New generalized apostol-frobenius-euler polynomials and their matrix approach
In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials ℋn[m−1,α](x; c,a; λ; u). We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generaliz...
- Autores:
-
Ortega, María José
Ramírez, William
Urieles, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8632
- Acceso en línea:
- https://hdl.handle.net/11323/8632
https://doi.org/10.46793/KGJMAT2103.393O
https://repositorio.cuc.edu.co/
- Palabra clave:
- Generalized Apostol-type polynomial
Apostol-Frobennius-Euler polynomials
Apostol-Bernoulli polynomials of higher order
Apostol-Genocchi polynomials of higher order
Stirling numbers of second kind
generalized Pascal matrix
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_071ce6f365f10d251d8f1e9a547445c5 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8632 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
title |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
spellingShingle |
New generalized apostol-frobenius-euler polynomials and their matrix approach Generalized Apostol-type polynomial Apostol-Frobennius-Euler polynomials Apostol-Bernoulli polynomials of higher order Apostol-Genocchi polynomials of higher order Stirling numbers of second kind generalized Pascal matrix |
title_short |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
title_full |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
title_fullStr |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
title_full_unstemmed |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
title_sort |
New generalized apostol-frobenius-euler polynomials and their matrix approach |
dc.creator.fl_str_mv |
Ortega, María José Ramírez, William Urieles, Alejandro |
dc.contributor.author.spa.fl_str_mv |
Ortega, María José Ramírez, William Urieles, Alejandro |
dc.subject.spa.fl_str_mv |
Generalized Apostol-type polynomial Apostol-Frobennius-Euler polynomials Apostol-Bernoulli polynomials of higher order Apostol-Genocchi polynomials of higher order Stirling numbers of second kind generalized Pascal matrix |
topic |
Generalized Apostol-type polynomial Apostol-Frobennius-Euler polynomials Apostol-Bernoulli polynomials of higher order Apostol-Genocchi polynomials of higher order Stirling numbers of second kind generalized Pascal matrix |
description |
In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials ℋn[m−1,α](x; c,a; λ; u). We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized Apostol-Frobenius-Euler polynomials matrix ????[m−1,α](x; c,a; λ; u) and the new generalized Apostol-Frobenius-Euler matrix ????[m−1,α](c,a; λ; u), we deduce a product formula for ????[m−1,α](x; c,a; λ; u) and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix ????[m−1,α](x; c,a; λ; u), which involving the generalized Pascal matrix. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-06T14:18:52Z |
dc.date.available.none.fl_str_mv |
2021-09-06T14:18:52Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8632 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.46793/KGJMAT2103.393O |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8632 https://doi.org/10.46793/KGJMAT2103.393O https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
R. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol, England, 1975. L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (1959), 247–260. G. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly 100 (1993), 372–376. L. Castilla, W. Ramírez and A. Urieles, An extended generalized q-extensions for the Apostol type polynomials, Abstr. Appl. Anal. 2018 (2018), 1–13. L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht, Boston, 1974. R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, New York, 1994. L. Hernández, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math. 68 (2015), 203–225. B. Kurt and Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ. 2013 (2013), 1–9. Q. M. Luo, Extensions of the Genocchi polynomials and its Fourier expansions and integral representations, Osaka J. Math. 48 (2011), 291–309. Q. M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51 (2006), 631–642. P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 3 (2003), 155–163. Y. Quintana, W. Ramírez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55 (2018), 23–40. Y. Quintana, W. Ramírez and A. Urieles, Generalized Apostol-type polynomial matrix and its algebraic properties. Math. Repor. 21(2) (2019). Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (2006), 1622–1632. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Kragujevac Journal of Mathematics |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://imi.pmf.kg.ac.rs/kjm/en/index.php?page=10.46793/KgJMat2103.393O |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/54a61efd-cc71-4fa8-a0c5-739e368c1022/download https://repositorio.cuc.edu.co/bitstreams/903cd167-c9f1-4fd2-a75b-4d4ce855935d/download https://repositorio.cuc.edu.co/bitstreams/5e738a08-c21f-4f7b-907a-656bb2a285c1/download https://repositorio.cuc.edu.co/bitstreams/f81acaea-8833-42bf-ba74-bb44691f45cd/download https://repositorio.cuc.edu.co/bitstreams/430c1d02-4e6c-4f90-98b6-afc067f4ded6/download |
bitstream.checksum.fl_str_mv |
bb2a10bdc61507bdafb05f694616b12d 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad deb697dbc6cdf76f59e37e1df5a64fa5 6a2d2ea587f67f6f42eec397449b3318 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760708276191232 |
spelling |
Ortega, María JoséRamírez, WilliamUrieles, Alejandro2021-09-06T14:18:52Z2021-09-06T14:18:52Z2021https://hdl.handle.net/11323/8632https://doi.org/10.46793/KGJMAT2103.393OCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials ℋn[m−1,α](x; c,a; λ; u). We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized Apostol-Frobenius-Euler polynomials matrix ????[m−1,α](x; c,a; λ; u) and the new generalized Apostol-Frobenius-Euler matrix ????[m−1,α](c,a; λ; u), we deduce a product formula for ????[m−1,α](x; c,a; λ; u) and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix ????[m−1,α](x; c,a; λ; u), which involving the generalized Pascal matrix.Ortega, María JoséRamírez, WilliamUrieles, Alejandroapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Kragujevac Journal of Mathematicshttps://imi.pmf.kg.ac.rs/kjm/en/index.php?page=10.46793/KgJMat2103.393OGeneralized Apostol-type polynomialApostol-Frobennius-Euler polynomialsApostol-Bernoulli polynomials of higher orderApostol-Genocchi polynomials of higher orderStirling numbers of second kindgeneralized Pascal matrixNew generalized apostol-frobenius-euler polynomials and their matrix approachArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionR. Askey, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, SIAM. J. W. Arrowsmith Ltd., Bristol, England, 1975.L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 32 (1959), 247–260.G. Call and D. J. Velleman, Pascal’s matrices, Amer. Math. Monthly 100 (1993), 372–376.L. Castilla, W. Ramírez and A. Urieles, An extended generalized q-extensions for the Apostol type polynomials, Abstr. Appl. Anal. 2018 (2018), 1–13.L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel, Dordrecht, Boston, 1974.R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, New York, 1994.L. Hernández, Y. Quintana and A. Urieles, About extensions of generalized Apostol-type polynomials, Results Math. 68 (2015), 203–225.B. Kurt and Y. Simsek, On the generalized Apostol-type Frobenius-Euler polynomials, Adv. Difference Equ. 2013 (2013), 1–9.Q. M. Luo, Extensions of the Genocchi polynomials and its Fourier expansions and integral representations, Osaka J. Math. 48 (2011), 291–309.Q. M. Luo and H. M. Srivastava, Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51 (2006), 631–642.P. Natalini and A. Bernardini, A generalization of the Bernoulli polynomials, J. Appl. Math. 3 (2003), 155–163.Y. Quintana, W. Ramírez and A. Urieles, On an operational matrix method based on generalized Bernoulli polynomials of level m, Calcolo 55 (2018), 23–40.Y. Quintana, W. Ramírez and A. Urieles, Generalized Apostol-type polynomial matrix and its algebraic properties. Math. Repor. 21(2) (2019).Z. Zhang and J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (2006), 1622–1632.PublicationORIGINALkjm_45_3-6.pdfkjm_45_3-6.pdfapplication/pdf499341https://repositorio.cuc.edu.co/bitstreams/54a61efd-cc71-4fa8-a0c5-739e368c1022/downloadbb2a10bdc61507bdafb05f694616b12dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/903cd167-c9f1-4fd2-a75b-4d4ce855935d/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/5e738a08-c21f-4f7b-907a-656bb2a285c1/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILkjm_45_3-6.pdf.jpgkjm_45_3-6.pdf.jpgimage/jpeg43118https://repositorio.cuc.edu.co/bitstreams/f81acaea-8833-42bf-ba74-bb44691f45cd/downloaddeb697dbc6cdf76f59e37e1df5a64fa5MD54TEXTkjm_45_3-6.pdf.txtkjm_45_3-6.pdf.txttext/plain26247https://repositorio.cuc.edu.co/bitstreams/430c1d02-4e6c-4f90-98b6-afc067f4ded6/download6a2d2ea587f67f6f42eec397449b3318MD5511323/8632oai:repositorio.cuc.edu.co:11323/86322024-09-17 10:44:08.15http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |