Central and peripheral fatigue in physical exercise explained: a narrative review
: The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate train...
- Autores:
-
Tornero Aguilera, José Francisco
Jimenez Morcillo, Jorge
Rubio Zarapuz, Alejandro
Clemente Suárez, Vicente Javier
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9261
- Acceso en línea:
- https://hdl.handle.net/11323/9261
https:// doi.org/10.3390/ijerph19073909
https://repositorio.cuc.edu.co/
- Palabra clave:
- Psychophysiology
Muscle fatigue
Muscle activation
Cognition
Gender
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_09c6ce25e4d117426ea50588ed974788 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9261 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Central and peripheral fatigue in physical exercise explained: a narrative review |
title |
Central and peripheral fatigue in physical exercise explained: a narrative review |
spellingShingle |
Central and peripheral fatigue in physical exercise explained: a narrative review Psychophysiology Muscle fatigue Muscle activation Cognition Gender |
title_short |
Central and peripheral fatigue in physical exercise explained: a narrative review |
title_full |
Central and peripheral fatigue in physical exercise explained: a narrative review |
title_fullStr |
Central and peripheral fatigue in physical exercise explained: a narrative review |
title_full_unstemmed |
Central and peripheral fatigue in physical exercise explained: a narrative review |
title_sort |
Central and peripheral fatigue in physical exercise explained: a narrative review |
dc.creator.fl_str_mv |
Tornero Aguilera, José Francisco Jimenez Morcillo, Jorge Rubio Zarapuz, Alejandro Clemente Suárez, Vicente Javier |
dc.contributor.author.spa.fl_str_mv |
Tornero Aguilera, José Francisco Jimenez Morcillo, Jorge Rubio Zarapuz, Alejandro Clemente Suárez, Vicente Javier |
dc.subject.proposal.eng.fl_str_mv |
Psychophysiology Muscle fatigue Muscle activation Cognition Gender |
topic |
Psychophysiology Muscle fatigue Muscle activation Cognition Gender |
description |
: The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate training load. The present narrative review aims to analyze the multifactorial factors of fatigue in physical exercise. To reach this aim, a consensus and critical review were performed using both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases. The main search engines were PubMed, SciELO, and Google Scholar. Central and peripheral fatigue are two unison constructs part of the Integrative Governor theory, in which both psychological and physiological drives and requirements are underpinned by homeostatic principles. The relative activity of each one is regulated by dynamic negative feedback activity, as the fundamental general operational controller. Fatigue is conditioned by factors such as gender, affecting men and women differently. Sleep deprivation or psychological disturbances caused, for example, by stress, can affect neural activation patterns, realigning them and slowing down simple mental operations in the context of fatigue. Then, fatigue can have different origins not only related with physiological factors. Therefore, all these prisms must be considered for future approaches from sport and clinical perspectives. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-16T14:13:48Z |
dc.date.available.none.fl_str_mv |
2022-06-16T14:13:48Z |
dc.date.issued.none.fl_str_mv |
2022-03-25 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. https:// doi.org/10.3390/ijerph19073909 |
dc.identifier.issn.spa.fl_str_mv |
1660-4601 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9261 |
dc.identifier.url.spa.fl_str_mv |
https:// doi.org/10.3390/ijerph19073909 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/ijerph19073909 |
dc.identifier.eissn.spa.fl_str_mv |
1661-7827 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. https:// doi.org/10.3390/ijerph19073909 1660-4601 10.3390/ijerph19073909 1661-7827 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9261 https:// doi.org/10.3390/ijerph19073909 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
International Journal of Environmental Research and Public Health |
dc.relation.references.spa.fl_str_mv |
1. Abd-Elfattah, H.M.; Abdelazeim, F.H.; Elshennawy, S. Physical and Cognitive Consequences of Fatigue: A Review. J. Adv. Res. 2015, 6, 351–358. 2. Meeusen, R.; Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F. Central Fatigue: The Serotonin Hypothesis and Beyond. Sports Med. 2006, 36, 881–909. 3. Cairns, S.P.; Knicker, A.J.; Thompson, M.W.; Sjøgaard, G. Evaluation of Models Used to Study Neuromuscular Fatigue. Exerc. Sport Sci. Rev. 2005, 33, 9–16. 4. McKenna, M.J.; Hargreaves, M. Resolving Fatigue Mechanisms Determining Exercise Performance: Integrative Physiology at Its Finest! J. Appl. Physiol. 2008, 104, 286–287. 5. Zaj ˛ac, A.; Chalimoniuk, M.; Maszczyk, A.; Goła´s, A.; Lngfort, J. Central and Peripheral Fatigue During Resistance Exercise—A Critical Review. J. Hum. Kinet. 2015, 49, 159–169. 6. Tarnopolsky, M.A.; Saris, W.H. Evaluation of gender differences in physiology: An introduction. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 489–492. 7. Bensing, J.M.; Hulsman, R.L.; Schreurs, K.M. Gender Differences in Fatigue: Biopsychosocial Factors Relating to Fatigue in Men and Women. Med. Care 1999, 37, 1078–1083. 8. Hunter, S.K. Sex Differences in Human Fatigability: Mechanisms and Insight to Physiological Responses. Acta Physiol. (Oxf.) 2014, 210, 768–789. 9. Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Med. 2017, 47, 1569–1588. 10. Amann, M. Central and Peripheral Fatigue: Interaction during Cycling Exercise in Humans. Med. Sci. Sports Exerc. 2011, 43, 2039–2045. 11. Monster, A.W.; Chan, H. Isometric Force Production by Motor Units of Extensor Digitorum Communis Muscle in Man. J. Neurophysiol. 1977, 40, 1432–1443. 12. Weir, J.P.; Beck, T.W.; Cramer, J.T.; Housh, T.J. Is Fatigue All in Your Head? A Critical Review of the Central Governor Model. Br. J. Sports Med. 2006, 40, 573–586; discussion 586. 13. Craig, A.; Tran, Y.; Wijesuriya, N.; Boord, P. A Controlled Investigation into the Psychological Determinants of Fatigue. Biol. Psychol. 2006, 72, 78–87. 14. Desmond, P.A.; Hancock, P.A. Active and Passive Fatigue States. In Stress, Workload, and Fatigue; CRC Press: Boca Raton, FL, USA, 2000; pp. 455–465. 15. Lock, A.M.; Bonetti, D.L.; Campbell, A.D.K. The Psychological and Physiological Health Effects of Fatigue. Occup. Med. (Lond.) 2018, 68, 502–511. 16. Leonard, C.; Fanning, N.; Attwood, J.; Buckley, M. The Effect of Fatigue, Sleep Deprivation and Onerous Working Hours on the Physical and Mental Wellbeing of Pre-Registration House Officers. Ir. J. Med. Sci. 1998, 167, 22–25. 17. Clemente-Suárez, V.J. The Application of Cortical Arousal Assessment to Control Neuromuscular Fatigue During Strength Training. J. Mot. Behav. 2017, 49, 429–434. 18. Ament, W.; Verkerke, G.J. Exercise and Fatigue. Sports Med. 2009, 39, 389–422. 19. Gandevia, S.C. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiol. Rev. 2001, 81, 1725–1789. 20. Delp, M.D.; Armstrong, R.B.; Godfrey, D.A.; Laughlin, M.H.; Ross, C.D.; Wilkerson, M.K. Exercise Increases Blood Flow to Locomotor, Vestibular, Cardiorespiratory and Visual Regions of the Brain in Miniature Swine. J. Physiol. 2001, 533 Pt 3, 849–859. 21. Tomporowski, P.D. Effects of Acute Bouts of Exercise on Cognition. Acta Psychol. (Amst.) 2003, 112, 297–324. 22. Williamson, J.W.; McColl, R.; Mathews, D.; Ginsburg, M.; Mitchell, J.H. Activation of the Insular Cortex Is Affected by the Intensity of Exercise. J. Appl. Physiol. 1999, 87, 1213–1219. 23. Leavitt, V.M.; DeLuca, J. Central Fatigue: Issues Related to Cognition, Mood and Behavior, and Psychiatric Diagnoses. PM R 2010, 2, 332–337. 24. Chaudhuri, A.; Behan, P.O. Fatigue and Basal Ganglia. J. Neurol. Sci. 2000, 179, 34–42. 25. Clemente-Suárez, V.J.; Diaz-Manzano, M. Evaluation of Central Fatigue by the Critical Flicker Fusion Threshold in Cyclists. J. Med. Syst. 2019, 43, 61. 26. Clemente Suárez, V.J.; Robles Pérez, J.J. Respuesta Orgánica En Una Simulación de Combate. Sanid. Mil. 2012, 68, 97–100. 27. Yeh, T.-H.; Hwang, H.-M.; Chen, J.-J.; Wu, T.; Li, A.H.; Wang, H.-L. Glutamate Transporter Function of Rat Hippocampal Astrocytes Is Impaired Following the Global Ischemia. Neurobiol. Dis. 2005, 18, 476–483. 28. Thorstensen, J.R.; Taylor, J.L.; Tucker, M.G.; Kavanagh, J.J. Enhanced Serotonin Availability Amplifies Fatigue Perception and Modulates the TMS-Induced Silent Period during Sustained Low-Intensity Elbow Flexions. J. Physiol. 2020, 598, 2685–2701. 29. Ben-Jonathan, N.; Hnasko, R. Dopamine as a Prolactin (PRL) Inhibitor. Endocr. Rev. 2001, 22, 724–763. 30. Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical ExerciseInduced Fatigue: The Role of Serotonergic and Dopaminergic Systems. Braz. J. Med. Biol. Res. 2017, 50, e6432. 31. Foley, T.E.; Fleshner, M. Neuroplasticity of Dopamine Circuits after Exercise: Implications for Central Fatigue. Neuromolecular Med. 2008, 10, 67–80. 32. Meeusen, R.; Van Cutsem, J.; Roelands, B. Endurance Exercise-Induced and Mental Fatigue and the Brain. Exp. Physiol. 2021, 106, 2294–2298. 33. Zhou, Y.; Danbolt, N.C. Glutamate as a Neurotransmitter in the Healthy Brain. J. Neural Transm. 2014, 121, 799–817. 34. Otis, T.S.; Kavanaugh, M.P. Isolation of Current Components and Partial Reaction Cycles in the Glial Glutamate Transporter EAAT2. J. Neurosci. 2000, 20, 2749–2757. 35. Dienel, G.A. Brain Lactate Metabolism: The Discoveries and the Controversies. J. Cereb. Blood Flow Metab. 2012, 32, 1107–1138. 36. Wang, D.; Wang, X. GLT-1 Mediates Exercise-Induced Fatigue through Modulation of Glutamate and Lactate in Rats. Neuropathology 2018, 38, 237–246. 37. Maddock, R.J.; Casazza, G.A.; Buonocore, M.H.; Tanase, C. Vigorous Exercise Increases Brain Lactate and Glx (Glutamate+glutamine): A Dynamic 1H-MRS Study. Neuroimage 2011, 57, 1324–1330. 38. Coxon, J.P.; Cash, R.F.H.; Hendrikse, J.J.; Rogasch, N.C.; Stavrinos, E.; Suo, C.; Yücel, M. GABA Concentration in Sensorimotor Cortex Following High-Intensity Exercise and Relationship to Lactate Levels. J. Physiol. 2018, 596, 691–702. 39. Korzeniewski, B. Pi-Induced Muscle Fatigue Leads to near-Hyperbolic Power—Duration Dependence. Eur. J. Appl. Physiol. 2019, 119, 2201–2213. 40. Myburgh, K.H. Can Any Metabolites Partially Alleviate Fatigue Manifestations at the Cross-Bridge? Med. Sci. Sports Exerc. 2004, 36, 20–27. 41. Woodward, M.; Debold, E.P. Acidosis and Phosphate Directly Reduce Myosin’s Force-Generating Capacity Through Distinct Molecular Mechanisms. Front. Physiol. 2018, 9, 862. 42. Whitten, J.H.D.; Hodgson, D.D.; Drinkwater, E.J.; Prieske, O.; Aboodarda, S.J.; Behm, D.G. Unilateral Quadriceps Fatigue Induces Greater Impairments of Ipsilateral versus Contralateral Elbow Flexors and Plantar Flexors Performance in Physically Active Young Adults. J. Sports Sci. Med. 2021, 20, 300–309. 43. Delgado-Moreno, R.; Robles-Pérez, J.J.; Aznar, S.; Clemente-Suarez, V.J. Inalambric Biofeedback Devices to Analyze Strength Manifestation in Military Population. J. Med. Syst. 2018, 42, 60. 44. Kelly, C.M.; Burnett, A.F.; Newton, M.J. The Effect of Strength Training on Three-Kilometer Performance in Recreational Women Endurance Runners. J. Strength Cond. Res. 2008, 22, 396–403. 45. Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610. 46. Proschinger, S.; Freese, J. Neuroimmunological and Neuroenergetic Aspects in Exercise-Induced Fatigue. Exerc. Immunol. Rev. 2019, 25, 8–19. 47. Steensberg, A.; van Hall, G.; Osada, T.; Sacchetti, M.; Saltin, B.; Klarlund Pedersen, B. Production of Interleukin-6 in Contracting Human Skeletal Muscles Can Account for the Exercise-Induced Increase in Plasma Interleukin-6. J. Physiol. 2000, 529 Pt 1, 237–242. 48. Trinh, B.; Peletier, M.; Simonsen, C.; Plomgaard, P.; Karstoft, K.; Klarlund Pedersen, B.; van Hall, G.; Ellingsgaard, H. Blocking Endogenous IL-6 Impairs Mobilization of Free Fatty Acids during Rest and Exercise in Lean and Obese Men. Cell Rep. Med. 2021, 2, 100396. 49. Davis, M.P.; Walsh, D. Mechanisms of Fatigue. J. Support. Oncol. 2010, 8, 164–174. 50. Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal Muscle Fatigue: Cellular Mechanisms. Physiol. Rev. 2008, 88, 287–332. 51. Corona, B.T.; Balog, E.M.; Doyle, J.A.; Rupp, J.C.; Luke, R.C.; Ingalls, C.P. Junctophilin Damage Contributes to Early Strength Deficits and EC Coupling Failure after Eccentric Contractions. Am. J. Physiol. Cell Physiol. 2010, 298, C365–C376. 52. Debold, E.P.; Fitts, R.H.; Sundberg, C.W.; Nosek, T.M. Muscle Fatigue from the Perspective of a Single Crossbridge. Med. Sci. Sports Exerc. 2016, 48, 2270–2280. 53. McCarty, R. The Fight-or-Flight Response: A Cornerstone of Stress Research. In Stress: Concepts, Cognition, Emotion, and Behavior; Elsevier: Amsterdam, The Netherlands, 2016; pp. 33–37. 54. Romero, L.M. Fight or Flight Responses; Elsevier: Amsterdam, The Netherlands, 2019. 55. Tank, A.W.; Lee Wong, D. Peripheral and Central Effects of Circulating Catecholamines. Compr. Physiol. 2015, 5, 1–15. 56. Coutts, A.J.; Reaburn, P. Monitoring Changes in Rugby League Players’ Perceived Stress and Recovery during Intensified Training. Percept. Mot. Skills 2008, 106, 904–916. 57. Shimo, S.; Sakamoto, Y.; Amari, T.; Chino, M.; Sakamoto, R.; Nagai, M. Differences between the Sexes in the Relationship between Chronic Pain, Fatigue, and QuickDASH among Community-Dwelling Elderly People in Japan. Healthcare 2021, 9, 630. 58. LaSorda, K.R.; Gmelin, T.; Kuipers, A.L.; Boudreau, R.M.; Santanasto, A.J.; Christensen, K.; Renner, S.W.; Wojczynski, M.K.; Andersen, S.L.; Cosentino, S.; et al. Epidemiology of Perceived Physical Fatigability in Older Adults: The Long Life Family Study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, e81–e88. 59. Porter, M.M.; Stuart, S.; Boij, M.; Lexell, J. Capillary Supply of the Tibialis Anterior Muscle in Young, Healthy, and Moderately Active Men and Women. J. Appl. Physiol. 2002, 92, 1451–1457. 60. Roepstorff, C.; Steffensen, C.H.; Madsen, M.; Stallknecht, B.; Kanstrup, I.-L.; Richter, E.A.; Kiens, B. Gender Differences in Substrate Utilization during Submaximal Exercise in Endurance-Trained Subjects. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E435–E447. 61. Maher, A.C.; Fu, M.H.; Isfort, R.J.; Varbanov, A.R.; Qu, X.A.; Tarnopolsky, M.A. Sex Differences in Global MRNA Content of Human Skeletal Muscle. PLoS ONE 2009, 4, e6335. 62. Roth, S.M.; Ferrell, R.E.; Peters, D.G.; Metter, E.J.; Hurley, B.F.; Rogers, M.A. Influence of Age, Sex, and Strength Training on Human Muscle Gene Expression Determined by Microarray. Physiol. Genom. 2002, 10, 181–190. 63. Wan, J.; Qin, Z.; Wang, P.; Sun, Y.; Liu, X. Muscle Fatigue: General Understanding and Treatment. Exp. Mol. Med. 2017, 49, e384. 64. Welle, S.; Tawil, R.; Thornton, C.A. Sex-Related Differences in Gene Expression in Human Skeletal Muscle. PLoS ONE 2008, 3, e1385. 65. Harmer, A.R.; Ruell, P.A.; Hunter, S.K.; McKenna, M.J.; Thom, J.M.; Chisholm, D.J.; Flack, J.R. Effects of Type 1 Diabetes, Sprint Training and Sex on Skeletal Muscle Sarcoplasmic Reticulum Ca2+ Uptake and Ca2+-ATPase Activity. J. Physiol. 2014, 592, 523–535. 66. Thom, J.M.; Thompson, M.W.; Ruell, P.A.; Bryant, G.J.; Fonda, J.S.; Harmer, A.R.; Janse de Jonge, X.A.; Hunter, S.K. Effect of 10-Day Cast Immobilization on Sarcoplasmic Reticulum Calcium Regulation in Humans. Acta Physiol. Scand. 2001, 172, 141–147. 67. Becker, J.B.; Arnold, A.P.; Berkley, K.J.; Blaustein, J.D.; Eckel, L.A.; Hampson, E.; Herman, J.P.; Marts, S.; Sadee, W.; Steiner, M.; et al. Strategies and Methods for Research on Sex Differences in Brain and Behavior. Endocrinology 2005, 146, 1650–1673. 68. Hodes, G.E. Sex, Stress, and Epigenetics: Regulation of Behavior in Animal Models of Mood Disorders. Biol. Sex Differ. 2013, 4, 1. 69. Koolschijn, P.C.M.P.; Crone, E.A. Sex Differences and Structural Brain Maturation from Childhood to Early Adulthood. Dev. Cogn. Neurosci. 2013, 5, 106–118. 70. Gorbet, D.J.; Mader, L.B.; Staines, W.R. Sex-Related Differences in the Hemispheric Laterality of Slow Cortical Potentials during the Preparation of Visually Guided Movements. Exp. Brain Res. 2010, 202, 633–646. 71. Lissek, S.; Hausmann, M.; Knossalla, F.; Peters, S.; Nicolas, V.; Güntürkün, O.; Tegenthoff, M. Sex Differences in Cortical and Subcortical Recruitment during Simple and Complex Motor Control: An FMRI Study. Neuroimage 2007, 37, 912–926. 72. Hunter, S.K.; Griffith, E.E.; Schlachter, K.M.; Kufahl, T.D. Sex Differences in Time to Task Failure and Blood Flow for an Intermittent Isometric Fatiguing Contraction. Muscle Nerve 2009, 39, 42–53. 73. Guenette, J.A.; Romer, L.M.; Querido, J.S.; Chua, R.; Eves, N.D.; Road, J.D.; McKenzie, D.C.; Sheel, A.W. Sex Differences in Exercise-Induced Diaphragmatic Fatigue in Endurance-Trained Athletes. J. Appl. Physiol. 2010, 109, 35–46. 74. Hunter, S.K.; Enoka, R.M. Sex Differences in the Fatigability of Arm Muscles Depends on Absolute Force during Isometric Contractions. J. Appl. Physiol. 2001, 91, 2686–2694. 75. Russ, D.W.; Kent-Braun, J.A. Sex Differences in Human Skeletal Muscle Fatigue Are Eliminated under Ischemic Conditions. J. Appl. Physiol. 2003, 94, 2414–2422. 76. Pincivero, D.M.; Coelho, A.J.; Campy, R.M. Gender Differences in Perceived Exertion during Fatiguing Knee Extensions. Med. Sci. Sports Exerc. 2004, 36, 109–117. 77. Kent-Braun, J.A.; Fitts, R.H.; Christie, A. Skeletal Muscle Fatigue. Compr. Physiol. 2012, 2, 997–1044. 78. Spurway, N.C.; Watson, H.; McMillan, K.; Connolly, G. The Effect of Strength Training on the Apparent Inhibition of Eccentric Force Production in Voluntarily Activated Human Quadriceps. Eur. J. Appl. Physiol. 2000, 82, 374–380. 79. Clark, B.C.; Collier, S.R.; Manini, T.M.; Ploutz-Snyder, L.L. Sex Differences in Muscle Fatigability and Activation Patterns of the Human Quadriceps Femoris. Eur. J. Appl. Physiol. 2005, 94, 196–206. 80. Hunter, S.K.; Critchlow, A.; Shin, I.-S.; Enoka, R.M. Fatigability of the Elbow Flexor Muscles for a Sustained Submaximal Contraction Is Similar in Men and Women Matched for Strength. J. Appl. Physiol. 2004, 96, 195–202. 81. Parker, B.A.; Smithmyer, S.L.; Pelberg, J.A.; Mishkin, A.D.; Herr, M.D.; Proctor, D.N. Sex Differences in Leg Vasodilation during Graded Knee Extensor Exercise in Young Adults. J. Appl. Physiol. 2007, 103, 1583–1591. 82. Saito, Y.; Iemitsu, M.; Otsuki, T.; Maeda, S.; Ajisaka, R. Gender Differences in Brachial Blood Flow during Fatiguing Intermittent Handgrip. Med. Sci. Sports Exerc. 2008, 40, 684–690. 83. Thompson, B.C.; Fadia, T.; Pincivero, D.M.; Scheuermann, B.W. Forearm Blood Flow Responses to Fatiguing Isometric Contractions in Women and Men. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H805–H812. 84. Hunter, S.K.; Schletty, J.M.; Schlachter, K.M.; Griffith, E.E.; Polichnowski, A.J.; Ng, A.V. Active Hyperemia and Vascular Conductance Differ between Men and Women for an Isometric Fatiguing Contraction. J. Appl. Physiol. 2006, 101, 140–150. 85. Kaufman, M.P.; Hayes, S.G. The Exercise Pressor Reflex. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2002, 12, 429–439. 86. Yoon, T.; Keller, M.L.; De-Lap, B.S.; Harkins, A.; Lepers, R.; Hunter, S.K. Sex Differences in Response to Cognitive Stress during a Fatiguing Contraction. J. Appl. Physiol. 2009, 107, 1486–1496. 87. Russ, D.W.; Lanza, I.R.; Rothman, D.; Kent-Braun, J.A. Sex Differences in Glycolysis during Brief, Intense Isometric Contractions. Muscle Nerve 2005, 32, 647–655. 88. Binnert, C.; Koistinen, H.A.; Martin, G.; Andreelli, F.; Ebeling, P.; Koivisto, V.A.; Laville, M.; Auwerx, J.; Vidal, H. Fatty Acid Transport Protein-1 MRNA Expression in Skeletal Muscle and in Adipose Tissue in Humans. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1072–E1079. 89. Kiens, B.; Roepstorff, C.; Glatz, J.F.C.; Bonen, A.; Schjerling, P.; Knudsen, J.; Nielsen, J.N. Lipid-Binding Proteins and Lipoprotein Lipase Activity in Human Skeletal Muscle: Influence of Physical Activity and Gender. J. Appl. Physiol. 2004, 97, 1209–1218. 90. Esbjörnsson, M.; Bülow, J.; Norman, B.; Simonsen, L.; Nowak, J.; Rooyackers, O.; Kaijser, L.; Jansson, E. Adipose Tissue Extracts Plasma Ammonia after Sprint Exercise in Women and Men. J. Appl. Physiol. 2006, 101, 1576–1580. 91. Maher, A.C.; Akhtar, M.; Tarnopolsky, M.A. Men Supplemented with 17beta-Estradiol Have Increased Beta-Oxidation Capacity in Skeletal Muscle. Physiol. Genom. 2010, 42, 342–347. 92. Kacem, M.; Borji, R.; Sahli, S.; Rebai, H. The Disturbing Effect of Neuromuscular Fatigue on Postural Control Is Accentuated in the Premenstrual Phase in Female Athletes. Front. Physiol. 2021, 12, 736211. 93. Lee, E.; Vera, K.; Asirvatham-Jeyaraj, N.; Chantigian, D.; Larson, M.; Keller-Ross, M. Menstrual Phase Does Not Influence Ventilatory Responses to Group III/IV Afferent Signaling in Eumenorrheic Young Females. Respir. Physiol. Neurobiol. 2021, 292, 103712. 94. Janse DE Jonge, X.A.K.; Thompson, M.W.; Chuter, V.H.; Silk, L.N.; Thom, J.M. Exercise Performance over the Menstrual Cycle in Temperate and Hot, Humid Conditions. Med. Sci. Sports Exerc. 2012, 44, 2190–2198. 95. Pageaux, B.; Marcora, S.M.; Rozand, V.; Lepers, R. Mental Fatigue Induced by Prolonged Self-Regulation Does Not Exacerbate Central Fatigue during Subsequent Whole-Body Endurance Exercise. Front. Hum. Neurosci. 2015, 9, 67. 96. Petibois, C.; Cazorla, G.; Poortmans, J.-R.; Déléris, G. Biochemical Aspects of Overtraining in Endurance Sports: A Review. Sports Med. 2002, 32, 867–878. 97. Petibois, C.; Cazorla, G.; Poortmans, J.-R.; Déléris, G. Biochemical Aspects of Overtraining in Endurance Sports: The Metabolism Alteration Process Syndrome. Sports Med. 2003, 33, 83–94. 98. Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-Chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-Body Metabolism. Front. Physiol. 2021, 12, 702826. 99. Bhat, S.; Patibandla, R. Metal Fatigue and Basic Theoretical Models: A Review. In Alloy Steel—Properties and Use; Valencia Morales, E., Ed.; InTech: Rijeka, Croatia, 2011. 100. Martin, K.; Meeusen, R.; Thompson, K.G.; Keegan, R.; Rattray, B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med. 2018, 48, 2041–2051. 101. Schiphof-Godart, L.; Roelands, B.; Hettinga, F.J. Drive in Sports: How Mental Fatigue Affects Endurance Performance. Front. Psychol. 2018, 9, 1383. 102. Gaschler, R.; Schwager, S.; Umbach, V.J.; Frensch, P.A.; Schubert, T. Expectation Mismatch: Differences between Self-Generated and Cue-Induced Expectations. Neurosci. Biobehav. Rev. 2014, 46, 139–157. 103. Amann, M.; Venturelli, M.; Ives, S.J.; McDaniel, J.; Layec, G.; Rossman, M.J.; Richardson, R.S. Peripheral Fatigue Limits Endurance Exercise via a Sensory Feedback-Mediated Reduction in Spinal Motoneuronal Output. J. Appl. Physiol. 2013, 115, 355–364. 104. Dempsey, J.A.; Amann, M.; Romer, L.M.; Miller, J.D. Respiratory System Determinants of Peripheral Fatigue and Endurance Performance. Med. Sci. Sports Exerc. 2008, 40, 457–461. 105. Nybo, L. Hyperthermia and Fatigue. J. Appl. Physiol. 2008, 104, 871–878. |
dc.relation.citationendpage.spa.fl_str_mv |
16 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
7 |
dc.relation.citationvolume.spa.fl_str_mv |
19 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
16 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Frontiers Media S.A. |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/1660-4601/19/7/3909 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/3d5619b4-11a7-48ec-9d04-c5017744aef8/download https://repositorio.cuc.edu.co/bitstreams/5c43d97a-2ce9-419f-af72-f61512c40bf0/download https://repositorio.cuc.edu.co/bitstreams/d864a1c5-bc4c-462e-b26b-ff18f5783dd1/download https://repositorio.cuc.edu.co/bitstreams/6e346dfd-b023-41e5-ac90-7c5402a69dff/download |
bitstream.checksum.fl_str_mv |
6e9cea1d911d81e75b15dee30142b87a e30e9215131d99561d40d6b0abbe9bad 2d01649e409658852bb05d45475f32c3 ba96ca08d6dddd89d02bad1d7ec9c852 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760695697473536 |
spelling |
Tornero Aguilera, José FranciscoJimenez Morcillo, JorgeRubio Zarapuz, AlejandroClemente Suárez, Vicente Javier2022-06-16T14:13:48Z2022-06-16T14:13:48Z2022-03-25Tornero-Aguilera, J.F.; Jimenez-Morcillo, J.; Rubio-Zarapuz, A.; Clemente-Suárez, V.J. Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. Int. J. Environ. Res. Public Health 2022, 19, 3909. https:// doi.org/10.3390/ijerph190739091660-4601https://hdl.handle.net/11323/9261https:// doi.org/10.3390/ijerph1907390910.3390/ijerph190739091661-7827Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/: The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate training load. The present narrative review aims to analyze the multifactorial factors of fatigue in physical exercise. To reach this aim, a consensus and critical review were performed using both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases. The main search engines were PubMed, SciELO, and Google Scholar. Central and peripheral fatigue are two unison constructs part of the Integrative Governor theory, in which both psychological and physiological drives and requirements are underpinned by homeostatic principles. The relative activity of each one is regulated by dynamic negative feedback activity, as the fundamental general operational controller. Fatigue is conditioned by factors such as gender, affecting men and women differently. Sleep deprivation or psychological disturbances caused, for example, by stress, can affect neural activation patterns, realigning them and slowing down simple mental operations in the context of fatigue. Then, fatigue can have different origins not only related with physiological factors. Therefore, all these prisms must be considered for future approaches from sport and clinical perspectives.16 páginasapplication/pdfengFrontiers Media S.A.SwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Central and peripheral fatigue in physical exercise explained: a narrative reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.mdpi.com/1660-4601/19/7/3909International Journal of Environmental Research and Public Health1. Abd-Elfattah, H.M.; Abdelazeim, F.H.; Elshennawy, S. Physical and Cognitive Consequences of Fatigue: A Review. J. Adv. Res. 2015, 6, 351–358.2. Meeusen, R.; Watson, P.; Hasegawa, H.; Roelands, B.; Piacentini, M.F. Central Fatigue: The Serotonin Hypothesis and Beyond. Sports Med. 2006, 36, 881–909.3. Cairns, S.P.; Knicker, A.J.; Thompson, M.W.; Sjøgaard, G. Evaluation of Models Used to Study Neuromuscular Fatigue. Exerc. Sport Sci. Rev. 2005, 33, 9–16.4. McKenna, M.J.; Hargreaves, M. Resolving Fatigue Mechanisms Determining Exercise Performance: Integrative Physiology at Its Finest! J. Appl. Physiol. 2008, 104, 286–287.5. Zaj ˛ac, A.; Chalimoniuk, M.; Maszczyk, A.; Goła´s, A.; Lngfort, J. Central and Peripheral Fatigue During Resistance Exercise—A Critical Review. J. Hum. Kinet. 2015, 49, 159–169.6. Tarnopolsky, M.A.; Saris, W.H. Evaluation of gender differences in physiology: An introduction. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 489–492.7. Bensing, J.M.; Hulsman, R.L.; Schreurs, K.M. Gender Differences in Fatigue: Biopsychosocial Factors Relating to Fatigue in Men and Women. Med. Care 1999, 37, 1078–1083.8. Hunter, S.K. Sex Differences in Human Fatigability: Mechanisms and Insight to Physiological Responses. Acta Physiol. (Oxf.) 2014, 210, 768–789.9. Van Cutsem, J.; Marcora, S.; De Pauw, K.; Bailey, S.; Meeusen, R.; Roelands, B. The Effects of Mental Fatigue on Physical Performance: A Systematic Review. Sports Med. 2017, 47, 1569–1588.10. Amann, M. Central and Peripheral Fatigue: Interaction during Cycling Exercise in Humans. Med. Sci. Sports Exerc. 2011, 43, 2039–2045.11. Monster, A.W.; Chan, H. Isometric Force Production by Motor Units of Extensor Digitorum Communis Muscle in Man. J. Neurophysiol. 1977, 40, 1432–1443.12. Weir, J.P.; Beck, T.W.; Cramer, J.T.; Housh, T.J. Is Fatigue All in Your Head? A Critical Review of the Central Governor Model. Br. J. Sports Med. 2006, 40, 573–586; discussion 586.13. Craig, A.; Tran, Y.; Wijesuriya, N.; Boord, P. A Controlled Investigation into the Psychological Determinants of Fatigue. Biol. Psychol. 2006, 72, 78–87.14. Desmond, P.A.; Hancock, P.A. Active and Passive Fatigue States. In Stress, Workload, and Fatigue; CRC Press: Boca Raton, FL, USA, 2000; pp. 455–465.15. Lock, A.M.; Bonetti, D.L.; Campbell, A.D.K. The Psychological and Physiological Health Effects of Fatigue. Occup. Med. (Lond.) 2018, 68, 502–511.16. Leonard, C.; Fanning, N.; Attwood, J.; Buckley, M. The Effect of Fatigue, Sleep Deprivation and Onerous Working Hours on the Physical and Mental Wellbeing of Pre-Registration House Officers. Ir. J. Med. Sci. 1998, 167, 22–25.17. Clemente-Suárez, V.J. The Application of Cortical Arousal Assessment to Control Neuromuscular Fatigue During Strength Training. J. Mot. Behav. 2017, 49, 429–434.18. Ament, W.; Verkerke, G.J. Exercise and Fatigue. Sports Med. 2009, 39, 389–422.19. Gandevia, S.C. Spinal and Supraspinal Factors in Human Muscle Fatigue. Physiol. Rev. 2001, 81, 1725–1789.20. Delp, M.D.; Armstrong, R.B.; Godfrey, D.A.; Laughlin, M.H.; Ross, C.D.; Wilkerson, M.K. Exercise Increases Blood Flow to Locomotor, Vestibular, Cardiorespiratory and Visual Regions of the Brain in Miniature Swine. J. Physiol. 2001, 533 Pt 3, 849–859.21. Tomporowski, P.D. Effects of Acute Bouts of Exercise on Cognition. Acta Psychol. (Amst.) 2003, 112, 297–324.22. Williamson, J.W.; McColl, R.; Mathews, D.; Ginsburg, M.; Mitchell, J.H. Activation of the Insular Cortex Is Affected by the Intensity of Exercise. J. Appl. Physiol. 1999, 87, 1213–1219.23. Leavitt, V.M.; DeLuca, J. Central Fatigue: Issues Related to Cognition, Mood and Behavior, and Psychiatric Diagnoses. PM R 2010, 2, 332–337.24. Chaudhuri, A.; Behan, P.O. Fatigue and Basal Ganglia. J. Neurol. Sci. 2000, 179, 34–42.25. Clemente-Suárez, V.J.; Diaz-Manzano, M. Evaluation of Central Fatigue by the Critical Flicker Fusion Threshold in Cyclists. J. Med. Syst. 2019, 43, 61.26. Clemente Suárez, V.J.; Robles Pérez, J.J. Respuesta Orgánica En Una Simulación de Combate. Sanid. Mil. 2012, 68, 97–100.27. Yeh, T.-H.; Hwang, H.-M.; Chen, J.-J.; Wu, T.; Li, A.H.; Wang, H.-L. Glutamate Transporter Function of Rat Hippocampal Astrocytes Is Impaired Following the Global Ischemia. Neurobiol. Dis. 2005, 18, 476–483.28. Thorstensen, J.R.; Taylor, J.L.; Tucker, M.G.; Kavanagh, J.J. Enhanced Serotonin Availability Amplifies Fatigue Perception and Modulates the TMS-Induced Silent Period during Sustained Low-Intensity Elbow Flexions. J. Physiol. 2020, 598, 2685–2701.29. Ben-Jonathan, N.; Hnasko, R. Dopamine as a Prolactin (PRL) Inhibitor. Endocr. Rev. 2001, 22, 724–763.30. Cordeiro, L.M.S.; Rabelo, P.C.R.; Moraes, M.M.; Teixeira-Coelho, F.; Coimbra, C.C.; Wanner, S.P.; Soares, D.D. Physical ExerciseInduced Fatigue: The Role of Serotonergic and Dopaminergic Systems. Braz. J. Med. Biol. Res. 2017, 50, e6432.31. Foley, T.E.; Fleshner, M. Neuroplasticity of Dopamine Circuits after Exercise: Implications for Central Fatigue. Neuromolecular Med. 2008, 10, 67–80.32. Meeusen, R.; Van Cutsem, J.; Roelands, B. Endurance Exercise-Induced and Mental Fatigue and the Brain. Exp. Physiol. 2021, 106, 2294–2298.33. Zhou, Y.; Danbolt, N.C. Glutamate as a Neurotransmitter in the Healthy Brain. J. Neural Transm. 2014, 121, 799–817.34. Otis, T.S.; Kavanaugh, M.P. Isolation of Current Components and Partial Reaction Cycles in the Glial Glutamate Transporter EAAT2. J. Neurosci. 2000, 20, 2749–2757.35. Dienel, G.A. Brain Lactate Metabolism: The Discoveries and the Controversies. J. Cereb. Blood Flow Metab. 2012, 32, 1107–1138.36. Wang, D.; Wang, X. GLT-1 Mediates Exercise-Induced Fatigue through Modulation of Glutamate and Lactate in Rats. Neuropathology 2018, 38, 237–246.37. Maddock, R.J.; Casazza, G.A.; Buonocore, M.H.; Tanase, C. Vigorous Exercise Increases Brain Lactate and Glx (Glutamate+glutamine): A Dynamic 1H-MRS Study. Neuroimage 2011, 57, 1324–1330.38. Coxon, J.P.; Cash, R.F.H.; Hendrikse, J.J.; Rogasch, N.C.; Stavrinos, E.; Suo, C.; Yücel, M. GABA Concentration in Sensorimotor Cortex Following High-Intensity Exercise and Relationship to Lactate Levels. J. Physiol. 2018, 596, 691–702.39. Korzeniewski, B. Pi-Induced Muscle Fatigue Leads to near-Hyperbolic Power—Duration Dependence. Eur. J. Appl. Physiol. 2019, 119, 2201–2213.40. Myburgh, K.H. Can Any Metabolites Partially Alleviate Fatigue Manifestations at the Cross-Bridge? Med. Sci. Sports Exerc. 2004, 36, 20–27.41. Woodward, M.; Debold, E.P. Acidosis and Phosphate Directly Reduce Myosin’s Force-Generating Capacity Through Distinct Molecular Mechanisms. Front. Physiol. 2018, 9, 862.42. Whitten, J.H.D.; Hodgson, D.D.; Drinkwater, E.J.; Prieske, O.; Aboodarda, S.J.; Behm, D.G. Unilateral Quadriceps Fatigue Induces Greater Impairments of Ipsilateral versus Contralateral Elbow Flexors and Plantar Flexors Performance in Physically Active Young Adults. J. Sports Sci. Med. 2021, 20, 300–309.43. Delgado-Moreno, R.; Robles-Pérez, J.J.; Aznar, S.; Clemente-Suarez, V.J. Inalambric Biofeedback Devices to Analyze Strength Manifestation in Military Population. J. Med. Syst. 2018, 42, 60.44. Kelly, C.M.; Burnett, A.F.; Newton, M.J. The Effect of Strength Training on Three-Kilometer Performance in Recreational Women Endurance Runners. J. Strength Cond. Res. 2008, 22, 396–403.45. Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610.46. Proschinger, S.; Freese, J. Neuroimmunological and Neuroenergetic Aspects in Exercise-Induced Fatigue. Exerc. Immunol. Rev. 2019, 25, 8–19.47. Steensberg, A.; van Hall, G.; Osada, T.; Sacchetti, M.; Saltin, B.; Klarlund Pedersen, B. Production of Interleukin-6 in Contracting Human Skeletal Muscles Can Account for the Exercise-Induced Increase in Plasma Interleukin-6. J. Physiol. 2000, 529 Pt 1, 237–242.48. Trinh, B.; Peletier, M.; Simonsen, C.; Plomgaard, P.; Karstoft, K.; Klarlund Pedersen, B.; van Hall, G.; Ellingsgaard, H. Blocking Endogenous IL-6 Impairs Mobilization of Free Fatty Acids during Rest and Exercise in Lean and Obese Men. Cell Rep. Med. 2021, 2, 100396.49. Davis, M.P.; Walsh, D. Mechanisms of Fatigue. J. Support. Oncol. 2010, 8, 164–174.50. Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal Muscle Fatigue: Cellular Mechanisms. Physiol. Rev. 2008, 88, 287–332.51. Corona, B.T.; Balog, E.M.; Doyle, J.A.; Rupp, J.C.; Luke, R.C.; Ingalls, C.P. Junctophilin Damage Contributes to Early Strength Deficits and EC Coupling Failure after Eccentric Contractions. Am. J. Physiol. Cell Physiol. 2010, 298, C365–C376.52. Debold, E.P.; Fitts, R.H.; Sundberg, C.W.; Nosek, T.M. Muscle Fatigue from the Perspective of a Single Crossbridge. Med. Sci. Sports Exerc. 2016, 48, 2270–2280.53. McCarty, R. The Fight-or-Flight Response: A Cornerstone of Stress Research. In Stress: Concepts, Cognition, Emotion, and Behavior; Elsevier: Amsterdam, The Netherlands, 2016; pp. 33–37.54. Romero, L.M. Fight or Flight Responses; Elsevier: Amsterdam, The Netherlands, 2019.55. Tank, A.W.; Lee Wong, D. Peripheral and Central Effects of Circulating Catecholamines. Compr. Physiol. 2015, 5, 1–15.56. Coutts, A.J.; Reaburn, P. Monitoring Changes in Rugby League Players’ Perceived Stress and Recovery during Intensified Training. Percept. Mot. Skills 2008, 106, 904–916.57. Shimo, S.; Sakamoto, Y.; Amari, T.; Chino, M.; Sakamoto, R.; Nagai, M. Differences between the Sexes in the Relationship between Chronic Pain, Fatigue, and QuickDASH among Community-Dwelling Elderly People in Japan. Healthcare 2021, 9, 630.58. LaSorda, K.R.; Gmelin, T.; Kuipers, A.L.; Boudreau, R.M.; Santanasto, A.J.; Christensen, K.; Renner, S.W.; Wojczynski, M.K.; Andersen, S.L.; Cosentino, S.; et al. Epidemiology of Perceived Physical Fatigability in Older Adults: The Long Life Family Study. J. Gerontol. A Biol. Sci. Med. Sci. 2020, 75, e81–e88.59. Porter, M.M.; Stuart, S.; Boij, M.; Lexell, J. Capillary Supply of the Tibialis Anterior Muscle in Young, Healthy, and Moderately Active Men and Women. J. Appl. Physiol. 2002, 92, 1451–1457.60. Roepstorff, C.; Steffensen, C.H.; Madsen, M.; Stallknecht, B.; Kanstrup, I.-L.; Richter, E.A.; Kiens, B. Gender Differences in Substrate Utilization during Submaximal Exercise in Endurance-Trained Subjects. Am. J. Physiol. Endocrinol. Metab. 2002, 282, E435–E447.61. Maher, A.C.; Fu, M.H.; Isfort, R.J.; Varbanov, A.R.; Qu, X.A.; Tarnopolsky, M.A. Sex Differences in Global MRNA Content of Human Skeletal Muscle. PLoS ONE 2009, 4, e6335.62. Roth, S.M.; Ferrell, R.E.; Peters, D.G.; Metter, E.J.; Hurley, B.F.; Rogers, M.A. Influence of Age, Sex, and Strength Training on Human Muscle Gene Expression Determined by Microarray. Physiol. Genom. 2002, 10, 181–190.63. Wan, J.; Qin, Z.; Wang, P.; Sun, Y.; Liu, X. Muscle Fatigue: General Understanding and Treatment. Exp. Mol. Med. 2017, 49, e384.64. Welle, S.; Tawil, R.; Thornton, C.A. Sex-Related Differences in Gene Expression in Human Skeletal Muscle. PLoS ONE 2008, 3, e1385.65. Harmer, A.R.; Ruell, P.A.; Hunter, S.K.; McKenna, M.J.; Thom, J.M.; Chisholm, D.J.; Flack, J.R. Effects of Type 1 Diabetes, Sprint Training and Sex on Skeletal Muscle Sarcoplasmic Reticulum Ca2+ Uptake and Ca2+-ATPase Activity. J. Physiol. 2014, 592, 523–535.66. Thom, J.M.; Thompson, M.W.; Ruell, P.A.; Bryant, G.J.; Fonda, J.S.; Harmer, A.R.; Janse de Jonge, X.A.; Hunter, S.K. Effect of 10-Day Cast Immobilization on Sarcoplasmic Reticulum Calcium Regulation in Humans. Acta Physiol. Scand. 2001, 172, 141–147.67. Becker, J.B.; Arnold, A.P.; Berkley, K.J.; Blaustein, J.D.; Eckel, L.A.; Hampson, E.; Herman, J.P.; Marts, S.; Sadee, W.; Steiner, M.; et al. Strategies and Methods for Research on Sex Differences in Brain and Behavior. Endocrinology 2005, 146, 1650–1673.68. Hodes, G.E. Sex, Stress, and Epigenetics: Regulation of Behavior in Animal Models of Mood Disorders. Biol. Sex Differ. 2013, 4, 1.69. Koolschijn, P.C.M.P.; Crone, E.A. Sex Differences and Structural Brain Maturation from Childhood to Early Adulthood. Dev. Cogn. Neurosci. 2013, 5, 106–118.70. Gorbet, D.J.; Mader, L.B.; Staines, W.R. Sex-Related Differences in the Hemispheric Laterality of Slow Cortical Potentials during the Preparation of Visually Guided Movements. Exp. Brain Res. 2010, 202, 633–646.71. Lissek, S.; Hausmann, M.; Knossalla, F.; Peters, S.; Nicolas, V.; Güntürkün, O.; Tegenthoff, M. Sex Differences in Cortical and Subcortical Recruitment during Simple and Complex Motor Control: An FMRI Study. Neuroimage 2007, 37, 912–926.72. Hunter, S.K.; Griffith, E.E.; Schlachter, K.M.; Kufahl, T.D. Sex Differences in Time to Task Failure and Blood Flow for an Intermittent Isometric Fatiguing Contraction. Muscle Nerve 2009, 39, 42–53.73. Guenette, J.A.; Romer, L.M.; Querido, J.S.; Chua, R.; Eves, N.D.; Road, J.D.; McKenzie, D.C.; Sheel, A.W. Sex Differences in Exercise-Induced Diaphragmatic Fatigue in Endurance-Trained Athletes. J. Appl. Physiol. 2010, 109, 35–46.74. Hunter, S.K.; Enoka, R.M. Sex Differences in the Fatigability of Arm Muscles Depends on Absolute Force during Isometric Contractions. J. Appl. Physiol. 2001, 91, 2686–2694.75. Russ, D.W.; Kent-Braun, J.A. Sex Differences in Human Skeletal Muscle Fatigue Are Eliminated under Ischemic Conditions. J. Appl. Physiol. 2003, 94, 2414–2422.76. Pincivero, D.M.; Coelho, A.J.; Campy, R.M. Gender Differences in Perceived Exertion during Fatiguing Knee Extensions. Med. Sci. Sports Exerc. 2004, 36, 109–117.77. Kent-Braun, J.A.; Fitts, R.H.; Christie, A. Skeletal Muscle Fatigue. Compr. Physiol. 2012, 2, 997–1044.78. Spurway, N.C.; Watson, H.; McMillan, K.; Connolly, G. The Effect of Strength Training on the Apparent Inhibition of Eccentric Force Production in Voluntarily Activated Human Quadriceps. Eur. J. Appl. Physiol. 2000, 82, 374–380.79. Clark, B.C.; Collier, S.R.; Manini, T.M.; Ploutz-Snyder, L.L. Sex Differences in Muscle Fatigability and Activation Patterns of the Human Quadriceps Femoris. Eur. J. Appl. Physiol. 2005, 94, 196–206.80. Hunter, S.K.; Critchlow, A.; Shin, I.-S.; Enoka, R.M. Fatigability of the Elbow Flexor Muscles for a Sustained Submaximal Contraction Is Similar in Men and Women Matched for Strength. J. Appl. Physiol. 2004, 96, 195–202.81. Parker, B.A.; Smithmyer, S.L.; Pelberg, J.A.; Mishkin, A.D.; Herr, M.D.; Proctor, D.N. Sex Differences in Leg Vasodilation during Graded Knee Extensor Exercise in Young Adults. J. Appl. Physiol. 2007, 103, 1583–1591.82. Saito, Y.; Iemitsu, M.; Otsuki, T.; Maeda, S.; Ajisaka, R. Gender Differences in Brachial Blood Flow during Fatiguing Intermittent Handgrip. Med. Sci. Sports Exerc. 2008, 40, 684–690.83. Thompson, B.C.; Fadia, T.; Pincivero, D.M.; Scheuermann, B.W. Forearm Blood Flow Responses to Fatiguing Isometric Contractions in Women and Men. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, H805–H812.84. Hunter, S.K.; Schletty, J.M.; Schlachter, K.M.; Griffith, E.E.; Polichnowski, A.J.; Ng, A.V. Active Hyperemia and Vascular Conductance Differ between Men and Women for an Isometric Fatiguing Contraction. J. Appl. Physiol. 2006, 101, 140–150.85. Kaufman, M.P.; Hayes, S.G. The Exercise Pressor Reflex. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2002, 12, 429–439.86. Yoon, T.; Keller, M.L.; De-Lap, B.S.; Harkins, A.; Lepers, R.; Hunter, S.K. Sex Differences in Response to Cognitive Stress during a Fatiguing Contraction. J. Appl. Physiol. 2009, 107, 1486–1496.87. Russ, D.W.; Lanza, I.R.; Rothman, D.; Kent-Braun, J.A. Sex Differences in Glycolysis during Brief, Intense Isometric Contractions. Muscle Nerve 2005, 32, 647–655.88. Binnert, C.; Koistinen, H.A.; Martin, G.; Andreelli, F.; Ebeling, P.; Koivisto, V.A.; Laville, M.; Auwerx, J.; Vidal, H. Fatty Acid Transport Protein-1 MRNA Expression in Skeletal Muscle and in Adipose Tissue in Humans. Am. J. Physiol. Endocrinol. Metab. 2000, 279, E1072–E1079.89. Kiens, B.; Roepstorff, C.; Glatz, J.F.C.; Bonen, A.; Schjerling, P.; Knudsen, J.; Nielsen, J.N. Lipid-Binding Proteins and Lipoprotein Lipase Activity in Human Skeletal Muscle: Influence of Physical Activity and Gender. J. Appl. Physiol. 2004, 97, 1209–1218.90. Esbjörnsson, M.; Bülow, J.; Norman, B.; Simonsen, L.; Nowak, J.; Rooyackers, O.; Kaijser, L.; Jansson, E. Adipose Tissue Extracts Plasma Ammonia after Sprint Exercise in Women and Men. J. Appl. Physiol. 2006, 101, 1576–1580.91. Maher, A.C.; Akhtar, M.; Tarnopolsky, M.A. Men Supplemented with 17beta-Estradiol Have Increased Beta-Oxidation Capacity in Skeletal Muscle. Physiol. Genom. 2010, 42, 342–347.92. Kacem, M.; Borji, R.; Sahli, S.; Rebai, H. The Disturbing Effect of Neuromuscular Fatigue on Postural Control Is Accentuated in the Premenstrual Phase in Female Athletes. Front. Physiol. 2021, 12, 736211.93. Lee, E.; Vera, K.; Asirvatham-Jeyaraj, N.; Chantigian, D.; Larson, M.; Keller-Ross, M. Menstrual Phase Does Not Influence Ventilatory Responses to Group III/IV Afferent Signaling in Eumenorrheic Young Females. Respir. Physiol. Neurobiol. 2021, 292, 103712.94. Janse DE Jonge, X.A.K.; Thompson, M.W.; Chuter, V.H.; Silk, L.N.; Thom, J.M. Exercise Performance over the Menstrual Cycle in Temperate and Hot, Humid Conditions. Med. Sci. Sports Exerc. 2012, 44, 2190–2198.95. Pageaux, B.; Marcora, S.M.; Rozand, V.; Lepers, R. Mental Fatigue Induced by Prolonged Self-Regulation Does Not Exacerbate Central Fatigue during Subsequent Whole-Body Endurance Exercise. Front. Hum. Neurosci. 2015, 9, 67.96. Petibois, C.; Cazorla, G.; Poortmans, J.-R.; Déléris, G. Biochemical Aspects of Overtraining in Endurance Sports: A Review. Sports Med. 2002, 32, 867–878.97. Petibois, C.; Cazorla, G.; Poortmans, J.-R.; Déléris, G. Biochemical Aspects of Overtraining in Endurance Sports: The Metabolism Alteration Process Syndrome. Sports Med. 2003, 33, 83–94.98. Mann, G.; Mora, S.; Madu, G.; Adegoke, O.A.J. Branched-Chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-Body Metabolism. Front. Physiol. 2021, 12, 702826.99. Bhat, S.; Patibandla, R. Metal Fatigue and Basic Theoretical Models: A Review. In Alloy Steel—Properties and Use; Valencia Morales, E., Ed.; InTech: Rijeka, Croatia, 2011.100. Martin, K.; Meeusen, R.; Thompson, K.G.; Keegan, R.; Rattray, B. Mental Fatigue Impairs Endurance Performance: A Physiological Explanation. Sports Med. 2018, 48, 2041–2051.101. Schiphof-Godart, L.; Roelands, B.; Hettinga, F.J. Drive in Sports: How Mental Fatigue Affects Endurance Performance. Front. Psychol. 2018, 9, 1383.102. Gaschler, R.; Schwager, S.; Umbach, V.J.; Frensch, P.A.; Schubert, T. Expectation Mismatch: Differences between Self-Generated and Cue-Induced Expectations. Neurosci. Biobehav. Rev. 2014, 46, 139–157.103. Amann, M.; Venturelli, M.; Ives, S.J.; McDaniel, J.; Layec, G.; Rossman, M.J.; Richardson, R.S. Peripheral Fatigue Limits Endurance Exercise via a Sensory Feedback-Mediated Reduction in Spinal Motoneuronal Output. J. Appl. Physiol. 2013, 115, 355–364.104. Dempsey, J.A.; Amann, M.; Romer, L.M.; Miller, J.D. Respiratory System Determinants of Peripheral Fatigue and Endurance Performance. Med. Sci. Sports Exerc. 2008, 40, 457–461.105. Nybo, L. Hyperthermia and Fatigue. J. Appl. Physiol. 2008, 104, 871–878.161719PsychophysiologyMuscle fatigueMuscle activationCognitionGenderPublicationORIGINALCentral and Peripheral Fatigue.pdfCentral and Peripheral Fatigue.pdfapplication/pdf681215https://repositorio.cuc.edu.co/bitstreams/3d5619b4-11a7-48ec-9d04-c5017744aef8/download6e9cea1d911d81e75b15dee30142b87aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5c43d97a-2ce9-419f-af72-f61512c40bf0/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTCentral and Peripheral Fatigue.pdf.txtCentral and Peripheral Fatigue.pdf.txttext/plain72895https://repositorio.cuc.edu.co/bitstreams/d864a1c5-bc4c-462e-b26b-ff18f5783dd1/download2d01649e409658852bb05d45475f32c3MD53THUMBNAILCentral and Peripheral Fatigue.pdf.jpgCentral and Peripheral Fatigue.pdf.jpgimage/jpeg15890https://repositorio.cuc.edu.co/bitstreams/6e346dfd-b023-41e5-ac90-7c5402a69dff/downloadba96ca08d6dddd89d02bad1d7ec9c852MD5411323/9261oai:repositorio.cuc.edu.co:11323/92612024-09-17 10:15:33.195https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |