Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization
Technological surveillance in research centers and universities focuses on carrying out a systematic follow-up on the development of research lines, the research leaders, the possibilities of scientific-technological collaboration, and to the knowledge of current trends from research. All these elem...
- Autores:
-
amelec, viloria
Pineda Lezama, Omar Bonerge
Reniz, Javier
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4839
- Acceso en línea:
- https://hdl.handle.net/11323/4839
https://repositorio.cuc.edu.co/
- Palabra clave:
- technological surveillance
collaborative filtering
recommendation system
academic context
research centers
multidimensionality
factorization tensor
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_0b083237294e4e05037aadf25f66a08d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4839 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
title |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
spellingShingle |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization technological surveillance collaborative filtering recommendation system academic context research centers multidimensionality factorization tensor |
title_short |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
title_full |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
title_fullStr |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
title_full_unstemmed |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
title_sort |
Recommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization |
dc.creator.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Reniz, Javier |
dc.contributor.author.spa.fl_str_mv |
amelec, viloria Pineda Lezama, Omar Bonerge Reniz, Javier |
dc.subject.spa.fl_str_mv |
technological surveillance collaborative filtering recommendation system academic context research centers multidimensionality factorization tensor |
topic |
technological surveillance collaborative filtering recommendation system academic context research centers multidimensionality factorization tensor |
description |
Technological surveillance in research centers and universities focuses on carrying out a systematic follow-up on the development of research lines, the research leaders, the possibilities of scientific-technological collaboration, and to the knowledge of current trends from research. All these elements allow guiding the researches and supporting the scientific-technological strategy. This research proposes a model of technological surveillance supported by a recommendation system as an application that focuses on the preferences of researchers in universities and research centers. The multidimensional tensor factorization approach, based on grouping to build a recommendation system and to validate the increase in tensors, improves the accuracy of the recommendation. The experiments have been carried out in real data sets as the university and research centers. The results confirm that the dispersion issues are improved within a wider margin in both data sets. In addition, the proposed approach states that the increase in the number of dimensions shows a 7-10% improvement in accuracy and memory, which increases performance as an expert recommendation system. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-06-10T13:57:09Z |
dc.date.available.none.fl_str_mv |
2019-06-10T13:57:09Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0000-2010 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4839 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0000-2010 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4839 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Gaitán-Angulo M. Amelec Viloria, Jenny-Paola Lis-Gutiérrez, Dionicio Neira, Enrrique López, Ernesto Joaquín Steffens Sanabria, Claudia Patricia Fernández Castro. (2018) Influence of the Management of the Innovation in the Business Performance of the Family Business: Application to the Printing Sector in Colombia. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [2] Lim, H., & Kim, H. J. (2017). Item recommendation using tag emotion in social cataloging services. Expert Systems with Applications, 89, 179-187. [3] Balasubramanian, K., Kim, J., Puretskiy, A., Berry, M. W., & Park, H. (2010). A fast algorithm for nonnegative tensor factorization using block coordinate descent and an active-set-type method. Text Mining. [4] Bobadilla, J., Hernando, A., Ortega, F., & Bernal, J. (2011). A framework for collaborative filtering recommender systems. Expert Systems with Applications, 38(12), 14609-14623. [5] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749. [6] Arora, A., Taneja, V., Parashar, S., & Mishra, A. (2016). Cross-domain based event recommendation using tensor factorization. Open Computer Science, 6(1). [7] Harper, F. M., & Konstan, J. A. (2016). The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), 19. [8] Lee, J., Lee, D., Lee, Y. C., Hwang, W. S., & Kim, S. W. (2016). Improving the accuracy of top-n recommendation using a preference model. Information Sciences, 348, 290-304. [9] Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3), 455-500. [10] Bokde, D., Girase, S., & Mukhopadhyay, D. (2015). Matrix factorization model in collaborative filtering algorithms: A survey. Procedia Computer Science, 49, 136-146. [11] Frolov, E., & Oseledets, I. (2017). Tensor methods and recommender systems. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(3). [12] Braunhofer, M., & Ricci, F. (2017). Selective contextual information acquisition in travel recommender systems. Information Technology & Tourism, 17(1), 5-29. [13] Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261-273. [14] Gogna, A., & Majumdar, A. (2015). Matrix completion incorporating auxiliary information for recommender system design. Expert Systems with Applications, 42(14), 5789-5799. [15] Lis-Gutiérrez JP., Gaitán-Angulo M., Lis-Gutiérrez M., Viloria A., Cubillos J., Rodríguez-Garnica PA. (2018) Electronic and Traditional Savings Accounts in Colombia: A Spatial Agglomeration Model. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [16] Baltrunas, L., & Ricci, F. (2014). Experimental evaluation of context-dependent collaborative filtering using item splitting. User Modeling and User-Adapted Interaction, 24(1-2), 7-34. [17] Kamatkar S.J., Tayade A., Viloria A., Hernández-Chacín A. (2018)a . Application of Classification Technique of Data Mining for Employee Management System. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [18] Kamatkar S.J., Kamble A., Viloria A., Hernández-Fernandez L., Cali E.G. (2018)b. Database Performance Tuning and Query Optimization. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e5d9ae7e-516d-4d56-8f91-5763207005ef/download https://repositorio.cuc.edu.co/bitstreams/9293cb89-45f3-4d57-96c5-89a160f5adf1/download https://repositorio.cuc.edu.co/bitstreams/bd1a570b-fa4b-4ad0-86f8-cd21f7374525/download https://repositorio.cuc.edu.co/bitstreams/940f3107-ad1b-492d-ac07-18d1145ca8ab/download https://repositorio.cuc.edu.co/bitstreams/e1e040d7-57cc-490d-9e13-626e6617bc38/download |
bitstream.checksum.fl_str_mv |
04d1d255781a0e84932a4795cd4729b5 4460e5956bc1d1639be9ae6146a50347 8a4605be74aa9ea9d79846c1fba20a33 af30aad9a878663222fdb71322c9f9a6 e27def7f58aee4864879cca2bcff99d4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760851661619200 |
spelling |
amelec, viloriaPineda Lezama, Omar BonergeReniz, Javier2019-06-10T13:57:09Z2019-06-10T13:57:09Z20190000-2010https://hdl.handle.net/11323/4839Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Technological surveillance in research centers and universities focuses on carrying out a systematic follow-up on the development of research lines, the research leaders, the possibilities of scientific-technological collaboration, and to the knowledge of current trends from research. All these elements allow guiding the researches and supporting the scientific-technological strategy. This research proposes a model of technological surveillance supported by a recommendation system as an application that focuses on the preferences of researchers in universities and research centers. The multidimensional tensor factorization approach, based on grouping to build a recommendation system and to validate the increase in tensors, improves the accuracy of the recommendation. The experiments have been carried out in real data sets as the university and research centers. The results confirm that the dispersion issues are improved within a wider margin in both data sets. In addition, the proposed approach states that the increase in the number of dimensions shows a 7-10% improvement in accuracy and memory, which increases performance as an expert recommendation system.amelec, viloria-b470a232-0d25-444c-89a8-5f8f2c721f8b-600Pineda Lezama, Omar Bonerge-365a03a0-145e-4df5-9abe-f5ccf9d96612-0Reniz, Javier-aba8a2cf-0808-4f66-b84b-356b10eaab2e-0engProcedia Computer ScienceAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2technological surveillancecollaborative filteringrecommendation systemacademic contextresearch centersmultidimensionalityfactorization tensorRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor FactorizationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Gaitán-Angulo M. Amelec Viloria, Jenny-Paola Lis-Gutiérrez, Dionicio Neira, Enrrique López, Ernesto Joaquín Steffens Sanabria, Claudia Patricia Fernández Castro. (2018) Influence of the Management of the Innovation in the Business Performance of the Family Business: Application to the Printing Sector in Colombia. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [2] Lim, H., & Kim, H. J. (2017). Item recommendation using tag emotion in social cataloging services. Expert Systems with Applications, 89, 179-187. [3] Balasubramanian, K., Kim, J., Puretskiy, A., Berry, M. W., & Park, H. (2010). A fast algorithm for nonnegative tensor factorization using block coordinate descent and an active-set-type method. Text Mining. [4] Bobadilla, J., Hernando, A., Ortega, F., & Bernal, J. (2011). A framework for collaborative filtering recommender systems. Expert Systems with Applications, 38(12), 14609-14623. [5] Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering, 17(6), 734-749. [6] Arora, A., Taneja, V., Parashar, S., & Mishra, A. (2016). Cross-domain based event recommendation using tensor factorization. Open Computer Science, 6(1). [7] Harper, F. M., & Konstan, J. A. (2016). The movielens datasets: History and context. ACM Transactions on Interactive Intelligent Systems (TiiS), 5(4), 19. [8] Lee, J., Lee, D., Lee, Y. C., Hwang, W. S., & Kim, S. W. (2016). Improving the accuracy of top-n recommendation using a preference model. Information Sciences, 348, 290-304. [9] Kolda, T. G., & Bader, B. W. (2009). Tensor decompositions and applications. SIAM review, 51(3), 455-500. [10] Bokde, D., Girase, S., & Mukhopadhyay, D. (2015). Matrix factorization model in collaborative filtering algorithms: A survey. Procedia Computer Science, 49, 136-146. [11] Frolov, E., & Oseledets, I. (2017). Tensor methods and recommender systems. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(3). [12] Braunhofer, M., & Ricci, F. (2017). Selective contextual information acquisition in travel recommender systems. Information Technology & Tourism, 17(1), 5-29. [13] Isinkaye, F. O., Folajimi, Y. O., & Ojokoh, B. A. (2015). Recommendation systems: Principles, methods and evaluation. Egyptian Informatics Journal, 16(3), 261-273. [14] Gogna, A., & Majumdar, A. (2015). Matrix completion incorporating auxiliary information for recommender system design. Expert Systems with Applications, 42(14), 5789-5799. [15] Lis-Gutiérrez JP., Gaitán-Angulo M., Lis-Gutiérrez M., Viloria A., Cubillos J., Rodríguez-Garnica PA. (2018) Electronic and Traditional Savings Accounts in Colombia: A Spatial Agglomeration Model. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham [16] Baltrunas, L., & Ricci, F. (2014). Experimental evaluation of context-dependent collaborative filtering using item splitting. User Modeling and User-Adapted Interaction, 24(1-2), 7-34. [17] Kamatkar S.J., Tayade A., Viloria A., Hernández-Chacín A. (2018)a . Application of Classification Technique of Data Mining for Employee Management System. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [18] Kamatkar S.J., Kamble A., Viloria A., Hernández-Fernandez L., Cali E.G. (2018)b. Database Performance Tuning and Query Optimization. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, ChamPublicationORIGINALRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization.pdfRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization.pdfapplication/pdf668803https://repositorio.cuc.edu.co/bitstreams/e5d9ae7e-516d-4d56-8f91-5763207005ef/download04d1d255781a0e84932a4795cd4729b5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/9293cb89-45f3-4d57-96c5-89a160f5adf1/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/bd1a570b-fa4b-4ad0-86f8-cd21f7374525/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization.pdf.jpgRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization.pdf.jpgimage/jpeg48664https://repositorio.cuc.edu.co/bitstreams/940f3107-ad1b-492d-ac07-18d1145ca8ab/downloadaf30aad9a878663222fdb71322c9f9a6MD55TEXTRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization.pdf.txtRecommendation of collaborative filtering for a technological surveillance model using Multi-Dimension Tensor Factorization.pdf.txttext/plain22779https://repositorio.cuc.edu.co/bitstreams/e1e040d7-57cc-490d-9e13-626e6617bc38/downloade27def7f58aee4864879cca2bcff99d4MD5611323/4839oai:repositorio.cuc.edu.co:11323/48392024-09-17 14:11:07.308http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |