El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura
La realidad virtual (RV) constituye una herramienta alternativa para la rehabilitación de distintas lesiones del cuerpo humano. Este artículo identifica los principales aportes de la RV en tratamientos de rehabilitación muscular reportados en la literatura. Según las investigaciones analizadas, se e...
- Autores:
-
Coronado Ahumada, Kelly Johanna
Están-Márquez, Andrés
Natera-Panza, Breiner
de la Hoz Lara, Ricardo Antonio
Salas Viloria, Karen Elena
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9187
- Acceso en línea:
- https://hdl.handle.net/11323/9187
https://doi.org/10.22507/rli.v18n2a16
https://repositorio.cuc.edu.co/
- Palabra clave:
- Realidad virtual
Rehabilitación
Lesión muscular
Fisioterapia
Virtual reality
Rehabilitation
Muscle injury
Physiotherapy
Realidade virtual
Reabilitação
Lesão muscular
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_08d38ee8b5bd69fea4203f34a65a597f |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9187 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
dc.title.translated.eng.fl_str_mv |
The added value of virtual reality in muscle rehabilitation treatments. A literature review O valor agregado da realidade virtual nos tratamentos de reabilitação muscular. Revisão de literatura |
title |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
spellingShingle |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura Realidad virtual Rehabilitación Lesión muscular Fisioterapia Virtual reality Rehabilitation Muscle injury Physiotherapy Realidade virtual Reabilitação Lesão muscular |
title_short |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
title_full |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
title_fullStr |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
title_full_unstemmed |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
title_sort |
El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literatura |
dc.creator.fl_str_mv |
Coronado Ahumada, Kelly Johanna Están-Márquez, Andrés Natera-Panza, Breiner de la Hoz Lara, Ricardo Antonio Salas Viloria, Karen Elena |
dc.contributor.author.spa.fl_str_mv |
Coronado Ahumada, Kelly Johanna Están-Márquez, Andrés Natera-Panza, Breiner de la Hoz Lara, Ricardo Antonio Salas Viloria, Karen Elena |
dc.subject.proposal.spa.fl_str_mv |
Realidad virtual Rehabilitación Lesión muscular Fisioterapia |
topic |
Realidad virtual Rehabilitación Lesión muscular Fisioterapia Virtual reality Rehabilitation Muscle injury Physiotherapy Realidade virtual Reabilitação Lesão muscular |
dc.subject.proposal.eng.fl_str_mv |
Virtual reality Rehabilitation Muscle injury Physiotherapy |
dc.subject.proposal.por.fl_str_mv |
Realidade virtual Reabilitação Lesão muscular |
description |
La realidad virtual (RV) constituye una herramienta alternativa para la rehabilitación de distintas lesiones del cuerpo humano. Este artículo identifica los principales aportes de la RV en tratamientos de rehabilitación muscular reportados en la literatura. Según las investigaciones analizadas, se evidenció que, a diferencia de los tratamientos convencionales para la rehabilitación muscular, los realizados con RV incrementaron el nivel de motivación de los pacientes para culminar con éxito, gracias al ambiente interactivo que la RV ofrece. Así mismo, de acuerdo con los estudios revisados, los pacientes manifestaron disminución de dolor durante y después de las terapias. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-05-24T00:01:43Z |
dc.date.available.none.fl_str_mv |
2022-05-24T00:01:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Coronado-Ahumada, Kelly Johanna, Están-Márquez, Andrés Felipe, Natera-Panza, Breiner, Lara, Ricardo Antonio de la Hoz, & Salas-Viloria, Karen Elena. (2021). El Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura. Revista Lasallista de Investigación, 18(2), 239-257. Epub March 19, 2022.https://doi.org/10.22507/rli.v18n2a16 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9187 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.22507/rli.v18n2a16 |
dc.identifier.doi.spa.fl_str_mv |
10.22507/rli.v18n2a16 |
dc.identifier.eissn.spa.fl_str_mv |
1794-4449 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Coronado-Ahumada, Kelly Johanna, Están-Márquez, Andrés Felipe, Natera-Panza, Breiner, Lara, Ricardo Antonio de la Hoz, & Salas-Viloria, Karen Elena. (2021). El Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura. Revista Lasallista de Investigación, 18(2), 239-257. Epub March 19, 2022.https://doi.org/10.22507/rli.v18n2a16 10.22507/rli.v18n2a16 1794-4449 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9187 https://doi.org/10.22507/rli.v18n2a16 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Revista Lasallista de Investigación |
dc.relation.references.spa.fl_str_mv |
Aggarwal, R., Grantcharov, T. P., Eriksen, J. R., Blirup, D., Kristiansen, V. B., Funch-Jensen, P., & Darzi, A. (2006). An evidence-based virtual reality training program for novice laparoscopic surgeons. Annals of Surgery, 244(2), 310-314. https://doi.org/10.1097/01.sla.0000218094.92650.44. Aung, Y M, & Al-Jumaily, A. (2014). Augmented Reality based Illusion System with biofeedback. In the Middle East Conference on Biomedical Engineering, MECBME (pp. 265-268). https://doi.org/10.1109/MECBME.2014.6783255. Aung, Yee Mon, & Al-Jumaily, A. (2012). sEMG Based ANN for Shoulder Angle Prediction. Procedia Engineering, 41, 1009-1015. https://doi.org/10.1016/j.proeng.2012.07.276. Baqai, A., Memon, K., Memon, A. R., & Shah, S. M. Z. A. (2019). Interactive Physiotherapy: An Application Based on Virtual Reality and Bio-feedback. Wireless Personal Communications, 106(4), 1719-1741. https://doi.org/10.1007/s11277-018 5382-5. Bayan, S., Assaf, K., Yassin, M., Cherry, A., Raad, M., & Hamawy, L. (2017). Inexpensive Virtual Assisted Rehabilitation System (VARS) for lower part injuries. In 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME) (pp. 1-4). IEEE. https://doi.org/10.1109/ICABME.2017.8167539. Bayan, S., Assaf, K., Yassin, M., Cherry, A., Raad, M., & Hamawy, L. (2018). A Virtual Reality Assisted Rehabilitation System for Physical Therapy. In 2018 International Conference on Computer and Applications (ICCA) (pp. 32-40). IEEE. https://doi.org/10.1109/COMAPP.2018.8460301. Colt, H. G., Crawford, S. W., & Galbraith III, O. (2001). Virtual reality bronchoscopy simulation: A revolution in procedural training. Chest, 120(4), 1333-1339. https://doi.org/10.1378/chest.120.4.1333. Dimbwadyo-Terrer, I., Trincado-Alonso, F., De Los Reyes-Guzmán, A., Bernal-Sahún, A., López-Monteagudo, P., Polonio-López, B., & Gil-Agudo, Á. (2013). Clinical, functional and kinematic correlations using the Virtual Reality System toyra® as upper limb rehabilitation tool in people with spinal cord injury. In NEUROTECHNIX 2013-Proceedings of the International Congress on Neurotechnology, Electronics and Informatics (pp. 81-88). Hoffman, H. G., Chambers, G. T., Meyer III, W. J., Arceneaux, L. L., Russell, W. J., Seibel, E. J., ... Patterson, D. R. (2011). Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Annals of Behavioral Medicine, 41(2), 183-191. https://doi.org/10.1007/s12160-010-9248-7. Hong Kong Institution of Engineers. Control, A. & I. D., IEEE Control Systems Society., & Asian Control Association. (2009). ASCC 2009 : the proceedings of 2009 7th Asian Control Conference : Hong Kong Convention and Exhibition Centre, Hong Kong : August 27-29, 2009. ACA. Hsian-shen Wang, Chaoli Hsu, Chiu, D., & Tsai, S.-N. (2010). Using augmented reality gaming systems to enhance hand rehabilitation. In 2010 2nd International Conference on Education Technology and Computer (pp. V3-243-V3-246). IEEE. https://doi.org/10.1109/ICETC.2010.5529553. Kexin, X., Jian, H., Qi, X., & Yongji, W. (2009). Design of a wearable rehabilitation robotic hand actuated by pneumatic artificial muscles. In Proceedings of 2009 7th Asian Control Conference, ASCC 2009 (pp. 740-744). Kiefer, A. W., DiCesare, C., Bonnette, S., Kitchen, K., Gadd, B., Thomas, S., . Silva, P. (2017). Sport-specific virtual reality to identify profiles of anterior cruciate ligament injury risk during unanticipated cutting. In 2017 International Conference on Virtual Rehabilitation (ICVR) (pp. 1-8). IEEE. https://doi.org/10.1109/ICVR.2017.8007511. Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. Lee, M., Suh, D., Son, J., Kim, J., Eun, S.-D., & Yoon, B. (2016). Patient perspectives on virtual reality-based rehabilitation after knee surgery: Importance of level of difficulty. Journal of Rehabilitation Research and Development, 53(2), 239-252. https://doi.org/10.1682/JRRD.2014.07.0164. Marescaux, J., Clément, J.-M., Tassetti, V., Koehl, C., Cotin, S., Russier, Y., . Ayache, N. (1998). Virtual reality applied to hepatic surgery simulation: The next revolution. Annals of Surgery, 228(5), 627-634. https://doi.org/10.1097/00000658-199811000 00001. Munih, M., Riener, R., Colombo, G., Lunenburger, L., Muller, F., Slater, M., & Mihelj, M. (2009). MIMICS: Multimodal immersive motion rehabilitation of upper and lower extremities by exploiting bio cooperation principles. In 2009 IEEE International Conference on Rehabilitation Robotics (pp. 127-132). IEEE. https://doi.org/10.1109/ICORR.2009.5209544. ONU. (n.d.). Objetivo 3: Salud y bienestar | PNUD. Park, J., MacRae, H., Musselman, L. J., Rossos, P., Hamstra, S. J., Wolman, S., & Reznick, R. K. (2007). Randomized controlled trial of virtual reality simulator training: transfer to live patients. American Journal of Surgery, 194(2), 205-21 1. https://doi.org/10.1016/j.amjsurg.2006.11.032. Rodrigues, B., Pagnussat, A., & Chiquetti, E. (2012) . Efeitos da Realidade Virtual em Paciente Adulto com Paralisia Braquial Obstétrica. Revista Neurociências, 20, 567-575. https://doi.org/10.4181/RNC.2012.20.720.9p. Roy, A. K., Soni, Y., & Dubey, S. (2013). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS) (pp. 298-304). IEEE. https://doi.org/10.1109/GHTC-SAS.2013.6629934. Trincado-Alonso, F., Dimbwadyo-Terrer, I., de los Reyes-Guzmán, A., López-Monteagudo, P., Bernal-Sahún, A., & Gil-Agudo, Á. (2014). Kinematic Metrics Based on the Virtual Reality System Toyra as an Assessment of the Upper Limb Rehabilitation in People with Spinal Cord Injury. BioMed Research International, 2014, 1-11. https://doi.org/10.1155/2014/904985. Van de Meent, H., Baken, B. C. M., Van Opstal, S., & Hogendoorn, P. (2008). Critical illness VR rehabilitation device (X-VR-D): Evaluation of the potential use for early clinical rehabilitation. Journal of Electromyography and Kinesiology, 18(3), 480-486. https://doi.org/10.1016/j.jelekin.2006.11.005. Villiger, M., Bohli, D., Kiper, D., Pyk, P., Spillmann, J., Meilick, B.,. Eng, K. (2013) . Virtual Reality-Augmented Neurorehabilitation Improves Motor Function and Reduces Neuropathic Pain in Patients With Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 27(8), 675-683. https://doi.org/10.1177/1545968313490999. Villiger, M., Hepp-Reymond, M.-C., Pyk, P., Kiper, D., Eng, K., Spillman, J., . Hotz-Boendermaker, S. (2011). Virtual reality rehabilitation system for neuropathic pain and motor dysfunction in spinal cord injury patients. In 2011 International Conference on Virtual Rehabilitation (pp. 1-4). IEEE. https://doi.org/10.1109/ICVR.2011.5971865. Villiger, M., Liviero, J., Awai, L., Stoop, R., Pyk, P., Clijsen, R., . Bolliger, M. (2017). Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury. Frontiers in Neurology, 8, 635. https://doi.org/10.3389/fneur.2017.00635. Volovik, M. G., Borzikov, V. V., Kuznetsov, A. N., Bazarov, D. I., & Polyakova, A. G. (2018). Virtual Reality Technology in Complex Medical Rehabilitation of Patients with Disabilities (Review). Sovremennye Tehnologii v Medicine, 10(4), 173. https://doi.org/10.17691/stm2018.10.4.21. Ye Ding, Sivak, M., Weinberg, B., Mavroidis, C., & Holden, M. K. (2010). NUVABAT: Northeastern university virtual ankle and balance trainer. In 2010 IEEE Haptics Symposium (pp. 509-514). IEEE. https://doi.org/10.1109/HAPTIC.2010.5444608. Zimmerli, L., Jacky, M., Lünenburger, L., Riener, R., & Bolliger, M. (2013). Increasing Patient Engagement During Virtual Reality-Based Motor Rehabilitation. Archives of Physical Medicine and Rehabilitation, 94(9), 1737-1746. https://doi.org/10.1016/j.apmr.2013.01.029. |
dc.relation.citationendpage.spa.fl_str_mv |
257 |
dc.relation.citationstartpage.spa.fl_str_mv |
239 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
18 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
19 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporacion Universitaria Lasallista |
dc.publisher.place.spa.fl_str_mv |
Colombia |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
http://revistas.unilasallista.edu.co/index.php/rldi/article/view/2734 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/ec0334d4-65a0-4d89-b960-4c5f82bd6e86/download https://repositorio.cuc.edu.co/bitstreams/1a3dc56a-d573-497f-99d0-a4194fa1ec43/download https://repositorio.cuc.edu.co/bitstreams/be1a270f-7c82-4c3e-8a56-ae15cd775a67/download https://repositorio.cuc.edu.co/bitstreams/aec6af4d-6bc9-47e9-b353-f08c82968df6/download |
bitstream.checksum.fl_str_mv |
2c3b4cbde99a49795abe90797ae6f07a e30e9215131d99561d40d6b0abbe9bad 433b8a88ef913c565bc737bc7acb9a59 fb42d313a410406e5e94096badf93146 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760765162487808 |
spelling |
Coronado Ahumada, Kelly JohannaEstán-Márquez, AndrésNatera-Panza, Breinerde la Hoz Lara, Ricardo AntonioSalas Viloria, Karen Elena2022-05-24T00:01:43Z2022-05-24T00:01:43Z2021Coronado-Ahumada, Kelly Johanna, Están-Márquez, Andrés Felipe, Natera-Panza, Breiner, Lara, Ricardo Antonio de la Hoz, & Salas-Viloria, Karen Elena. (2021). El Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura. Revista Lasallista de Investigación, 18(2), 239-257. Epub March 19, 2022.https://doi.org/10.22507/rli.v18n2a16https://hdl.handle.net/11323/9187https://doi.org/10.22507/rli.v18n2a1610.22507/rli.v18n2a161794-4449Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/La realidad virtual (RV) constituye una herramienta alternativa para la rehabilitación de distintas lesiones del cuerpo humano. Este artículo identifica los principales aportes de la RV en tratamientos de rehabilitación muscular reportados en la literatura. Según las investigaciones analizadas, se evidenció que, a diferencia de los tratamientos convencionales para la rehabilitación muscular, los realizados con RV incrementaron el nivel de motivación de los pacientes para culminar con éxito, gracias al ambiente interactivo que la RV ofrece. Así mismo, de acuerdo con los estudios revisados, los pacientes manifestaron disminución de dolor durante y después de las terapias.Virtual reality (VR) is an alternative tool for the rehabilitation of various injuries of the human body. This paper identified the main contributions of RV in muscle rehabilitation treatments reported in the literature. According to the analyzed research, it was shown that, unlike conventional treatments for muscle rehabilitation, those performed with RV increased the level of motivation of patients to successfully complete them, thanks to the interactive environment that VR offers. Likewise, according to the reviewed studies, the patients manifested decreased pain during and after therapies.Nos últimos anos, a realidade virtual (VR) se estabeleceu como uma ferramenta alternativa para a reabilitação das diferentes lesões que o corpo humano pode sofrer. O objetivo desta revisão sistemática é identificar as principais contribuições evidenciadas em pesquisas anteriores sobre o assunto, que serviram de base para a formulação deste artigo. Para avaliação da literatura, foi realizada uma consulta preliminar nas principais bases de dados, a partir da qual foram obtidos resultados que permitiram dimensionar a contribuição do VD na recuperação de lesões musculares. De acordo com a amostra, ficou evidente que, diferentemente dos tratamentos convencionais para reabilitação muscular, aqueles realizados com o VD aumentavam o nível de motivação dos pacientes para concluir com sucesso o tratamento, portanto a adesão a todas as terapias era mais alto, isso graças ao ambiente interativo que o RV consegue oferecer. Por outro lado, de acordo com os estudos revisados, os pacientes manifestaram diminuição da dor durante e após a realização de diferentes terapias implementadas em cada investigação.19 páginasapplication/pdfspaCorporacion Universitaria LasallistaColombiaAtribución 4.0 Internacional (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2El valor agregado de la realidad virtual en tratamientos de rehabilitación muscular. Revisión de literaturaThe added value of virtual reality in muscle rehabilitation treatments. A literature reviewO valor agregado da realidade virtual nos tratamentos de reabilitação muscular. Revisão de literaturaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttp://revistas.unilasallista.edu.co/index.php/rldi/article/view/2734Revista Lasallista de InvestigaciónAggarwal, R., Grantcharov, T. P., Eriksen, J. R., Blirup, D., Kristiansen, V. B., Funch-Jensen, P., & Darzi, A. (2006). An evidence-based virtual reality training program for novice laparoscopic surgeons. Annals of Surgery, 244(2), 310-314. https://doi.org/10.1097/01.sla.0000218094.92650.44.Aung, Y M, & Al-Jumaily, A. (2014). Augmented Reality based Illusion System with biofeedback. In the Middle East Conference on Biomedical Engineering, MECBME (pp. 265-268). https://doi.org/10.1109/MECBME.2014.6783255.Aung, Yee Mon, & Al-Jumaily, A. (2012). sEMG Based ANN for Shoulder Angle Prediction. Procedia Engineering, 41, 1009-1015. https://doi.org/10.1016/j.proeng.2012.07.276.Baqai, A., Memon, K., Memon, A. R., & Shah, S. M. Z. A. (2019). Interactive Physiotherapy: An Application Based on Virtual Reality and Bio-feedback. Wireless Personal Communications, 106(4), 1719-1741. https://doi.org/10.1007/s11277-018 5382-5.Bayan, S., Assaf, K., Yassin, M., Cherry, A., Raad, M., & Hamawy, L. (2017). Inexpensive Virtual Assisted Rehabilitation System (VARS) for lower part injuries. In 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME) (pp. 1-4). IEEE. https://doi.org/10.1109/ICABME.2017.8167539.Bayan, S., Assaf, K., Yassin, M., Cherry, A., Raad, M., & Hamawy, L. (2018). A Virtual Reality Assisted Rehabilitation System for Physical Therapy. In 2018 International Conference on Computer and Applications (ICCA) (pp. 32-40). IEEE. https://doi.org/10.1109/COMAPP.2018.8460301.Colt, H. G., Crawford, S. W., & Galbraith III, O. (2001). Virtual reality bronchoscopy simulation: A revolution in procedural training. Chest, 120(4), 1333-1339. https://doi.org/10.1378/chest.120.4.1333.Dimbwadyo-Terrer, I., Trincado-Alonso, F., De Los Reyes-Guzmán, A., Bernal-Sahún, A., López-Monteagudo, P., Polonio-López, B., & Gil-Agudo, Á. (2013). Clinical, functional and kinematic correlations using the Virtual Reality System toyra® as upper limb rehabilitation tool in people with spinal cord injury. In NEUROTECHNIX 2013-Proceedings of the International Congress on Neurotechnology, Electronics and Informatics (pp. 81-88).Hoffman, H. G., Chambers, G. T., Meyer III, W. J., Arceneaux, L. L., Russell, W. J., Seibel, E. J., ... Patterson, D. R. (2011). Virtual reality as an adjunctive non-pharmacologic analgesic for acute burn pain during medical procedures. Annals of Behavioral Medicine, 41(2), 183-191. https://doi.org/10.1007/s12160-010-9248-7.Hong Kong Institution of Engineers. Control, A. & I. D., IEEE Control Systems Society., & Asian Control Association. (2009). ASCC 2009 : the proceedings of 2009 7th Asian Control Conference : Hong Kong Convention and Exhibition Centre, Hong Kong : August 27-29, 2009. ACA.Hsian-shen Wang, Chaoli Hsu, Chiu, D., & Tsai, S.-N. (2010). Using augmented reality gaming systems to enhance hand rehabilitation. In 2010 2nd International Conference on Education Technology and Computer (pp. V3-243-V3-246). IEEE. https://doi.org/10.1109/ICETC.2010.5529553.Kexin, X., Jian, H., Qi, X., & Yongji, W. (2009). Design of a wearable rehabilitation robotic hand actuated by pneumatic artificial muscles. In Proceedings of 2009 7th Asian Control Conference, ASCC 2009 (pp. 740-744).Kiefer, A. W., DiCesare, C., Bonnette, S., Kitchen, K., Gadd, B., Thomas, S., . Silva, P. (2017). Sport-specific virtual reality to identify profiles of anterior cruciate ligament injury risk during unanticipated cutting. In 2017 International Conference on Virtual Rehabilitation (ICVR) (pp. 1-8). IEEE. https://doi.org/10.1109/ICVR.2017.8007511.Kitchenham, B. (2004). Procedures for Performing Systematic Reviews.Lee, M., Suh, D., Son, J., Kim, J., Eun, S.-D., & Yoon, B. (2016). Patient perspectives on virtual reality-based rehabilitation after knee surgery: Importance of level of difficulty. Journal of Rehabilitation Research and Development, 53(2), 239-252. https://doi.org/10.1682/JRRD.2014.07.0164.Marescaux, J., Clément, J.-M., Tassetti, V., Koehl, C., Cotin, S., Russier, Y., . Ayache, N. (1998). Virtual reality applied to hepatic surgery simulation: The next revolution. Annals of Surgery, 228(5), 627-634. https://doi.org/10.1097/00000658-199811000 00001.Munih, M., Riener, R., Colombo, G., Lunenburger, L., Muller, F., Slater, M., & Mihelj, M. (2009). MIMICS: Multimodal immersive motion rehabilitation of upper and lower extremities by exploiting bio cooperation principles. In 2009 IEEE International Conference on Rehabilitation Robotics (pp. 127-132). IEEE. https://doi.org/10.1109/ICORR.2009.5209544.ONU. (n.d.). Objetivo 3: Salud y bienestar | PNUD.Park, J., MacRae, H., Musselman, L. J., Rossos, P., Hamstra, S. J., Wolman, S., & Reznick, R. K. (2007). Randomized controlled trial of virtual reality simulator training: transfer to live patients. American Journal of Surgery, 194(2), 205-21 1. https://doi.org/10.1016/j.amjsurg.2006.11.032.Rodrigues, B., Pagnussat, A., & Chiquetti, E. (2012) . Efeitos da Realidade Virtual em Paciente Adulto com Paralisia Braquial Obstétrica. Revista Neurociências, 20, 567-575. https://doi.org/10.4181/RNC.2012.20.720.9p.Roy, A. K., Soni, Y., & Dubey, S. (2013). Enhancing effectiveness of motor rehabilitation using kinect motion sensing technology. In 2013 IEEE Global Humanitarian Technology Conference: South Asia Satellite (GHTC-SAS) (pp. 298-304). IEEE. https://doi.org/10.1109/GHTC-SAS.2013.6629934.Trincado-Alonso, F., Dimbwadyo-Terrer, I., de los Reyes-Guzmán, A., López-Monteagudo, P., Bernal-Sahún, A., & Gil-Agudo, Á. (2014). Kinematic Metrics Based on the Virtual Reality System Toyra as an Assessment of the Upper Limb Rehabilitation in People with Spinal Cord Injury. BioMed Research International, 2014, 1-11. https://doi.org/10.1155/2014/904985.Van de Meent, H., Baken, B. C. M., Van Opstal, S., & Hogendoorn, P. (2008). Critical illness VR rehabilitation device (X-VR-D): Evaluation of the potential use for early clinical rehabilitation. Journal of Electromyography and Kinesiology, 18(3), 480-486. https://doi.org/10.1016/j.jelekin.2006.11.005.Villiger, M., Bohli, D., Kiper, D., Pyk, P., Spillmann, J., Meilick, B.,. Eng, K. (2013) . Virtual Reality-Augmented Neurorehabilitation Improves Motor Function and Reduces Neuropathic Pain in Patients With Incomplete Spinal Cord Injury. Neurorehabilitation and Neural Repair, 27(8), 675-683. https://doi.org/10.1177/1545968313490999.Villiger, M., Hepp-Reymond, M.-C., Pyk, P., Kiper, D., Eng, K., Spillman, J., . Hotz-Boendermaker, S. (2011). Virtual reality rehabilitation system for neuropathic pain and motor dysfunction in spinal cord injury patients. In 2011 International Conference on Virtual Rehabilitation (pp. 1-4). IEEE. https://doi.org/10.1109/ICVR.2011.5971865.Villiger, M., Liviero, J., Awai, L., Stoop, R., Pyk, P., Clijsen, R., . Bolliger, M. (2017). Home-Based Virtual Reality-Augmented Training Improves Lower Limb Muscle Strength, Balance, and Functional Mobility following Chronic Incomplete Spinal Cord Injury. Frontiers in Neurology, 8, 635. https://doi.org/10.3389/fneur.2017.00635.Volovik, M. G., Borzikov, V. V., Kuznetsov, A. N., Bazarov, D. I., & Polyakova, A. G. (2018). Virtual Reality Technology in Complex Medical Rehabilitation of Patients with Disabilities (Review). Sovremennye Tehnologii v Medicine, 10(4), 173. https://doi.org/10.17691/stm2018.10.4.21.Ye Ding, Sivak, M., Weinberg, B., Mavroidis, C., & Holden, M. K. (2010). NUVABAT: Northeastern university virtual ankle and balance trainer. In 2010 IEEE Haptics Symposium (pp. 509-514). IEEE. https://doi.org/10.1109/HAPTIC.2010.5444608.Zimmerli, L., Jacky, M., Lünenburger, L., Riener, R., & Bolliger, M. (2013). Increasing Patient Engagement During Virtual Reality-Based Motor Rehabilitation. Archives of Physical Medicine and Rehabilitation, 94(9), 1737-1746. https://doi.org/10.1016/j.apmr.2013.01.029.257239218Realidad virtualRehabilitaciónLesión muscularFisioterapiaVirtual realityRehabilitationMuscle injuryPhysiotherapyRealidade virtualReabilitaçãoLesão muscularPublicationORIGINALEl Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura.pdfEl Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura.pdfapplication/pdf506480https://repositorio.cuc.edu.co/bitstreams/ec0334d4-65a0-4d89-b960-4c5f82bd6e86/download2c3b4cbde99a49795abe90797ae6f07aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1a3dc56a-d573-497f-99d0-a4194fa1ec43/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEl Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura.pdf.txtEl Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura.pdf.txttext/plain67390https://repositorio.cuc.edu.co/bitstreams/be1a270f-7c82-4c3e-8a56-ae15cd775a67/download433b8a88ef913c565bc737bc7acb9a59MD53THUMBNAILEl Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura.pdf.jpgEl Valor Agregado de la Realidad Virtual en Tratamientos de Rehabilitación Muscular. Revisión de Literatura.pdf.jpgimage/jpeg13006https://repositorio.cuc.edu.co/bitstreams/aec6af4d-6bc9-47e9-b353-f08c82968df6/downloadfb42d313a410406e5e94096badf93146MD5411323/9187oai:repositorio.cuc.edu.co:11323/91872024-09-17 11:02:54.096https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |