacks attention in these efforts is the emphasis on utilisation of omnipresent local data. There are a number of issues (e.g., underutilisation of local resources and dependence on cloud based data) that need to be addressed to exploit the benefits of utilising local data. We present a novel data dissemination model, called the Organic Data Dissemination (ODD) model to utilise the omni-present data around us, where devices deployed with the ODD model are able to operate even without the existence of networking infrastructure. The realisation of the ODD model requires innovations in many different area including the areas of opportunistic communications, naming of information, direct peer-to-peer communications and reinforcement learning. This paper focuses on highlighting the usage of the ODD model in real application scenarios and the details of the architectural components. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2018-11-14T16:59:34Z |
dc.date.available.none.fl_str_mv |
2018-11-14T16:59:34Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1867-8211 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/974 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1867-8211 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/974 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4b0c6fd2-804f-4176-b897-babc039242b8/download https://repositorio.cuc.edu.co/bitstreams/067522f2-dc4a-4a94-a750-321ce3d72dc7/download https://repositorio.cuc.edu.co/bitstreams/245dcfba-4c75-407c-801b-72380b53ec43/download https://repositorio.cuc.edu.co/bitstreams/41be995f-0640-417d-9166-65715cf251fd/download |
bitstream.checksum.fl_str_mv |
42998e1140c8a27ba9c19bf118bde2ae 8a4605be74aa9ea9d79846c1fba20a33 cb3448c8a48a84c054583c4fab9546ce 43736ef9552c9be592d58141f60977a6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760824143839232 |
spelling |
Foerster, AnnaUdugama, AsangaGörg, CarmelitaKuladinithi, KoojanaTimm-Giel, AndreasCama Pinto, Alejandro2018-11-14T16:59:34Z2018-11-14T16:59:34Z20151867-8211https://hdl.handle.net/11323/974Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The number of computing devices of the IoT are expected to grow exponentially. To address the communication needs of the IoT, research is being done to develop new networking architectures and to extend existing architectures. An area that lacks attention in these efforts is the emphasis on utilisation of omnipresent local data. There are a number of issues (e.g., underutilisation of local resources and dependence on cloud based data) that need to be addressed to exploit the benefits of utilising local data. We present a novel data dissemination model, called the Organic Data Dissemination (ODD) model to utilise the omni-present data around us, where devices deployed with the ODD model are able to operate even without the existence of networking infrastructure. The realisation of the ODD model requires innovations in many different area including the areas of opportunistic communications, naming of information, direct peer-to-peer communications and reinforcement learning. This paper focuses on highlighting the usage of the ODD model in real application scenarios and the details of the architectural components.Foerster, Anna-e3063e57-6c7f-456e-b579-93cf7205bf3f-0Udugama, Asanga-ddb05996-42bb-4aaf-9bb1-bd25b5785b5e-0Görg, Carmelita-adce0218-c8ef-4632-a496-7e2dfc0e63d3-0Kuladinithi, Koojana-4eeeb5c2-17b7-4cdc-94ff-0460362812bc-0Timm-Giel, Andreas-64f19f9d-b446-4772-8dba-754f841ca34c-0Cama Pinto, Alejandro-0000-0002-1364-7394-600engLecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications EngineeringAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Internet of thingsOpportunistic networksOrganic data flowsReinforcement algorithmsA novel data dissemination model for organic data flowsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA novel data dissemination model for organic data flows.pdfA novel data dissemination model for organic data flows.pdfapplication/pdf176987https://repositorio.cuc.edu.co/bitstreams/4b0c6fd2-804f-4176-b897-babc039242b8/download42998e1140c8a27ba9c19bf118bde2aeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/067522f2-dc4a-4a94-a750-321ce3d72dc7/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILA novel data dissemination model for organic data flows.pdf.jpgA novel data dissemination model for organic data flows.pdf.jpgimage/jpeg38678https://repositorio.cuc.edu.co/bitstreams/245dcfba-4c75-407c-801b-72380b53ec43/downloadcb3448c8a48a84c054583c4fab9546ceMD54TEXTA novel data dissemination model for organic data flows.pdf.txtA novel data dissemination model for organic data flows.pdf.txttext/plain1425https://repositorio.cuc.edu.co/bitstreams/41be995f-0640-417d-9166-65715cf251fd/download43736ef9552c9be592d58141f60977a6MD5511323/974oai:repositorio.cuc.edu.co:11323/9742024-09-17 14:05:37.68open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |