Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection

The slime mould algorithm (SMA) is a population-based optimization algorithm that mimics the foraging behavior of slime moulds with a simple structure and few hyperparameters. However, SMA has some limitations, such as getting trapped in local optima when dealing with multimodal or combinatorial fun...

Full description

Autores:
Zhou, Xinsen
Chen, Yi
Wu, Zongda
Heidari, Ali Asghar
Chen, Huiling
Alabdulkreem, Eatedal
Escorcia-Gutierrez, José
Wang, Xianchuan
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13556
Acceso en línea:
https://hdl.handle.net/11323/13556
https://repositorio.cuc.edu.co/
Palabra clave:
All-dimension neighborhood search
Classification
Feature selection
Local dimensional mutations
Meta-heuristic
Optimization
Slime mould algorithm
SMA
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_08fa4e868246950c6320a10370f1456a
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13556
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
title Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
spellingShingle Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
All-dimension neighborhood search
Classification
Feature selection
Local dimensional mutations
Meta-heuristic
Optimization
Slime mould algorithm
SMA
title_short Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
title_full Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
title_fullStr Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
title_full_unstemmed Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
title_sort Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection
dc.creator.fl_str_mv Zhou, Xinsen
Chen, Yi
Wu, Zongda
Heidari, Ali Asghar
Chen, Huiling
Alabdulkreem, Eatedal
Escorcia-Gutierrez, José
Wang, Xianchuan
dc.contributor.author.none.fl_str_mv Zhou, Xinsen
Chen, Yi
Wu, Zongda
Heidari, Ali Asghar
Chen, Huiling
Alabdulkreem, Eatedal
Escorcia-Gutierrez, José
Wang, Xianchuan
dc.subject.proposal.eng.fl_str_mv All-dimension neighborhood search
Classification
Feature selection
Local dimensional mutations
Meta-heuristic
Optimization
Slime mould algorithm
SMA
topic All-dimension neighborhood search
Classification
Feature selection
Local dimensional mutations
Meta-heuristic
Optimization
Slime mould algorithm
SMA
description The slime mould algorithm (SMA) is a population-based optimization algorithm that mimics the foraging behavior of slime moulds with a simple structure and few hyperparameters. However, SMA has some limitations, such as getting trapped in local optima when dealing with multimodal or combinatorial functions. To overcome these limitations and improve the algorithm’s exploration and exploitation abilities, a local dimensional mutation strategy and an all-dimensional neighborhood search strategy for SMA, known as LASMA, were introduced. To evaluate the performance of LASMA, experiments were conducted on 30 benchmark functions from the CEC2014 competition, and the results were compared with up to 27 peers. The experimental results were then synthesized, and the Wilcoxon signed-rank test was used to evaluate the performance of LASMA. The results showed that LASMA outperformed other algorithms in terms of solution accuracy, stability, and convergence speed, with at least a 53.3% improvement in optimization performance on the 30 tested functions. Moreover, to demonstrate the applicability of LASMA to feature selection problems, a binary version of LASMA called bLASMA was developed and compared with eight binary classification algorithms on 18 datasets from the UCI repository. The experimental results showed that bLASMA not only had faster convergence speed and higher convergence accuracy in handling optimization problems but also performed well in feature selection applications. Thus, LASMA is a promising optimization tool for handling global and binary optimization problems, and its binary version, bLASMA, can be used for feature selection tasks. By addressing the limitations of SMA and improving the algorithm’s exploration and exploitation abilities, LASMA provides a robust and effective solution for various optimization problems.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-09-28
dc.date.accessioned.none.fl_str_mv 2024-10-26T18:07:51Z
dc.date.available.none.fl_str_mv 2024-10-26T18:07:51Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Xinsen Zhou, Yi Chen, Zongda Wu, Ali Asghar Heidari, Huiling Chen, Eatedal Alabdulkreem, José Escorcia-Gutierrez, Xianchuan Wang, Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection, Neurocomputing, Volume 551, 2023, 126467, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2023.126467.
dc.identifier.issn.none.fl_str_mv 0925-2312
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13556
dc.identifier.doi.none.fl_str_mv 10.1016/j.neucom.2023.126467
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Xinsen Zhou, Yi Chen, Zongda Wu, Ali Asghar Heidari, Huiling Chen, Eatedal Alabdulkreem, José Escorcia-Gutierrez, Xianchuan Wang, Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection, Neurocomputing, Volume 551, 2023, 126467, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2023.126467.
0925-2312
10.1016/j.neucom.2023.126467
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13556
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv Neurocomputing
dc.relation.references.none.fl_str_mv [1] A.R. Gollou, N. Ghadimi, A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets, J. Intell. Fuzzy Syst. 32 (6) (2017) 4031–4045.
[2] S. Gu, R. Cheng, Y. Jin, Feature selection for high-dimensional classification using a competitive swarm optimizer, Soft. Comput. 22 (3) (2018) 811–822.
[3] P. Hu, J.-S. Pan, S.-C. Chu, Improved binary grey wolf optimizer and its application for feature selection, Knowl.-Based Syst. 195 (2020) 105746.
[4] Fan, J., et al., A Hybrid Evolutionary Algorithm Using Two Solution Representations for Hybrid Flow-Shop Scheduling Problem. Ieee Transactions on Cybernetics, 2021.
[5] W. Li, H. Xu, H. Li, Y. Yang, P.K. Sharma, J. Wang, S. Singh, Complexity and algorithms for superposed data uploading problem in networks with smart devices, IEEE Internet Things J. 7 (7) (2020) 5882–5891.
[6] Z. Lv, L. Qiao, R. Nowak, Energy-Efficient Resource Allocation of Wireless Energy Transfer for the Internet of Everything in Digital Twins, IEEE Commun. Mag. 60 (8) (2022) 68–73.
[7] Y. Lu, P. Wang, J. Qin, A hardware architecture of particle swarm optimization, J. Comput. 12 (5) (2017) 442–450.
[8] C. Ye, Study on the distribution of marine industry around bohai sea under the background of ocean economic adjustment and optimization, J. Coast. Res. (2020) 163–165s.
[9] J. Zeng, Y.H. Kim, Research on secure encryption method of multi-domain fiber network based on particle swarm optimization algorithm, J. Intell. Fuzzy Syst. 38 (1) (2020) 139–145.
[10] W. Liu, Z. Wang, X. Liu, N. Zeng, D. Bell, A novel particle swarm optimization approach for patient clustering from emergency departments, IEEE Trans. Evol. Comput. 23 (4) (2019) 632–644.
[11] N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, Y. Li, A new switching-delayedPSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease, Neurocomputing 320 (2018) 195–202
[12] Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen, Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis, Neurocomputing 430 (2021) 185–212.
[13] Y. Liu, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis, Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection, Neurocomputing 503 (2022) 325–362.
[14] Y. Xue, B. Xue, M. Zhang, Self-adaptive particle swarm optimization for largescale feature selection in classification, ACM Trans. Knowledge Discov. Data (TKDD) 13 (5) (2019) 1–27.
[15] Y. Xue, X. Cai, F. Neri, A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification, Appl. Soft Comput. 127 (2022)
[16] X. Wang, X. Dong, Y. Zhang, H. Chen, Crisscross harris hawks optimizer for global tasks and feature selection, J. Bionic Eng. 20 (3) (2023) 1153–1174.
[17] W. Shan, H. Hu, Z. Cai, H. Chen, H. Liu, M. Wang, Y. Teng, Multi-strategies boosted mutative crow search algorithm for global tasks: Cases of continuous and discrete optimization, J. Bionic Eng. 19 (6) (2022) 1830–1849.
[18] G. Sun, G. Yang, G. Zhang, Two-level parameter cooperation-based population regeneration framework for differential evolution, Swarm Evol. Comput. 75 (2022)
[19] C. Li, G. Sun, L. Deng, L. Qiao, G. Yang, A population state evaluation-based improvement framework for differential evolution, Inf. Sci. 629 (2023) 15–38.
[20] G. Sun, C. Li, L. Deng, An adaptive regeneration framework based on search space adjustment for differential evolution, Neural Comput. & Applic. 33 (15) (2021) 9503–9519
[21] W.u. Deng, J. Xu, X.-Z. Gao, H. Zhao, An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems, IEEE Trans. Syst. Man Cybernet. Syst. 52 (3) (2022) 1578–1587.
[22] Sun, G., et al., Hierarchical structure-based joint operations algorithm for global optimization. Swarm and Evolutionary Computation, 2023: p. 101311.
[23] R. Dong et al., Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem, Knowl.-Based Syst. 233 (2021).
[24] Y. Xue, Y. Tong, F. Neri, An ensemble of differential evolution and Adam for training feed-forward neural networks, Inf. Sci. 608 (2022) 453–471.
[25] D. Gong, Y. Yin, H. Chen, B. Guo, P. Wu, Y. Wang, Y. Yang, Z. Li, Y. He, G. Zeng, Interfacial Ions Sieving for Ultrafast and Complete Desalination through 2D Nanochannel Defined Graphene Composite Membranes, ACS Nano 15 (6) (2021) 9871–9881
[26] D. Zhao, L. Liu, F. Yu, A.A. Heidari, M. Wang, G. Liang, K. Muhammad, H. Chen, Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy, Knowl.-Based Syst. 216 (2021) 106510.
[27] B. Li, Y. Tan, A.-G. Wu, G.-R. Duan, A distributionally robust optimization based method for stochastic model predictive control, IEEE Trans. Autom. Control 67 (11) (2022) 5762–5776.
[28] M. Zangiabadi, H.R. Maleki, A method for solving linear programming problems with fuzzy parameters based on multiobjective linear programming technique, Asia-Pacific J. Oper. Res. 24 (4) (2007) 557–573.
[29] A.A. Lazarev, F. Werner, A graphical realization of the dynamic programming method for solving NP-hard combinatorial problems, Comput. Math. Appl. 58 (4) (2009) 619–631.
[30] J. Zhang, Y. Liu, Z. Li, Y. Lu, Forecast-Assisted Service Function Chain Dynamic Deployment for SDN/NFV-Enabled Cloud Management Systems, IEEE Syst. J. (2023), https://doi.org/10.1109/JSYST.2023.3263865
[31] Z. Sang, R. Zhang, A. Farouk, D. Zhen, Branch demarcation algorithm based temperature rise online detection system for complete switchgear, J. Intell. Fuzzy Syst. 37 (3) (2019) 3461–3468.
[32] X. Zhang, D.i. Wang, Z. Zhou, Y.i. Ma, Robust low-rank tensor recovery with rectification and alignment, IEEE Trans. Pattern Anal. Mach. Intell. 43 (1) (2021) 238–255.
[33] X. Li, Y.i. Sun, Stock intelligent investment strategy based on support vector machine parameter optimization algorithm, Neural Comput. Appl. 32 (6) (2020) 1765–1775.
[34] S.-H. Wu, Z.-H. Zhan, J. Zhang, SAFE: Scale-adaptive fitness evaluation method for expensive optimization problems, IEEE Trans. Evol. Comput. 25 (3) (2021) 478–491.
[35] Y. Duan, Y. Zhao, J. Hu, An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis, Sustain. Energy Grids Netw. 34 (2023) 101004.
[36] Z. Lv, J. Wu, Y. Li, H. Song, Cross-layer optimization for industrial Internet of Things in real scene digital twins, IEEE Internet Things J. 9 (17) (2022) 15618– 15629.
[37] W.u. Deng, X. Zhang, Y. Zhou, Y.i. Liu, X. Zhou, H. Chen, H. Zhao, An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems, Inf. Sci. 585 (2022) 441–453.
[38] Z.-M. Gu, G.-G. Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Futur. Gener. Comput. Syst. 107 (2020) 49–69.
[39] X.-F. Liu, Z.-H. Zhan, Y. Gao, J. Zhang, S. Kwong, J. Zhang, Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization, IEEE Trans. Evol. Comput. 23 (4) (2019) 587– 602.
[40] W.u. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas. 69 (10) (2020) 7319–7327.
[41] F. Zhao, S. Di, J. Cao, J. Tang, Jonrinaldi, A novel cooperative multi-stage hyper-heuristic for combination optimization problems, Complex Syst. Model. Simulat. 1 (2) (2021) 91–108.
[42] X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, Q. Pan, Y. Nojima, Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm, Complex System Modeling and Simulation 1 (3) (2021) 198–217.
[43] W. Deng et al., A novel gate resource allocation method using improved PSObased QEA, IEEE Trans. Intell. Transp. Syst. (2020).
[44] P. Liu, H. Gao, A novel green supplier selection method based on the interval type-2 fuzzy prioritized choquet bonferroni means, IEEE/CAA J. Autom. Sin. 8 (9) (2020) 1549–1566.
[45] J.-H. Yi, S. Deb, J. Dong, A.H. Alavi, G.-G. Wang, An improved NSGA-III algorithm with adaptive mutation operator for Big Data optimization problems, Futur. Gener. Comput. Syst. 88 (2018) 571–585.
[46] G. Sun, B. Yang, Z. Yang, G. Xu, An adaptive differential evolution with combined strategy for global numerical optimization, Soft. Comput. 24 (9) (2020) 6277–6296.
[47] L. Zheng, Y. Lu, M. Guo, S. Guo, C.-Z. Xu, Architecture-based design and optimization of genetic algorithms on multi- and many-core systems, Fut. Generat. Comput. Syst. Int. J. Esci. 38 (2014) 75–91.
[48] J.R. Koza, R. Poli, Genetic programming, in: E.K. Burke, G. Kendall (Eds.), Search Methodologies, Springer US, Boston, MA, 2005, pp. 127–164.
[49] I. Rechenberg, Evolutionsstrategien, in: Simulationsmethoden in Der Medizin Und Biologie, Springer, 1978, pp. 83–114.
[50] R. Storn, K. Price, Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (4) (1997) 341–359.
[51] X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen, Multi-objective robust optimisation model for MDVRPLS in refined oil distribution, Int. J. Prod. Res. 60 (22) (2022) 6772–6792.
[52] J. Tian et al., Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems, Complex & Intell. Syst. (2022) 1–49.
[53] Mirjalili, S., J.S. Dong, and A. Lewis, Nature-inspired optimizers: theories, literature reviews and applications. Vol. 811. 2019: Springer
[54] J. Luo, H. Chen, A.A. Heidari, Y. Xu, Q. Zhang, C. Li, Multi-strategy boosted mutative whale-inspired optimization approaches, App. Math. Model. 73 (2019) 109–123
[55] I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl. 181 (2021) 115079
[56] J. Tu, H. Chen, M. Wang, A.H. Gandomi, The Colony predation algorithm, J. Bionic Eng. 18 (3) (2021) 674–710.
[57] I. Ahmadianfar et al., INFO: an efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl. 195 (2022).
[58] Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl. 177 (2021) 114864.
[59] H. Su, D. Zhao, A.A. Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen, RIME: A physics-based optimization, Neurocomputing 532 (2023) 183–214.
[60] H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y.i. Chen, Z. Cai, Slime mould algorithm: a comprehensive review of recent variants and applications, Int. J. Syst. Sci. 54 (1) (2023) 204–235.
[61] S. Li, H. Chen, M. Wang, A.A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Futur. Gener. Comput. Syst. 111 (2020) 300–323.
[62] A.A. Ewees, F.H. Ismail, A.T. Sahlol, Gradient-based optimizer improved by Slime Mould Algorithm for global optimization and feature selection for diverse computation problems, Expert Syst. Appl. 213 (2023).
[63] G. Hu, B. Du, G. Wei, HG-SMA: hierarchical guided slime mould algorithm for smooth path planning, Artif. Intell. Rev. (2023).
[64] X. Luo, Y.e. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Trans. Knowl. Data Eng. 34 (8) (2022) 3958–3970
[65] C. Yu, A.A. Heidari, X. Xue, L. Zhang, H. Chen, W. Chen, Boosting quantum rotation gate embedded slime mould algorithm, Expert Syst. Appl. 181 (2021) 115082.
[66] M. Abdel-Basset, V. Chang, R. Mohamed, Hsma_woa,, A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput. 95 (2020).
[67] S. Zhao, P. Wang, A.A. Heidari, H. Chen, H. Turabieh, M. Mafarja, C. Li, Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease, Comput. Biol. Med. 134 (2021) 104427.
[68] J. Alfadhli, A. Jaragh, M.G. Alfailakawi, I. Ahmad, FP-SMA: an adaptive, fluctuant population strategy for slime mould algorithm, Neural Comput. Appl. 34 (13) (2022) 11163–11175.
[69] L. Ren et al., Gaussian kernel probability-driven slime mould algorithm with new movement mechanism for multi-level image segmentation, Measurement 192 (2022).
[70] N. Zeng, Z. Wang, W. Liu, H. Zhang, K. Hone, X. Liu, A dynamic neighborhoodbased switching particle swarm optimization algorithm, IEEE Trans. Cybern. 52 (9) (2022) 9290–9301.
[71] F. Qiu et al., Boosting slime mould algorithm for high-dimensional gene data mining: diversity analysis and feature selection, Comput. Math. Methods Med. 2022 (2022) 8011003.
[72] H. Li, J. Li, P. Wu, Y. You, N. Zeng, A ranking-system-based switching particle swarm optimizer with dynamic learning strategies, Neurocomputing 494 (2022) 356–367
[73] L. Abualigah, A. Diabat, M.A. Elaziz, Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems, Journal 14 (2) (2023) 1163–1202.
[74] A. Kaveh, K. Biabani Hamedani, M. Kamalinejad, Improved slime mould algorithm with elitist strategy and its application to structural optimization with natural frequency constraints, Comput. Struct. 264 (2022) 106760.
[75] J. Hu et al., Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection, Knowl.-Based Syst. 237 (2022).
[76] Gong, X., et al., A hybrid algorithm based on state-adaptive slime mold model and fractional-order ant system for the travelling salesman problem. Complex & Intelligent Systems, 2022.
[77] X. Chen et al., An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images, Comput. Biol. Med. 142 (2022).
[78] Z. Gao, J. Zhao, S. Li, The hybridized slime mould and particle swarm optimization algorithms, In 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical EngIneerIng (AUTEEE), 2020.
[79] Wang, H., et al., A Structural Evolution-Based Anomaly Detection Method for Generalized Evolving Social Networks. The Computer Journal, 2020. 65(5): p. 1189-1199.
[80] Liang, J.J., B.Y. Qu, and P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013. 635: p. 490.
[81] S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power, Inf. Sci. 180 (10) (2010) 2044–2064.
[82] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, F. Herrera, KEEL: a software tool to assess evolutionary algorithms for data mining problems, Soft. Comput. 13 (3) (2009) 307–318.
[83] Z. Peng, J. Hu, K. Shi, R. Luo, R. Huang, B.K. Ghosh, J. Huang, A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning, Appl. Math. Comput. 369 (2020) 124821.
[84] S. Wang, X. Hu, J. Sun, J. Liu, Hyperspectral Anomaly Detection Using Ensemble and Robust Collaborative Representation, Inf. Sci. 624 (2023) 748– 760, https://doi.org/10.1016/j.ins.2022.12.096.
[85] L.M. Abualigah, A.T. Khader, E.S. Hanandeh, A new feature selection method to improve the document clustering using particle swarm optimization algorithm, J. Comput. Sci. 25 (2018) 456–466
[86] S. Angeletti, D. Benvenuto, M. Bianchi, M. Giovanetti, S. Pascarella, M. Ciccozzi, COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, J. Med. Virol. 92 (6) (2020) 584–588.
[87] S. Arora, P. Anand, Binary butterfly optimization approaches for feature selection, Expert Syst. Appl. 116 (2019) 147–160.
[88] X. Li, Y.i. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. & Applic. 33 (14) (2021) 8227– 8235.
[89] Y. Song, R. Xin, P. Chen, R. Zhang, J. Chen, Z. Zhao, Identifying performance anomalies in fluctuating cloud environments: a robust correlative-GNNbased explainable approach, Futur. Gener. Comput. Syst. 145 (2023) 77–86.
[90] C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, C. Molter, V. de Schaetzen, R. Duque, H. Bersini, A. Nowe, A survey on filter techniques for feature selection in gene expression microarray analysis, IEEE-ACM Trans. Comput. Biol. Bioinform. 9 (4) (2012) 1106–1119.
[91] N. Kwak, C.-H. Choi, Input feature selection for classification problems, IEEE Trans. Neural Netw. 13 (1) (2002) 143–159.
[92] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Comput. Electr. Eng. 40 (1) (2014) 16–28.
[93] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, BGSA: binary gravitational search algorithm, Nat. Comput. 9 (3) (2010) 727–745.
[94] S. Mirjalili, S.M. Mirjalili, X.-S. Yang, Binary bat algorithm, Neural Comput. Appl. 25 (3–4) (2014) 663–681.
[95] M. Abdel-Basset, R. Mohamed, K.M. Sallam, R.K. Chakrabortty, M.J. Ryan, A novel metaheuristic algorithm for multi-dimensional knapsack problems: method and comprehensive analysis, Comput. Ind. Eng. 159 (2021) 107469.
[96] I. Tumar, Y. Hassouneh, H. Turabieh, T. Thaher, Enhanced binary moth flame optimization as a feature selection algorithm to predict software fault prediction, IEEE Access 8 (2020) 8041–8055.
[97] A.H. Gandomi, X.-S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput. 29 (1) (2013) 17–35
[98] H. Chen, C. Yang, A.A. Heidari, X. Zhao, An efficient double adaptive random spare reinforced whale optimization algorithm, Expert Syst. Appl. 154 (2020) 113018.
[99] H. Salimi, Stochastic fractal search: a powerful metaheuristic algorithm, Knowl.-Based Syst. 75 (2015) 1–18.
[100] W. Sun, A. Lin, H. Yu, Q. Liang, G. Wu, All-dimension neighborhood based particle swarm optimization with randomly selected neighbors, Inf. Sci. 405 (2017) 141–156.
[101] S. Mirjalili, A. Lewis, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput. 9 (2013) 1–14.
[102] H. Tang, Y. Xu, A. Lin, A.A. Heidari, M. Wang, H. Chen, Y. Luo, C. Li, Predicting green consumption behaviors of students using efficient firefly grey wolfassisted K-nearest neighbor classifiers, IEEE Access 8 (2020) 35546–35562
[103] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE, 1995
[104] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46–61.
[105] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw. 95 (2016) 51–67.
[106] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowl.-Based Syst. 96 (2016) 120–133.
[107] S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst. 89 (2015) 228–249.
[108] X.-S. Yang, A.H. Gandomi, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput. 29 (5–6) (2012) 464–483.
[109] X.S. Yang, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput. 2 (2) (2010) 78–84.
[110] W.-N. Chen, J. Zhang, Y. Lin, N.i. Chen, Z.-H. Zhan, H.-H. Chung, Y. Li, Y.-H. Shi, Particle swarm optimization with an aging leader and challengers, IEEE Trans. Evol. Comput. 17 (2) (2013) 241–258.
[111] H. Nenavath, R.K. Jatoth, Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking, Appl. Soft Comput. 62 (2018) 1019–1043.
[112] Y. Cao, H. Zhang, W. Li, M. Zhou, Y.u. Zhang, W.A. Chaovalitwongse, Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions, IEEE Trans. Evol. Comput. 23 (4) (2019) 718–731.
[113] A. Lin, Q. Wu, A.A. Heidari, Y. Xu, H. Chen, W. Geng, Y. li, C. Li, Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier, IEEE Access 7 (2019) 67235–67248.
[114] M. Abd Elaziz, D. Oliva, S.W. Xiong, An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl. 90 (2017) 484– 500.
[115] J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan, Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection, Knowl.-Based Syst. 213 (2021) 106684.
[116] Z. Cai, J. Gu, J. Luo, Q. Zhang, H. Chen, Z. Pan, Y. Li, C. Li, Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy, Expert Syst. Appl. 138 (2019) 112814.
[117] A.A. Heidari, R.A. Abbaspour, H. Chen, Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training, Appl. Soft Comput. 81 (2019).
[118] A.A. Heidari, I. Aljarah, H. Faris, H. Chen, J. Luo, S. Mirjalili, An enhanced associative learning-based exploratory whale optimizer for global optimization, Neural Comput. Appl. 32 (9) (2020) 5185–5211.
[119] H. Chen et al., An efficient double adaptive random spare reinforced whale optimization algorithm, Expert Syst. Appl. 154 (2020).
[120] M.A. Elhosseini, A.Y. Haikal, M. Badawy, N. Khashan, Biped robot stability based on an A-C parametric whale optimization algorithm, J. Comput. Sci. 31 (2019) 17–32.
[121] M. Abdel-Basset, V. Chang, R. Mohamed, HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput. 95 (2020).
[122] L. Liu et al., Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation, Comput. Biol. Med. 138 (2021).
[123] Wu, S., et al., Gaussian bare-bone slime mould algorithm: performance optimization and case studies on truss structures. Artificial Intelligence Review, 2023.
[124] D.A.B. Oliveira, R.S. Ferreira, R. Silva, E.V. Brazil, Improving seismic data resolution with deep generative networks, IEEE Geosci. Remote Sens. Lett. 16 (12) (2019) 1929–1933.
[125] C. Qin, Y. Jin, Z. Zhang, H. Yu, J. Tao, H. Sun, Anti-noise diesel engine misfire diagnosis using a multi-scale CNN-LSTM neural network with denoising module, CAAI Trans. Intell. Technol. (2023) 1–24, https://doi.org/10.1049/ cit2.12170.
[126] K. Zhao et al., Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine, Eng. Appl. Artif. Intel. 120 (2023).
[127] D. Chen, Z. Lv, Artificial intelligence enabled Digital Twins for training autonomous cars, Int. Things Cyber-Phys. Syst. 2 (2022) 31–41.
[128] E. Emary, H.M. Zawbaa, A.E. Hassanien, Binary ant lion approaches for feature selection, Neurocomputing 213 (2016) 54–65.
[129] H. Faris, M.M. Mafarja, A.A. Heidari, I. Aljarah, A.M. Al-Zoubi, S. Mirjalili, H. Fujita, An efficient binary salp swarm algorithm with crossover scheme for feature selection problems, Knowl.-Based Syst. 154 (2018) 43–67.
[130] M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper feature selection, Appl. Soft Comput. 62 (2018) 441–453.
[131] Zhao, C., et al., JAMSNet: A Remote Pulse Extraction Network Based on Joint Attention and Multi-Scale Fusion. IEEE Transactions on Circuits and Systems for Video Technology, 2022: p. 1-1.
[132] X. Xue, G. Li, D. Zhou, Y. Zhang, L.u. Zhang, Y. Zhao, Z. Feng, L. Cui, Z. Zhou, X. Sun, X. Lu, S. Chen, Research roadmap of service ecosystems: a crowd intelligence perspective, Int. J. Crowd Sci. 6 (4) (2022) 195–222.
[133] X. Cao et al., Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network, IEEE Trans. Sustain. Energy (2022) 1–15.
[134] Xue, X., et al., Computational Experiments: Past, Present and Future. arXiv preprint arXiv:2202.13690, 2022.
[135] Xue, X., et al., Computational Experiments for Complex Social Systems—Part III: The Docking of Domain Models. IEEE Transactions on Computational Social Systems, 2023.
[136] B. Yan et al., Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer’s disease classification, Comput. Biol. Med. 148 (2022).
dc.relation.citationendpage.none.fl_str_mv 40
dc.relation.citationstartpage.none.fl_str_mv 1
dc.relation.citationvolume.none.fl_str_mv 551
dc.rights.eng.fl_str_mv © Copyright 2023 Elsevier B.V., All rights reserved.
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© Copyright 2023 Elsevier B.V., All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 40 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
dc.publisher.place.none.fl_str_mv Netherlands
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0925231223005908?via%3Dihub
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/bafaccb5-60ba-42b0-9033-786ad4daf1f5/download
https://repositorio.cuc.edu.co/bitstreams/ffcda078-228e-48c4-adc0-18d58c22a3e5/download
https://repositorio.cuc.edu.co/bitstreams/30641a06-4afa-4107-823a-f43dc3d19ea7/download
https://repositorio.cuc.edu.co/bitstreams/be6412ff-efe0-483e-bdbc-ccbf4586b822/download
bitstream.checksum.fl_str_mv 28ac2114eb77fba1d193a7a7beb6a62b
73a5432e0b76442b22b026844140d683
9ffc9482f07471a85dd0e42e3a2f0fdb
e95049b9bea5fb1952b70adfbe0c4b45
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166666748428288
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© Copyright 2023 Elsevier B.V., All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zhou, XinsenChen, YiWu, ZongdaHeidari, Ali AsgharChen, HuilingAlabdulkreem, EatedalEscorcia-Gutierrez, JoséWang, Xianchuan2024-10-26T18:07:51Z2024-10-26T18:07:51Z2023-09-28Xinsen Zhou, Yi Chen, Zongda Wu, Ali Asghar Heidari, Huiling Chen, Eatedal Alabdulkreem, José Escorcia-Gutierrez, Xianchuan Wang, Boosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection, Neurocomputing, Volume 551, 2023, 126467, ISSN 0925-2312, https://doi.org/10.1016/j.neucom.2023.126467.0925-2312https://hdl.handle.net/11323/1355610.1016/j.neucom.2023.126467Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The slime mould algorithm (SMA) is a population-based optimization algorithm that mimics the foraging behavior of slime moulds with a simple structure and few hyperparameters. However, SMA has some limitations, such as getting trapped in local optima when dealing with multimodal or combinatorial functions. To overcome these limitations and improve the algorithm’s exploration and exploitation abilities, a local dimensional mutation strategy and an all-dimensional neighborhood search strategy for SMA, known as LASMA, were introduced. To evaluate the performance of LASMA, experiments were conducted on 30 benchmark functions from the CEC2014 competition, and the results were compared with up to 27 peers. The experimental results were then synthesized, and the Wilcoxon signed-rank test was used to evaluate the performance of LASMA. The results showed that LASMA outperformed other algorithms in terms of solution accuracy, stability, and convergence speed, with at least a 53.3% improvement in optimization performance on the 30 tested functions. Moreover, to demonstrate the applicability of LASMA to feature selection problems, a binary version of LASMA called bLASMA was developed and compared with eight binary classification algorithms on 18 datasets from the UCI repository. The experimental results showed that bLASMA not only had faster convergence speed and higher convergence accuracy in handling optimization problems but also performed well in feature selection applications. Thus, LASMA is a promising optimization tool for handling global and binary optimization problems, and its binary version, bLASMA, can be used for feature selection tasks. By addressing the limitations of SMA and improving the algorithm’s exploration and exploitation abilities, LASMA provides a robust and effective solution for various optimization problems.40 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S0925231223005908?via%3DihubBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selectionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Neurocomputing[1] A.R. Gollou, N. Ghadimi, A new feature selection and hybrid forecast engine for day-ahead price forecasting of electricity markets, J. Intell. Fuzzy Syst. 32 (6) (2017) 4031–4045.[2] S. Gu, R. Cheng, Y. Jin, Feature selection for high-dimensional classification using a competitive swarm optimizer, Soft. Comput. 22 (3) (2018) 811–822.[3] P. Hu, J.-S. Pan, S.-C. Chu, Improved binary grey wolf optimizer and its application for feature selection, Knowl.-Based Syst. 195 (2020) 105746.[4] Fan, J., et al., A Hybrid Evolutionary Algorithm Using Two Solution Representations for Hybrid Flow-Shop Scheduling Problem. Ieee Transactions on Cybernetics, 2021.[5] W. Li, H. Xu, H. Li, Y. Yang, P.K. Sharma, J. Wang, S. Singh, Complexity and algorithms for superposed data uploading problem in networks with smart devices, IEEE Internet Things J. 7 (7) (2020) 5882–5891.[6] Z. Lv, L. Qiao, R. Nowak, Energy-Efficient Resource Allocation of Wireless Energy Transfer for the Internet of Everything in Digital Twins, IEEE Commun. Mag. 60 (8) (2022) 68–73.[7] Y. Lu, P. Wang, J. Qin, A hardware architecture of particle swarm optimization, J. Comput. 12 (5) (2017) 442–450.[8] C. Ye, Study on the distribution of marine industry around bohai sea under the background of ocean economic adjustment and optimization, J. Coast. Res. (2020) 163–165s.[9] J. Zeng, Y.H. Kim, Research on secure encryption method of multi-domain fiber network based on particle swarm optimization algorithm, J. Intell. Fuzzy Syst. 38 (1) (2020) 139–145.[10] W. Liu, Z. Wang, X. Liu, N. Zeng, D. Bell, A novel particle swarm optimization approach for patient clustering from emergency departments, IEEE Trans. Evol. Comput. 23 (4) (2019) 632–644.[11] N. Zeng, H. Qiu, Z. Wang, W. Liu, H. Zhang, Y. Li, A new switching-delayedPSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease, Neurocomputing 320 (2018) 195–202[12] Y. Zhang, R. Liu, A.A. Heidari, X. Wang, Y. Chen, M. Wang, H. Chen, Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis, Neurocomputing 430 (2021) 185–212.[13] Y. Liu, A.A. Heidari, Z. Cai, G. Liang, H. Chen, Z. Pan, A. Alsufyani, S. Bourouis, Simulated annealing-based dynamic step shuffled frog leaping algorithm: optimal performance design and feature selection, Neurocomputing 503 (2022) 325–362.[14] Y. Xue, B. Xue, M. Zhang, Self-adaptive particle swarm optimization for largescale feature selection in classification, ACM Trans. Knowledge Discov. Data (TKDD) 13 (5) (2019) 1–27.[15] Y. Xue, X. Cai, F. Neri, A multi-objective evolutionary algorithm with interval based initialization and self-adaptive crossover operator for large-scale feature selection in classification, Appl. Soft Comput. 127 (2022)[16] X. Wang, X. Dong, Y. Zhang, H. Chen, Crisscross harris hawks optimizer for global tasks and feature selection, J. Bionic Eng. 20 (3) (2023) 1153–1174.[17] W. Shan, H. Hu, Z. Cai, H. Chen, H. Liu, M. Wang, Y. Teng, Multi-strategies boosted mutative crow search algorithm for global tasks: Cases of continuous and discrete optimization, J. Bionic Eng. 19 (6) (2022) 1830–1849.[18] G. Sun, G. Yang, G. Zhang, Two-level parameter cooperation-based population regeneration framework for differential evolution, Swarm Evol. Comput. 75 (2022)[19] C. Li, G. Sun, L. Deng, L. Qiao, G. Yang, A population state evaluation-based improvement framework for differential evolution, Inf. Sci. 629 (2023) 15–38.[20] G. Sun, C. Li, L. Deng, An adaptive regeneration framework based on search space adjustment for differential evolution, Neural Comput. & Applic. 33 (15) (2021) 9503–9519[21] W.u. Deng, J. Xu, X.-Z. Gao, H. Zhao, An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems, IEEE Trans. Syst. Man Cybernet. Syst. 52 (3) (2022) 1578–1587.[22] Sun, G., et al., Hierarchical structure-based joint operations algorithm for global optimization. Swarm and Evolutionary Computation, 2023: p. 101311.[23] R. Dong et al., Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem, Knowl.-Based Syst. 233 (2021).[24] Y. Xue, Y. Tong, F. Neri, An ensemble of differential evolution and Adam for training feed-forward neural networks, Inf. Sci. 608 (2022) 453–471.[25] D. Gong, Y. Yin, H. Chen, B. Guo, P. Wu, Y. Wang, Y. Yang, Z. Li, Y. He, G. Zeng, Interfacial Ions Sieving for Ultrafast and Complete Desalination through 2D Nanochannel Defined Graphene Composite Membranes, ACS Nano 15 (6) (2021) 9871–9881[26] D. Zhao, L. Liu, F. Yu, A.A. Heidari, M. Wang, G. Liang, K. Muhammad, H. Chen, Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy, Knowl.-Based Syst. 216 (2021) 106510.[27] B. Li, Y. Tan, A.-G. Wu, G.-R. Duan, A distributionally robust optimization based method for stochastic model predictive control, IEEE Trans. Autom. Control 67 (11) (2022) 5762–5776.[28] M. Zangiabadi, H.R. Maleki, A method for solving linear programming problems with fuzzy parameters based on multiobjective linear programming technique, Asia-Pacific J. Oper. Res. 24 (4) (2007) 557–573.[29] A.A. Lazarev, F. Werner, A graphical realization of the dynamic programming method for solving NP-hard combinatorial problems, Comput. Math. Appl. 58 (4) (2009) 619–631.[30] J. Zhang, Y. Liu, Z. Li, Y. Lu, Forecast-Assisted Service Function Chain Dynamic Deployment for SDN/NFV-Enabled Cloud Management Systems, IEEE Syst. J. (2023), https://doi.org/10.1109/JSYST.2023.3263865[31] Z. Sang, R. Zhang, A. Farouk, D. Zhen, Branch demarcation algorithm based temperature rise online detection system for complete switchgear, J. Intell. Fuzzy Syst. 37 (3) (2019) 3461–3468.[32] X. Zhang, D.i. Wang, Z. Zhou, Y.i. Ma, Robust low-rank tensor recovery with rectification and alignment, IEEE Trans. Pattern Anal. Mach. Intell. 43 (1) (2021) 238–255.[33] X. Li, Y.i. Sun, Stock intelligent investment strategy based on support vector machine parameter optimization algorithm, Neural Comput. Appl. 32 (6) (2020) 1765–1775.[34] S.-H. Wu, Z.-H. Zhan, J. Zhang, SAFE: Scale-adaptive fitness evaluation method for expensive optimization problems, IEEE Trans. Evol. Comput. 25 (3) (2021) 478–491.[35] Y. Duan, Y. Zhao, J. Hu, An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis, Sustain. Energy Grids Netw. 34 (2023) 101004.[36] Z. Lv, J. Wu, Y. Li, H. Song, Cross-layer optimization for industrial Internet of Things in real scene digital twins, IEEE Internet Things J. 9 (17) (2022) 15618– 15629.[37] W.u. Deng, X. Zhang, Y. Zhou, Y.i. Liu, X. Zhou, H. Chen, H. Zhao, An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems, Inf. Sci. 585 (2022) 441–453.[38] Z.-M. Gu, G.-G. Wang, Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Futur. Gener. Comput. Syst. 107 (2020) 49–69.[39] X.-F. Liu, Z.-H. Zhan, Y. Gao, J. Zhang, S. Kwong, J. Zhang, Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization, IEEE Trans. Evol. Comput. 23 (4) (2019) 587– 602.[40] W.u. Deng, H. Liu, J. Xu, H. Zhao, Y. Song, An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE Trans. Instrum. Meas. 69 (10) (2020) 7319–7327.[41] F. Zhao, S. Di, J. Cao, J. Tang, Jonrinaldi, A novel cooperative multi-stage hyper-heuristic for combination optimization problems, Complex Syst. Model. Simulat. 1 (2) (2021) 91–108.[42] X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, Q. Pan, Y. Nojima, Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm, Complex System Modeling and Simulation 1 (3) (2021) 198–217.[43] W. Deng et al., A novel gate resource allocation method using improved PSObased QEA, IEEE Trans. Intell. Transp. Syst. (2020).[44] P. Liu, H. Gao, A novel green supplier selection method based on the interval type-2 fuzzy prioritized choquet bonferroni means, IEEE/CAA J. Autom. Sin. 8 (9) (2020) 1549–1566.[45] J.-H. Yi, S. Deb, J. Dong, A.H. Alavi, G.-G. Wang, An improved NSGA-III algorithm with adaptive mutation operator for Big Data optimization problems, Futur. Gener. Comput. Syst. 88 (2018) 571–585.[46] G. Sun, B. Yang, Z. Yang, G. Xu, An adaptive differential evolution with combined strategy for global numerical optimization, Soft. Comput. 24 (9) (2020) 6277–6296.[47] L. Zheng, Y. Lu, M. Guo, S. Guo, C.-Z. Xu, Architecture-based design and optimization of genetic algorithms on multi- and many-core systems, Fut. Generat. Comput. Syst. Int. J. Esci. 38 (2014) 75–91.[48] J.R. Koza, R. Poli, Genetic programming, in: E.K. Burke, G. Kendall (Eds.), Search Methodologies, Springer US, Boston, MA, 2005, pp. 127–164.[49] I. Rechenberg, Evolutionsstrategien, in: Simulationsmethoden in Der Medizin Und Biologie, Springer, 1978, pp. 83–114.[50] R. Storn, K. Price, Differential evolution – A simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (4) (1997) 341–359.[51] X. Xu, Z. Lin, X. Li, C. Shang, Q. Shen, Multi-objective robust optimisation model for MDVRPLS in refined oil distribution, Int. J. Prod. Res. 60 (22) (2022) 6772–6792.[52] J. Tian et al., Variable surrogate model-based particle swarm optimization for high-dimensional expensive problems, Complex & Intell. Syst. (2022) 1–49.[53] Mirjalili, S., J.S. Dong, and A. Lewis, Nature-inspired optimizers: theories, literature reviews and applications. Vol. 811. 2019: Springer[54] J. Luo, H. Chen, A.A. Heidari, Y. Xu, Q. Zhang, C. Li, Multi-strategy boosted mutative whale-inspired optimization approaches, App. Math. Model. 73 (2019) 109–123[55] I. Ahmadianfar, A.A. Heidari, A.H. Gandomi, X. Chu, H. Chen, RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method, Expert Syst. Appl. 181 (2021) 115079[56] J. Tu, H. Chen, M. Wang, A.H. Gandomi, The Colony predation algorithm, J. Bionic Eng. 18 (3) (2021) 674–710.[57] I. Ahmadianfar et al., INFO: an efficient optimization algorithm based on weighted mean of vectors, Expert Syst. Appl. 195 (2022).[58] Y. Yang, H. Chen, A.A. Heidari, A.H. Gandomi, Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts, Expert Syst. Appl. 177 (2021) 114864.[59] H. Su, D. Zhao, A.A. Heidari, L. Liu, X. Zhang, M. Mafarja, H. Chen, RIME: A physics-based optimization, Neurocomputing 532 (2023) 183–214.[60] H. Chen, C. Li, M. Mafarja, A.A. Heidari, Y.i. Chen, Z. Cai, Slime mould algorithm: a comprehensive review of recent variants and applications, Int. J. Syst. Sci. 54 (1) (2023) 204–235.[61] S. Li, H. Chen, M. Wang, A.A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Futur. Gener. Comput. Syst. 111 (2020) 300–323.[62] A.A. Ewees, F.H. Ismail, A.T. Sahlol, Gradient-based optimizer improved by Slime Mould Algorithm for global optimization and feature selection for diverse computation problems, Expert Syst. Appl. 213 (2023).[63] G. Hu, B. Du, G. Wei, HG-SMA: hierarchical guided slime mould algorithm for smooth path planning, Artif. Intell. Rev. (2023).[64] X. Luo, Y.e. Yuan, S. Chen, N. Zeng, Z. Wang, Position-transitional particle swarm optimization-incorporated latent factor analysis, IEEE Trans. Knowl. Data Eng. 34 (8) (2022) 3958–3970[65] C. Yu, A.A. Heidari, X. Xue, L. Zhang, H. Chen, W. Chen, Boosting quantum rotation gate embedded slime mould algorithm, Expert Syst. Appl. 181 (2021) 115082.[66] M. Abdel-Basset, V. Chang, R. Mohamed, Hsma_woa,, A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput. 95 (2020).[67] S. Zhao, P. Wang, A.A. Heidari, H. Chen, H. Turabieh, M. Mafarja, C. Li, Multilevel threshold image segmentation with diffusion association slime mould algorithm and Renyi’s entropy for chronic obstructive pulmonary disease, Comput. Biol. Med. 134 (2021) 104427.[68] J. Alfadhli, A. Jaragh, M.G. Alfailakawi, I. Ahmad, FP-SMA: an adaptive, fluctuant population strategy for slime mould algorithm, Neural Comput. Appl. 34 (13) (2022) 11163–11175.[69] L. Ren et al., Gaussian kernel probability-driven slime mould algorithm with new movement mechanism for multi-level image segmentation, Measurement 192 (2022).[70] N. Zeng, Z. Wang, W. Liu, H. Zhang, K. Hone, X. Liu, A dynamic neighborhoodbased switching particle swarm optimization algorithm, IEEE Trans. Cybern. 52 (9) (2022) 9290–9301.[71] F. Qiu et al., Boosting slime mould algorithm for high-dimensional gene data mining: diversity analysis and feature selection, Comput. Math. Methods Med. 2022 (2022) 8011003.[72] H. Li, J. Li, P. Wu, Y. You, N. Zeng, A ranking-system-based switching particle swarm optimizer with dynamic learning strategies, Neurocomputing 494 (2022) 356–367[73] L. Abualigah, A. Diabat, M.A. Elaziz, Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems, Journal 14 (2) (2023) 1163–1202.[74] A. Kaveh, K. Biabani Hamedani, M. Kamalinejad, Improved slime mould algorithm with elitist strategy and its application to structural optimization with natural frequency constraints, Comput. Struct. 264 (2022) 106760.[75] J. Hu et al., Dispersed foraging slime mould algorithm: Continuous and binary variants for global optimization and wrapper-based feature selection, Knowl.-Based Syst. 237 (2022).[76] Gong, X., et al., A hybrid algorithm based on state-adaptive slime mold model and fractional-order ant system for the travelling salesman problem. Complex & Intelligent Systems, 2022.[77] X. Chen et al., An efficient multilevel thresholding image segmentation method based on the slime mould algorithm with bee foraging mechanism: a real case with lupus nephritis images, Comput. Biol. Med. 142 (2022).[78] Z. Gao, J. Zhao, S. Li, The hybridized slime mould and particle swarm optimization algorithms, In 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical EngIneerIng (AUTEEE), 2020.[79] Wang, H., et al., A Structural Evolution-Based Anomaly Detection Method for Generalized Evolving Social Networks. The Computer Journal, 2020. 65(5): p. 1189-1199.[80] Liang, J.J., B.Y. Qu, and P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, 2013. 635: p. 490.[81] S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power, Inf. Sci. 180 (10) (2010) 2044–2064.[82] J. Alcalá-Fdez, L. Sánchez, S. García, M.J. del Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, F. Herrera, KEEL: a software tool to assess evolutionary algorithms for data mining problems, Soft. Comput. 13 (3) (2009) 307–318.[83] Z. Peng, J. Hu, K. Shi, R. Luo, R. Huang, B.K. Ghosh, J. Huang, A novel optimal bipartite consensus control scheme for unknown multi-agent systems via model-free reinforcement learning, Appl. Math. Comput. 369 (2020) 124821.[84] S. Wang, X. Hu, J. Sun, J. Liu, Hyperspectral Anomaly Detection Using Ensemble and Robust Collaborative Representation, Inf. Sci. 624 (2023) 748– 760, https://doi.org/10.1016/j.ins.2022.12.096.[85] L.M. Abualigah, A.T. Khader, E.S. Hanandeh, A new feature selection method to improve the document clustering using particle swarm optimization algorithm, J. Comput. Sci. 25 (2018) 456–466[86] S. Angeletti, D. Benvenuto, M. Bianchi, M. Giovanetti, S. Pascarella, M. Ciccozzi, COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis, J. Med. Virol. 92 (6) (2020) 584–588.[87] S. Arora, P. Anand, Binary butterfly optimization approaches for feature selection, Expert Syst. Appl. 116 (2019) 147–160.[88] X. Li, Y.i. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. & Applic. 33 (14) (2021) 8227– 8235.[89] Y. Song, R. Xin, P. Chen, R. Zhang, J. Chen, Z. Zhao, Identifying performance anomalies in fluctuating cloud environments: a robust correlative-GNNbased explainable approach, Futur. Gener. Comput. Syst. 145 (2023) 77–86.[90] C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, C. Molter, V. de Schaetzen, R. Duque, H. Bersini, A. Nowe, A survey on filter techniques for feature selection in gene expression microarray analysis, IEEE-ACM Trans. Comput. Biol. Bioinform. 9 (4) (2012) 1106–1119.[91] N. Kwak, C.-H. Choi, Input feature selection for classification problems, IEEE Trans. Neural Netw. 13 (1) (2002) 143–159.[92] G. Chandrashekar, F. Sahin, A survey on feature selection methods, Comput. Electr. Eng. 40 (1) (2014) 16–28.[93] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, BGSA: binary gravitational search algorithm, Nat. Comput. 9 (3) (2010) 727–745.[94] S. Mirjalili, S.M. Mirjalili, X.-S. Yang, Binary bat algorithm, Neural Comput. Appl. 25 (3–4) (2014) 663–681.[95] M. Abdel-Basset, R. Mohamed, K.M. Sallam, R.K. Chakrabortty, M.J. Ryan, A novel metaheuristic algorithm for multi-dimensional knapsack problems: method and comprehensive analysis, Comput. Ind. Eng. 159 (2021) 107469.[96] I. Tumar, Y. Hassouneh, H. Turabieh, T. Thaher, Enhanced binary moth flame optimization as a feature selection algorithm to predict software fault prediction, IEEE Access 8 (2020) 8041–8055.[97] A.H. Gandomi, X.-S. Yang, A.H. Alavi, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput. 29 (1) (2013) 17–35[98] H. Chen, C. Yang, A.A. Heidari, X. Zhao, An efficient double adaptive random spare reinforced whale optimization algorithm, Expert Syst. Appl. 154 (2020) 113018.[99] H. Salimi, Stochastic fractal search: a powerful metaheuristic algorithm, Knowl.-Based Syst. 75 (2015) 1–18.[100] W. Sun, A. Lin, H. Yu, Q. Liang, G. Wu, All-dimension neighborhood based particle swarm optimization with randomly selected neighbors, Inf. Sci. 405 (2017) 141–156.[101] S. Mirjalili, A. Lewis, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput. 9 (2013) 1–14.[102] H. Tang, Y. Xu, A. Lin, A.A. Heidari, M. Wang, H. Chen, Y. Luo, C. Li, Predicting green consumption behaviors of students using efficient firefly grey wolfassisted K-nearest neighbor classifiers, IEEE Access 8 (2020) 35546–35562[103] J. Kennedy, R. Eberhart, Particle swarm optimization, IEEE, 1995[104] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69 (2014) 46–61.[105] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw. 95 (2016) 51–67.[106] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowl.-Based Syst. 96 (2016) 120–133.[107] S. Mirjalili, Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm, Knowl.-Based Syst. 89 (2015) 228–249.[108] X.-S. Yang, A.H. Gandomi, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput. 29 (5–6) (2012) 464–483.[109] X.S. Yang, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput. 2 (2) (2010) 78–84.[110] W.-N. Chen, J. Zhang, Y. Lin, N.i. Chen, Z.-H. Zhan, H.-H. Chung, Y. Li, Y.-H. Shi, Particle swarm optimization with an aging leader and challengers, IEEE Trans. Evol. Comput. 17 (2) (2013) 241–258.[111] H. Nenavath, R.K. Jatoth, Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking, Appl. Soft Comput. 62 (2018) 1019–1043.[112] Y. Cao, H. Zhang, W. Li, M. Zhou, Y.u. Zhang, W.A. Chaovalitwongse, Comprehensive learning particle swarm optimization algorithm with local search for multimodal functions, IEEE Trans. Evol. Comput. 23 (4) (2019) 718–731.[113] A. Lin, Q. Wu, A.A. Heidari, Y. Xu, H. Chen, W. Geng, Y. li, C. Li, Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier, IEEE Access 7 (2019) 67235–67248.[114] M. Abd Elaziz, D. Oliva, S.W. Xiong, An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl. 90 (2017) 484– 500.[115] J. Hu, H. Chen, A.A. Heidari, M. Wang, X. Zhang, Y. Chen, Z. Pan, Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection, Knowl.-Based Syst. 213 (2021) 106684.[116] Z. Cai, J. Gu, J. Luo, Q. Zhang, H. Chen, Z. Pan, Y. Li, C. Li, Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy, Expert Syst. Appl. 138 (2019) 112814.[117] A.A. Heidari, R.A. Abbaspour, H. Chen, Efficient boosted grey wolf optimizers for global search and kernel extreme learning machine training, Appl. Soft Comput. 81 (2019).[118] A.A. Heidari, I. Aljarah, H. Faris, H. Chen, J. Luo, S. Mirjalili, An enhanced associative learning-based exploratory whale optimizer for global optimization, Neural Comput. Appl. 32 (9) (2020) 5185–5211.[119] H. Chen et al., An efficient double adaptive random spare reinforced whale optimization algorithm, Expert Syst. Appl. 154 (2020).[120] M.A. Elhosseini, A.Y. Haikal, M. Badawy, N. Khashan, Biped robot stability based on an A-C parametric whale optimization algorithm, J. Comput. Sci. 31 (2019) 17–32.[121] M. Abdel-Basset, V. Chang, R. Mohamed, HSMA_WOA: A hybrid novel Slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images, Appl. Soft Comput. 95 (2020).[122] L. Liu et al., Performance optimization of differential evolution with slime mould algorithm for multilevel breast cancer image segmentation, Comput. Biol. Med. 138 (2021).[123] Wu, S., et al., Gaussian bare-bone slime mould algorithm: performance optimization and case studies on truss structures. Artificial Intelligence Review, 2023.[124] D.A.B. Oliveira, R.S. Ferreira, R. Silva, E.V. Brazil, Improving seismic data resolution with deep generative networks, IEEE Geosci. Remote Sens. Lett. 16 (12) (2019) 1929–1933.[125] C. Qin, Y. Jin, Z. Zhang, H. Yu, J. Tao, H. Sun, Anti-noise diesel engine misfire diagnosis using a multi-scale CNN-LSTM neural network with denoising module, CAAI Trans. Intell. Technol. (2023) 1–24, https://doi.org/10.1049/ cit2.12170.[126] K. Zhao et al., Multi-scale integrated deep self-attention network for predicting remaining useful life of aero-engine, Eng. Appl. Artif. Intel. 120 (2023).[127] D. Chen, Z. Lv, Artificial intelligence enabled Digital Twins for training autonomous cars, Int. Things Cyber-Phys. Syst. 2 (2022) 31–41.[128] E. Emary, H.M. Zawbaa, A.E. Hassanien, Binary ant lion approaches for feature selection, Neurocomputing 213 (2016) 54–65.[129] H. Faris, M.M. Mafarja, A.A. Heidari, I. Aljarah, A.M. Al-Zoubi, S. Mirjalili, H. Fujita, An efficient binary salp swarm algorithm with crossover scheme for feature selection problems, Knowl.-Based Syst. 154 (2018) 43–67.[130] M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper feature selection, Appl. Soft Comput. 62 (2018) 441–453.[131] Zhao, C., et al., JAMSNet: A Remote Pulse Extraction Network Based on Joint Attention and Multi-Scale Fusion. IEEE Transactions on Circuits and Systems for Video Technology, 2022: p. 1-1.[132] X. Xue, G. Li, D. Zhou, Y. Zhang, L.u. Zhang, Y. Zhao, Z. Feng, L. Cui, Z. Zhou, X. Sun, X. Lu, S. Chen, Research roadmap of service ecosystems: a crowd intelligence perspective, Int. J. Crowd Sci. 6 (4) (2022) 195–222.[133] X. Cao et al., Resilience constrained scheduling of mobile emergency resources in electricity-hydrogen distribution network, IEEE Trans. Sustain. Energy (2022) 1–15.[134] Xue, X., et al., Computational Experiments: Past, Present and Future. arXiv preprint arXiv:2202.13690, 2022.[135] Xue, X., et al., Computational Experiments for Complex Social Systems—Part III: The Docking of Domain Models. IEEE Transactions on Computational Social Systems, 2023.[136] B. Yan et al., Quantifying the impact of Pyramid Squeeze Attention mechanism and filtering approaches on Alzheimer’s disease classification, Comput. Biol. Med. 148 (2022).401551All-dimension neighborhood searchClassificationFeature selectionLocal dimensional mutationsMeta-heuristicOptimizationSlime mould algorithmSMAPublicationORIGINALBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection.pdfBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection.pdfapplication/pdf6946137https://repositorio.cuc.edu.co/bitstreams/bafaccb5-60ba-42b0-9033-786ad4daf1f5/download28ac2114eb77fba1d193a7a7beb6a62bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/ffcda078-228e-48c4-adc0-18d58c22a3e5/download73a5432e0b76442b22b026844140d683MD52TEXTBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection.pdf.txtBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection.pdf.txtExtracted texttext/plain101667https://repositorio.cuc.edu.co/bitstreams/30641a06-4afa-4107-823a-f43dc3d19ea7/download9ffc9482f07471a85dd0e42e3a2f0fdbMD53THUMBNAILBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection.pdf.jpgBoosted local dimensional mutation and all-dimensional neighborhood slime mould algorithm for feature selection.pdf.jpgGenerated Thumbnailimage/jpeg15721https://repositorio.cuc.edu.co/bitstreams/be6412ff-efe0-483e-bdbc-ccbf4586b822/downloade95049b9bea5fb1952b70adfbe0c4b45MD5411323/13556oai:repositorio.cuc.edu.co:11323/135562024-10-27 03:01:07.149https://creativecommons.org/licenses/by-nc-nd/4.0/© Copyright 2023 Elsevier B.V., All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K