Valor en Riesgo y simulación: una revisión sistemática
El valor en riesgo es la medida de mercado utilizada por las instituciones financieras y adoptada por el Comité de Basilea para calcular y gestionar el riesgo, lo que la convierte en una medida necesaria para el sector financiero. En este artículo se realiza un estudio bibliométrico del Valor en Rie...
- Autores:
-
Pineda Guerrero, Mauren Silene
Agudelo Aguirre, Alberto Antonio
Rojas Medina, Ricardo Alfredo
Duque Hurtado, Pedro Luis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/11923
- Acceso en línea:
- https://doi.org/10.17981/econcuc.43.1.2022.Econ.3
- Palabra clave:
- Value at Risk
VaR
Bibliometric
Risk
Scientific Mapping
Riesgo
Valor en riesgo
VaR
Bibliometría
Mapeo científico
- Rights
- openAccess
- License
- ECONÓMICAS CUC - 2021
id |
RCUC2_08ee08ab19026ad5bac73222f25264e0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/11923 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Valor en Riesgo y simulación: una revisión sistemática |
dc.title.translated.eng.fl_str_mv |
Value at Risk and simulation: a systematic review |
title |
Valor en Riesgo y simulación: una revisión sistemática |
spellingShingle |
Valor en Riesgo y simulación: una revisión sistemática Value at Risk VaR Bibliometric Risk Scientific Mapping Riesgo Valor en riesgo VaR Bibliometría Mapeo científico |
title_short |
Valor en Riesgo y simulación: una revisión sistemática |
title_full |
Valor en Riesgo y simulación: una revisión sistemática |
title_fullStr |
Valor en Riesgo y simulación: una revisión sistemática |
title_full_unstemmed |
Valor en Riesgo y simulación: una revisión sistemática |
title_sort |
Valor en Riesgo y simulación: una revisión sistemática |
dc.creator.fl_str_mv |
Pineda Guerrero, Mauren Silene Agudelo Aguirre, Alberto Antonio Rojas Medina, Ricardo Alfredo Duque Hurtado, Pedro Luis |
dc.contributor.author.spa.fl_str_mv |
Pineda Guerrero, Mauren Silene Agudelo Aguirre, Alberto Antonio Rojas Medina, Ricardo Alfredo Duque Hurtado, Pedro Luis |
dc.subject.eng.fl_str_mv |
Value at Risk VaR Bibliometric Risk Scientific Mapping |
topic |
Value at Risk VaR Bibliometric Risk Scientific Mapping Riesgo Valor en riesgo VaR Bibliometría Mapeo científico |
dc.subject.spa.fl_str_mv |
Riesgo Valor en riesgo VaR Bibliometría Mapeo científico |
description |
El valor en riesgo es la medida de mercado utilizada por las instituciones financieras y adoptada por el Comité de Basilea para calcular y gestionar el riesgo, lo que la convierte en una medida necesaria para el sector financiero. En este artículo se realiza un estudio bibliométrico del Valor en Riesgo (VaR) y su cálculo mediante procesos de simulación. Para ello se revisan las investigaciones publicadas en los últimos 20 años en las bases de datos Scopus y Web of Science, recopilando los documentos más relevantes para su análisis. Posteriormente se presenta la justificación del tema y se elabora la red social utilizando la analogía del árbol, en la que cada uno de los documentos más importantes se clasifican como raíz, tronco u hoja. Finalmente, se identifican las perspectivas de investigación del tema mediante un análisis de co-citaciones. Se concluye que las mujeres tienen un alto grado de participación en cargos gerenciales, sin embargo, se nota una diferencia significativa de 3.492.556 pesos en los salarios de los dos sexos, donde los hombres son quienes obtiene mayores ingresos. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-01-01 |
dc.date.accessioned.none.fl_str_mv |
2022-01-01 00:00:00 |
dc.date.available.none.fl_str_mv |
2022-01-01 00:00:00 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0120-3932 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/econcuc.43.1.2022.Econ.3 |
dc.identifier.doi.none.fl_str_mv |
10.17981/econcuc.43.1.2022.Econ.3 |
dc.identifier.eissn.none.fl_str_mv |
2382-3860 |
identifier_str_mv |
0120-3932 10.17981/econcuc.43.1.2022.Econ.3 2382-3860 |
url |
https://doi.org/10.17981/econcuc.43.1.2022.Econ.3 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Económicas CUC |
dc.relation.references.spa.fl_str_mv |
Andersonn, F., Mausser, H., Rosen, D. & Uryasev, S. (2001). Credit risk optimization with Conditional Value-at-Risk criterion. Mathemastical Programming, 89(2), 273–291. https://doi.org/10.1007/PL00011399 Andriosopoulos, K. & Nomikos, N. (2015). Risk management in the energy markets and Value-at-Risk modelling: a hybrid approach. The European Journal of Finance, 21(7), 548–574. https://doi.org/10.1080/1351847X.2013.862173 Aria, M, y Cuccurullo, C. (2017). Bibliometrix: una herramienta R para el análisis exhaustivo de la cartografía científica. Journal of Informetrics, 11(4), 959–975. Disponible en https://doi.org/10.1016/j.joi.2017.08.007 Artzner, P., Delbaen, F., Eber, J. & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068 Asimit, V., Peng, L., Wang, R. y Yu, A. (2019). An efficient approach to quantile capital allocation and sensitivity analysis. Mathematical Finance, 29(4), 1131–1156. https://doi.org/10.1111/mafi.12211 Babazadeh, H. & Esfahanipour, A. (2019). A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost. Journal of Computational and Applied Mathematics, 361(1), 313–342. https://doi.org/10.1016/j.cam.2018.10.039 Bastian, M., Heymann, S. & Jacomy, M. (May. 2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Presentation at Third International Conference on Weblogs and Social Media. ICWSM, San José, CA, USA. https://doi.org/10.13140/2.1.1341.1520 BIS. (2011). El Nuevo Acuerdo de Capital de Basilea. [Documento Consultivo]. Basilea: BIS. Recuperado de https://www.bis.org/publ/bcbsca03_s.pdf Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 Broadie, M., Du, Y. & Moallemi, C. C. (2011). Efficient Risk Estimation via Nested Sequential Simulation. Management Science, 57(6), 1172–1194. https://doi.org/10.1287/mnsc.1110.1330 Buitrago, S., Duque, P. y Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. Económicas CUC, 41(1), 143–162. https://doi.org/10.17981/econcuc.41.1.2020.Org.1 Chen, Q., Gerlach, R. & Lu, Z. (2012). Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution. Computational Statistics and Data Analysis, 56(11), 3498–3516. https://doi.org/10.1016/j.csda.2010.06.018 Colletaz, G., Hurlin, C. & Pérignon, C. (2013). The Risk Map: A new tool for validating risk models. Journal of Banking & Finance, 37(10), 3843–3854. https://doi.org/10.1016/j.jbankfin.2013.06.006 Dahlgreen, R., Ching, C. & Lawarree, J. (2003). Risk Assessment in Energy Trading. IEEE Transactions on Power Systems, 18(2), 503–511. https://doi.org/10.1109/TPWRS.2003.810685 Du, Z. & Escanciano, J. C. (2017). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science, 63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342 Duffie, D. & Pan, J. (1997). An Overview of Value at Risk. The Journal of Derivatives. 4(3), 7–49. https://doi.org/10.3905/JOD.1997.407971 Duque, P. y Cervantes-Cervantes, L.-S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 35(153), 451–464. https://doi.org/10.18046/j.estger.2019.153.3389 Duque, P. y Duque, E. (2020). Marketing digital y comercio electrónico: un análisis bibliométrico. En: M. Redondo, A. Barrera y C. Duque (eds.), Nuevos modelos de negocio (pp. 73–96). Pereira: Unilibre. Disponible en https://hdl.handle.net/10901/18463 Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773 Engle, R. F. & Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22,367–381. https://doi.org/10.1198/073500104000000370 Escanciano, J. C. & Pei, P. (2012). Pitfalls in backtesting Historical Simulation VaR models. Journal of Banking & Finance, 36(8), 2233–2244. https://doi.org/10.1016/j.jbankfin.2012.04.004 Gaglianone, W., Renato, L., Linton, O. & Smith, D. (2011). Evaluating Value-at-Risk Models via Quantile Regression. Journal of Business & Economic Statistics, 29(1), 150–160. https://doi.org/10.1198/jbes.2010.07318 Gaio, L., Pimenta, T., Guasti, F., Passos, I. & Oliveira, N. (2018). Value-at-risk performance in emerging and developed countries. International Journal of Managerial Finance, 14(5), 591–612. https://doi.org/10.1108/IJMF-10-2017-0244 Gephi. (versión 0.9.2). Gephi. [Visualization and exploration software for graphs and networks]. Compiègne: UTC. Available: https://gephi.org Gencay, R. & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287–303. https://doi.org/10.1016/j.ijforecast.2003.09.005 Gençay, R., Selçuk, F. & Ulugülyagci, A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance. Mathematics and Economics, 33(2), 337–356. https://doi.org/10.1016/J.INSMATHECO.2003.07.004 Glasserman, P. & Li, J. (2005). Importance Sampling for Portfolio Credit Risk. Management Science, 51(11), 1643–1656. https://doi.org/10.1287/mnsc.1050.0415 Glasserman, P., Heilderberg, P. & Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, 12(3), 239–269. https://doi.org/10.1111/1467-9965.00141 Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.2307/2329067 Gordy, M. B. & Juneja, S. (2010). Nested Simulation in Portfolio Risk Measurement. Management Science, 56(10), 1833–1848. https://doi.org/10.1287/mnsc.1100.1213 Hong, L. J. (2009). Estimating Quantile Sensitivities. Operations Research, 57(1), 118–130. https://doi.org/10.1287/opre.1080.0531 Huang, D., Zhub, S., Fabozzi, F. & Fukushima, M. (2008). Portfolio selection with uncertain exit time: A robust CVaR approach. Journal of Economic Dynamics & Control, 32(2), 594–623. https://doi.org/10.1016/j.jedc.2007.03.003 Jabr, R. A. (2005). Robust Self-Scheduling Under Price Uncertainty Using Conditional Value-at-Risk. IEEE Transactions on Power Systems, 20(4), 1852–1858. https://doi.org/10.1109/TPWRS.2005.856952 Kennedy, J. & Elberhart, R. (Nov. 1995). Particle Swarm Optimization. Presented at Third International Conference on Neural Networks, ICNN, Perth, WA, Australia. https://doi.org/10.1109/ICNN.1995.488968 Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, 3(2), 73–84. https://doi.org/10.3905/JOD.1995.407942 Kuester, K., Mittnik, S. & Paoella, M. (2005). Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics, 4(1), 53–89. https://doi.org/10.1093/jjfinec/nbj002 Liu, B. & Liu, Y.-K. (2002). Expected Value of Fuzzy Variable and Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692 Lwin, K. T., Qu, R. & MacCarthy, B. L. (2017). Mean-VaR Portfolio Optimization: A Nonparametric Approach. European Journal of Operational Research, 260(2), 751–766. https://doi.org/10.1016/j.ejor.2017.01.005 Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.x Marimoutou, V., Raggad, B. & Trabelsi, A. (2009). Extreme Value Theory and Value at Risk: Application to oil market. Energy Economics, 31(4), 519–530. https://doi.org/10.1016/j.eneco.2009.02.005 McNeil, A. J. & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7(3-4), 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8 Moazeni, S., Coleman, T. F. & Li, Y. (2013). Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy. Annals of Operations Research, 237, 99–120. https://doi.org/10.1007/s10479-013-1391-7 Muller, F. M. & Brutti, M. (2017). Numerical comparison of multivariate models to forecasting risk measures. Risk Management, 20(1), 29–50. https://doi. org/10.1057/s41283-017-0026-8 Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260 Novales, A., & Garcia-Jorcano, L. (2018). Backtesting extreme value theory models of expected shortfall. Quantitative Finance, 19(5), 799–825. https://doi.org/10.1080/14697688.2018.1535182 Paolella, M. (2017). The Univariate Collapsing Method for Portfolio Optimization. Econometrics, 5(2), 1–33. https://doi.org/10.3390/econometrics5020018 Perignon, C. & Smith, D. (2010). The level and quality of Value-at-Risk disclosure by commercial Banks. Journal of Banking & Finance, 34(2), 362–377. https://doi.org/10.1016/J.JBANKFIN.2009.08.009 Pritsker, M. (2006). The hidden dangers of historical simulation. Journal of Banking & Finance, 30(2), 561–582. https://doi.org/10.1016/j.jbankfin.2005.04.013 R. (version 3). Statistical computing and graphics. [Software environment]. Vienna: R Core Team. Available: https://www.r-project.org/ Robledo, S., Osorio, G. y López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 117–134. https://revistas.udistrital.edu.co/index.php/vinculos/article/view/9664 Rockafellar, R. T. & Uryasev, S. (2000). Optimization of conditional value-at-risk. Risk.net, 2(3), 21–41. https://doi.org/10.21314/JOR.2000.038 Scheller, F. & Auer, B. (2018). How does the choice of Value-at-Risk estimator influence asset allocation decisions? Quantitative Finance, 18(12), 2005–2022. https://doi.org/10.1080/14697688.2018.1459806 Sci2 Tool. (versión 1.3). Science of Science. [Software]. Bloomington: CNS. Available: https://sci2.cns.iu.edu/user/index.php Vijverberg, C.-P. C., Vijverberg, W. P. M. & Taşpınar, S. (2015). Linking Tukey’s Legacy to Financial Risk Measurement. Computational Statistics and Data Analysis, 100, 595–615. https://doi.org/10.1016/j.csda.2015.08.018 Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge: CUP. https://doi.org/10.1017/CBO9780511815478 Wang, B., Wang, S. & Watadata, J. (2011). Fuzzy-Portfolio-Selection Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19(4), 758–769. https:// doi.org/10.1109/TFUZZ.2011.2144599 Wang, C., Chen, Q. & Gerlach, R. (2018). Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution. Quantitative Finance, 19(6), 1017–1042. https://doi.org/10.1080/14697688.2018.1540880 Xu, L. (2014). Model-free inference for tail risk measures. Econometric Theory, 34(3), 1–32. https://doi.org/10.1017/S0266466614000802 Yao, H., Li, Z. & Lai, Y. (2013). Mean–CVaR portfolio selection: A nonparametric estimation framework. Computers & Operations Research, 40(4), 1014–1044. https://doi.org/10.1016/J.COR.2012.11.007 Zaichao, Du. & Escanciano, J. C. (2016). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science, 63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342 Zhang, L., Luo, M. & Boncella, R. (2017). Product information diffusion in a social network. Electronic Commerce Research, 20(1), 3–19. https://doi.org/10.1007/s10660-018-9316-9 Zhang, Q. & Wang, X. (2009). Hedge Contract Characterization and Risk-Constrained Electricity Procurement. IEEE Transactions on Power Systems, 24(3), 1547–1548. https://doi.org/10.1109/TPWRS.2009.2021233 Ziggel, D., Berens, T., Weib, G. & Wied, D. (2014). A new set of improved Valueat-Risk back tests. Journal of Banking & Finance, 48(C), 29–41. https://doi.org/10.1016/J.JBANKFIN.2014.07.005 Zuluaga, M., Robledo, S., Osorio, G. A., Yathe, L., González, D. & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 14(25), 121–128. https://doi.org/10.22490/24629448.1735 |
dc.relation.citationendpage.none.fl_str_mv |
82 |
dc.relation.citationstartpage.none.fl_str_mv |
57 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
43 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/3691 https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/4022 https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/4023 https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/4024 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 1 , Año 2022 |
dc.rights.spa.fl_str_mv |
ECONÓMICAS CUC - 2021 |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
ECONÓMICAS CUC - 2021 https://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html application/xml application/epub+zip |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/economicascuc/article/view/3093 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e9d28f01-f7b6-48a0-aa5a-0b98e54f7c28/download |
bitstream.checksum.fl_str_mv |
3a1414d4f5dabf45bbea84991f99c79f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166832534585344 |
spelling |
Pineda Guerrero, Mauren SileneAgudelo Aguirre, Alberto AntonioRojas Medina, Ricardo AlfredoDuque Hurtado, Pedro Luis2022-01-01 00:00:002022-01-01 00:00:002021-01-010120-3932https://doi.org/10.17981/econcuc.43.1.2022.Econ.310.17981/econcuc.43.1.2022.Econ.32382-3860El valor en riesgo es la medida de mercado utilizada por las instituciones financieras y adoptada por el Comité de Basilea para calcular y gestionar el riesgo, lo que la convierte en una medida necesaria para el sector financiero. En este artículo se realiza un estudio bibliométrico del Valor en Riesgo (VaR) y su cálculo mediante procesos de simulación. Para ello se revisan las investigaciones publicadas en los últimos 20 años en las bases de datos Scopus y Web of Science, recopilando los documentos más relevantes para su análisis. Posteriormente se presenta la justificación del tema y se elabora la red social utilizando la analogía del árbol, en la que cada uno de los documentos más importantes se clasifican como raíz, tronco u hoja. Finalmente, se identifican las perspectivas de investigación del tema mediante un análisis de co-citaciones. Se concluye que las mujeres tienen un alto grado de participación en cargos gerenciales, sin embargo, se nota una diferencia significativa de 3.492.556 pesos en los salarios de los dos sexos, donde los hombres son quienes obtiene mayores ingresos.Value at Risk is the market measure used by financial institutions and adopted by the Basel Committee to calculate and manage risk, making it a necessary measure for the financial sector. In this article, a bibliometric study of Value at Risk (VaR) is carried out and its calculation using simulation processes. For this purpose, a review was made of the research published over the last 20 years in the Scopus and Web of Science databases, compiling the most relevant documents for analysis. Subsequently, the justification of the topic is presented, and the social network is elaborated using the tree analogy, in which each of the most important documents is classified as root, stem, or leaf. Finally, the research perspectives of the topic are identified through a cocitations analysis. It is concluded that women have a high degree of participation in managerial positions, however, a significant difference of 3,492,556 pesos is noted in the salaries of the two sexes, where men are the ones who obtain the highest income.application/pdftext/htmlapplication/xmlapplication/epub+zipspaUniversidad de la CostaECONÓMICAS CUC - 2021https://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/economicascuc/article/view/3093Value at RiskVaRBibliometricRiskScientific MappingRiesgoValor en riesgoVaRBibliometríaMapeo científicoValor en Riesgo y simulación: una revisión sistemáticaValue at Risk and simulation: a systematic reviewArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Económicas CUCAndersonn, F., Mausser, H., Rosen, D. & Uryasev, S. (2001). Credit risk optimization with Conditional Value-at-Risk criterion. Mathemastical Programming, 89(2), 273–291. https://doi.org/10.1007/PL00011399Andriosopoulos, K. & Nomikos, N. (2015). Risk management in the energy markets and Value-at-Risk modelling: a hybrid approach. The European Journal of Finance, 21(7), 548–574. https://doi.org/10.1080/1351847X.2013.862173Aria, M, y Cuccurullo, C. (2017). Bibliometrix: una herramienta R para el análisis exhaustivo de la cartografía científica. Journal of Informetrics, 11(4), 959–975. Disponible en https://doi.org/10.1016/j.joi.2017.08.007Artzner, P., Delbaen, F., Eber, J. & Heath, D. (1999). Coherent Measures of Risk. Mathematical Finance, 9(3), 203–228. https://doi.org/10.1111/1467-9965.00068Asimit, V., Peng, L., Wang, R. y Yu, A. (2019). An efficient approach to quantile capital allocation and sensitivity analysis. Mathematical Finance, 29(4), 1131–1156. https://doi.org/10.1111/mafi.12211Babazadeh, H. & Esfahanipour, A. (2019). A novel multi period mean-VaR portfolio optimization model considering practical constraints and transaction cost. Journal of Computational and Applied Mathematics, 361(1), 313–342. https://doi.org/10.1016/j.cam.2018.10.039Bastian, M., Heymann, S. & Jacomy, M. (May. 2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Presentation at Third International Conference on Weblogs and Social Media. ICWSM, San José, CA, USA. https://doi.org/10.13140/2.1.1341.1520BIS. (2011). El Nuevo Acuerdo de Capital de Basilea. [Documento Consultivo]. Basilea: BIS. Recuperado de https://www.bis.org/publ/bcbsca03_s.pdfBollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327. https://doi.org/10.1016/0304-4076(86)90063-1 Broadie, M., Du, Y. & Moallemi, C. C. (2011). Efficient Risk Estimation via Nested Sequential Simulation. Management Science, 57(6), 1172–1194. https://doi.org/10.1287/mnsc.1110.1330Buitrago, S., Duque, P. y Robledo, S. (2020). Branding Corporativo: una revisión bibliográfica. Económicas CUC, 41(1), 143–162. https://doi.org/10.17981/econcuc.41.1.2020.Org.1 Chen, Q., Gerlach, R. & Lu, Z. (2012). Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution. Computational Statistics and Data Analysis, 56(11), 3498–3516. https://doi.org/10.1016/j.csda.2010.06.018Colletaz, G., Hurlin, C. & Pérignon, C. (2013). The Risk Map: A new tool for validating risk models. Journal of Banking & Finance, 37(10), 3843–3854. https://doi.org/10.1016/j.jbankfin.2013.06.006Dahlgreen, R., Ching, C. & Lawarree, J. (2003). Risk Assessment in Energy Trading. IEEE Transactions on Power Systems, 18(2), 503–511. https://doi.org/10.1109/TPWRS.2003.810685Du, Z. & Escanciano, J. C. (2017). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science, 63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342Duffie, D. & Pan, J. (1997). An Overview of Value at Risk. The Journal of Derivatives. 4(3), 7–49. https://doi.org/10.3905/JOD.1997.407971Duque, P. y Cervantes-Cervantes, L.-S. (2019). Responsabilidad Social Universitaria: una revisión sistemática y análisis bibliométrico. Estudios Gerenciales, 35(153), 451–464. https://doi.org/10.18046/j.estger.2019.153.3389Duque, P. y Duque, E. (2020). Marketing digital y comercio electrónico: un análisis bibliométrico. En: M. Redondo, A. Barrera y C. Duque (eds.), Nuevos modelos de negocio (pp. 73–96). Pereira: Unilibre. Disponible en https://hdl.handle.net/10901/18463Engle, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50(4), 987–1007. https://doi.org/10.2307/1912773Engle, R. F. & Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22,367–381. https://doi.org/10.1198/073500104000000370Escanciano, J. C. & Pei, P. (2012). Pitfalls in backtesting Historical Simulation VaR models. Journal of Banking & Finance, 36(8), 2233–2244. https://doi.org/10.1016/j.jbankfin.2012.04.004Gaglianone, W., Renato, L., Linton, O. & Smith, D. (2011). Evaluating Value-at-Risk Models via Quantile Regression. Journal of Business & Economic Statistics, 29(1), 150–160. https://doi.org/10.1198/jbes.2010.07318 Gaio, L., Pimenta, T., Guasti, F., Passos, I. & Oliveira, N. (2018). Value-at-risk performance in emerging and developed countries. International Journal of Managerial Finance, 14(5), 591–612. https://doi.org/10.1108/IJMF-10-2017-0244Gephi. (versión 0.9.2). Gephi. [Visualization and exploration software for graphs and networks]. Compiègne: UTC. Available: https://gephi.orgGencay, R. & Selcuk, F. (2004). Extreme value theory and Value-at-Risk: Relative performance in emerging markets. International Journal of Forecasting, 20(2), 287–303. https://doi.org/10.1016/j.ijforecast.2003.09.005Gençay, R., Selçuk, F. & Ulugülyagci, A. (2003). High volatility, thick tails and extreme value theory in value-at-risk estimation. Insurance. Mathematics and Economics, 33(2), 337–356. https://doi.org/10.1016/J.INSMATHECO.2003.07.004Glasserman, P. & Li, J. (2005). Importance Sampling for Portfolio Credit Risk. Management Science, 51(11), 1643–1656. https://doi.org/10.1287/mnsc.1050.0415Glasserman, P., Heilderberg, P. & Shahabuddin, P. (2002). Portfolio value-at-risk with heavy-tailed risk factors. Mathematical Finance, 12(3), 239–269. https://doi.org/10.1111/1467-9965.00141Glosten, L. R., Jagannathan, R. & Runkle, D. E. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess. The Journal of Finance, 48(5), 1779–1801. https://doi.org/10.2307/2329067Gordy, M. B. & Juneja, S. (2010). Nested Simulation in Portfolio Risk Measurement. Management Science, 56(10), 1833–1848. https://doi.org/10.1287/mnsc.1100.1213Hong, L. J. (2009). Estimating Quantile Sensitivities. Operations Research, 57(1), 118–130. https://doi.org/10.1287/opre.1080.0531Huang, D., Zhub, S., Fabozzi, F. & Fukushima, M. (2008). Portfolio selection with uncertain exit time: A robust CVaR approach. Journal of Economic Dynamics & Control, 32(2), 594–623. https://doi.org/10.1016/j.jedc.2007.03.003Jabr, R. A. (2005). Robust Self-Scheduling Under Price Uncertainty Using Conditional Value-at-Risk. IEEE Transactions on Power Systems, 20(4), 1852–1858. https://doi.org/10.1109/TPWRS.2005.856952Kennedy, J. & Elberhart, R. (Nov. 1995). Particle Swarm Optimization. Presented at Third International Conference on Neural Networks, ICNN, Perth, WA, Australia. https://doi.org/10.1109/ICNN.1995.488968Kupiec, P. H. (1995). Techniques for Verifying the Accuracy of Risk Measurement Models. The Journal of Derivatives, 3(2), 73–84. https://doi.org/10.3905/JOD.1995.407942Kuester, K., Mittnik, S. & Paoella, M. (2005). Value-at-Risk Prediction: A Comparison of Alternative Strategies. Journal of Financial Econometrics, 4(1), 53–89. https://doi.org/10.1093/jjfinec/nbj002Liu, B. & Liu, Y.-K. (2002). Expected Value of Fuzzy Variable and Fuzzy Expected Value Models. IEEE Transactions on Fuzzy Systems, 10(4), 445–450. https://doi.org/10.1109/TFUZZ.2002.800692Lwin, K. T., Qu, R. & MacCarthy, B. L. (2017). Mean-VaR Portfolio Optimization: A Nonparametric Approach. European Journal of Operational Research, 260(2), 751–766. https://doi.org/10.1016/j.ejor.2017.01.005Markowitz, H. (1952). Portfolio Selection. The Journal of Finance, 7(1), 77–91. https://doi.org/10.1111/j.1540-6261.1952.tb01525.xMarimoutou, V., Raggad, B. & Trabelsi, A. (2009). Extreme Value Theory and Value at Risk: Application to oil market. Energy Economics, 31(4), 519–530. https://doi.org/10.1016/j.eneco.2009.02.005McNeil, A. J. & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7(3-4), 271–300. https://doi.org/10.1016/S0927-5398(00)00012-8Moazeni, S., Coleman, T. F. & Li, Y. (2013). Smoothing and parametric rules for stochastic mean-CVaR optimal execution strategy. Annals of Operations Research, 237, 99–120. https://doi.org/10.1007/s10479-013-1391-7Muller, F. M. & Brutti, M. (2017). Numerical comparison of multivariate models to forecasting risk measures. Risk Management, 20(1), 29–50. https://doi. org/10.1057/s41283-017-0026-8Nelson, D. B. (1991). Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica, 59(2), 347–370. https://doi.org/10.2307/2938260Novales, A., & Garcia-Jorcano, L. (2018). Backtesting extreme value theory models of expected shortfall. Quantitative Finance, 19(5), 799–825. https://doi.org/10.1080/14697688.2018.1535182Paolella, M. (2017). The Univariate Collapsing Method for Portfolio Optimization. Econometrics, 5(2), 1–33. https://doi.org/10.3390/econometrics5020018Perignon, C. & Smith, D. (2010). The level and quality of Value-at-Risk disclosure by commercial Banks. Journal of Banking & Finance, 34(2), 362–377. https://doi.org/10.1016/J.JBANKFIN.2009.08.009Pritsker, M. (2006). The hidden dangers of historical simulation. Journal of Banking & Finance, 30(2), 561–582. https://doi.org/10.1016/j.jbankfin.2005.04.013R. (version 3). Statistical computing and graphics. [Software environment]. Vienna: R Core Team. Available: https://www.r-project.org/Robledo, S., Osorio, G. y López, C. (2014). Networking en pequeña empresa: una revisión bibliográfica utilizando la teoria de grafos. Revista Vínculos, 11(2), 117–134. https://revistas.udistrital.edu.co/index.php/vinculos/article/view/9664Rockafellar, R. T. & Uryasev, S. (2000). Optimization of conditional value-at-risk. Risk.net, 2(3), 21–41. https://doi.org/10.21314/JOR.2000.038Scheller, F. & Auer, B. (2018). How does the choice of Value-at-Risk estimator influence asset allocation decisions? Quantitative Finance, 18(12), 2005–2022. https://doi.org/10.1080/14697688.2018.1459806Sci2 Tool. (versión 1.3). Science of Science. [Software]. Bloomington: CNS. Available: https://sci2.cns.iu.edu/user/index.phpVijverberg, C.-P. C., Vijverberg, W. P. M. & Taşpınar, S. (2015). Linking Tukey’s Legacy to Financial Risk Measurement. Computational Statistics and Data Analysis, 100, 595–615. https://doi.org/10.1016/j.csda.2015.08.018Wasserman, S. & Faust, K. (1994). Social Network Analysis: Methods and Applications. Cambridge: CUP. https://doi.org/10.1017/CBO9780511815478Wang, B., Wang, S. & Watadata, J. (2011). Fuzzy-Portfolio-Selection Models With Value-at-Risk. IEEE Transactions on Fuzzy Systems, 19(4), 758–769. https:// doi.org/10.1109/TFUZZ.2011.2144599Wang, C., Chen, Q. & Gerlach, R. (2018). Bayesian realized-GARCH models for financial tail risk forecasting incorporating the two-sided Weibull distribution. Quantitative Finance, 19(6), 1017–1042. https://doi.org/10.1080/14697688.2018.1540880Xu, L. (2014). Model-free inference for tail risk measures. Econometric Theory, 34(3), 1–32. https://doi.org/10.1017/S0266466614000802Yao, H., Li, Z. & Lai, Y. (2013). Mean–CVaR portfolio selection: A nonparametric estimation framework. Computers & Operations Research, 40(4), 1014–1044. https://doi.org/10.1016/J.COR.2012.11.007Zaichao, Du. & Escanciano, J. C. (2016). Backtesting Expected Shortfall: Accounting for Tail Risk. Management Science, 63(4), 940–958. https://doi.org/10.1287/mnsc.2015.2342Zhang, L., Luo, M. & Boncella, R. (2017). Product information diffusion in a social network. Electronic Commerce Research, 20(1), 3–19. https://doi.org/10.1007/s10660-018-9316-9Zhang, Q. & Wang, X. (2009). Hedge Contract Characterization and Risk-Constrained Electricity Procurement. IEEE Transactions on Power Systems, 24(3), 1547–1548. https://doi.org/10.1109/TPWRS.2009.2021233Ziggel, D., Berens, T., Weib, G. & Wied, D. (2014). A new set of improved Valueat-Risk back tests. Journal of Banking & Finance, 48(C), 29–41. https://doi.org/10.1016/J.JBANKFIN.2014.07.005Zuluaga, M., Robledo, S., Osorio, G. A., Yathe, L., González, D. & Taborda, G. (2016). Metabolómica y Pesticidas: Revisión sistemática de literatura usando teoría de grafos para el análisis de referencias. Nova, 14(25), 121–128. https://doi.org/10.22490/24629448.17358257143https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/3691https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/4022https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/4023https://revistascientificas.cuc.edu.co/economicascuc/article/download/3093/4024Núm. 1 , Año 2022OREORE.xmltext/xml2692https://repositorio.cuc.edu.co/bitstreams/e9d28f01-f7b6-48a0-aa5a-0b98e54f7c28/download3a1414d4f5dabf45bbea84991f99c79fMD5111323/11923oai:repositorio.cuc.edu.co:11323/119232024-11-18 11:28:15.823https://creativecommons.org/licenses/by-nc-nd/4.0ECONÓMICAS CUC - 2021metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |