New generalized apostol-frobenius-euler polynomials and their matrix approach
In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials ℋn[m−1,α](x; c,a; λ; u). We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generaliz...
- Autores:
-
Ortega, María José
Ramírez, William
Urieles, Alejandro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8632
- Acceso en línea:
- https://hdl.handle.net/11323/8632
https://doi.org/10.46793/KGJMAT2103.393O
https://repositorio.cuc.edu.co/
- Palabra clave:
- Generalized Apostol-type polynomial
Apostol-Frobennius-Euler polynomials
Apostol-Bernoulli polynomials of higher order
Apostol-Genocchi polynomials of higher order
Stirling numbers of second kind
generalized Pascal matrix
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
Summary: | In this paper, we introduce a new extension of the generalized Apostol-Frobenius-Euler polynomials ℋn[m−1,α](x; c,a; λ; u). We give some algebraic and differential properties, as well as, relationships between this polynomials class with other polynomials and numbers. We also, introduce the generalized Apostol-Frobenius-Euler polynomials matrix ????[m−1,α](x; c,a; λ; u) and the new generalized Apostol-Frobenius-Euler matrix ????[m−1,α](c,a; λ; u), we deduce a product formula for ????[m−1,α](x; c,a; λ; u) and provide some factorizations of the Apostol-Frobenius-Euler polynomial matrix ????[m−1,α](x; c,a; λ; u), which involving the generalized Pascal matrix. |
---|