Near ω-continuous multifunctions on bitopological spaces

In this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space.

Autores:
Rosas, E.
Carpintero, C.
Rajesh, N.
Shanthi, S.
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5265
Acceso en línea:
https://hdl.handle.net/11323/5265
https://repositorio.cuc.edu.co/
Palabra clave:
Bitopological spaces
Multifunction
Properties of upper
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_06df998842cd8595353a1339076ed68b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5265
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Near ω-continuous multifunctions on bitopological spaces
title Near ω-continuous multifunctions on bitopological spaces
spellingShingle Near ω-continuous multifunctions on bitopological spaces
Bitopological spaces
Multifunction
Properties of upper
title_short Near ω-continuous multifunctions on bitopological spaces
title_full Near ω-continuous multifunctions on bitopological spaces
title_fullStr Near ω-continuous multifunctions on bitopological spaces
title_full_unstemmed Near ω-continuous multifunctions on bitopological spaces
title_sort Near ω-continuous multifunctions on bitopological spaces
dc.creator.fl_str_mv Rosas, E.
Carpintero, C.
Rajesh, N.
Shanthi, S.
dc.contributor.author.spa.fl_str_mv Rosas, E.
Carpintero, C.
Rajesh, N.
Shanthi, S.
dc.subject.spa.fl_str_mv Bitopological spaces
Multifunction
Properties of upper
topic Bitopological spaces
Multifunction
Properties of upper
description In this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-13T19:06:25Z
dc.date.available.none.fl_str_mv 2019-09-13T19:06:25Z
dc.date.issued.none.fl_str_mv 2019-10
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5265
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/5265
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] S. Acharjee, B. C. Tripathy, p-j-generator and pI-j-generatorin bitopology; Boletim da Sociedade Paranaense de Matematica, 36 No 2 (2018),17-31. [2] K. Al-Zoubi and B. Al-Nashef, The topology of !-open subsets, Al-Manarah 9 (2003), 169-179. [3] K. Al-Zoubi, On generalized !-closed sets, Int. J. Math. Math. Sci. 13 (2005), 2011-2021. [4] A. Al-Omari and M. S. M. Noorani, Contra-!-continuous and almost !-continuous functions, Int. J. Math. Math. Sci. 9, (2007), 169-179. doi:10.1155/2007/40469. [5] A. Al-Omari, T. Noiri and M. S. M. Noorani, Weak and strong forms of !-continuous functions, Int. J. Math. Math. Sci. 9, (2009), 1-13. doi:10.1155/2009/174042. [6] C. Carpintero, J. Pacheco, N. Rajesh and E. Rosas, Properties of nearly !-continuous multifunctions, Acta Univ. Sapientiae, Mathematic, 9, No. 1 (2017),13-25. doi: 10.1515/ausm-2017-0002. [7] E. Ekici, S. Jafari and S.P. Moshokoa, On a weak form of !-continuity, Annals Univ. Craiova, Math. Comp. Sci. 37. No 2 (2010), 38-46. [8] H.Z. Hdeib, !-closed mappings, Revista Colombiana Mat., 16 (1982),65-78. [9] H.Z. Hdeib, !-continuous functions, Dirasat, 16. No. 2 (1989),136-142. [10] A. Richlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces, Novi Sad J. Math., 38, No. 2 (2008), 5-14. [11] B. C. Tripathy and D. J. Sarma, On b-locally open sets in bitopological spaces, Kyungpook Math. Journal, 51, No. 4 (2011),429-433. [12] B. C. Tripathy and D. J. Sarma, On weakly b-continuous functions in bitopo- logical spaces, Acta Scientiarum Technology, 35, No. 3 (2013),521-525. [13] B. C. Tripathy and S. Acharjee, On ( ; )-Bitopological semi-closed set via topological ideal, Proyecciones J. Math., 33, No. 3 (2014),245-257. [14] B. C. Tripathy and D. J. Sarma, Generalized b-closed sets in ideal bitopological spaces, Proyecciones J. Math., 33, No. 3 (2014),315-324. [15] D. J. Sarma and B. C. Tripathy, Pairwise generalized b-R0-spaces in bitopo- logical spaces, Proyecciones J. Math., 36, No. 4 (2017),589-600. [16] B. C. Tripathy and S. Debnath, Fuzzy m-structures, m-open multifunctions and bitopological spaces, Boletim da Sociedade Paranaense de Matematica, 37, No. 4 (2019),119-128.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/9384d601-5269-4512-baf4-e758e98bab34/download
https://repositorio.cuc.edu.co/bitstreams/63fbe749-a273-498b-a4e6-c27cffd40d52/download
https://repositorio.cuc.edu.co/bitstreams/c9e2206d-7db1-4c64-945c-a6d0c5113cc2/download
https://repositorio.cuc.edu.co/bitstreams/c369080d-17df-4fb4-b6fa-a0eb1fb16cbf/download
https://repositorio.cuc.edu.co/bitstreams/7812cf4d-9fca-49c1-9573-25488b1c62d5/download
bitstream.checksum.fl_str_mv 2a8985caaca92f3f079f2f59bb41b390
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
3beae6db48858c1cce661f20602972e3
920aff1655879b752f1518de6c87a21e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760852460634112
spelling Rosas, E.Carpintero, C.Rajesh, N.Shanthi, S.2019-09-13T19:06:25Z2019-09-13T19:06:25Z2019-10https://hdl.handle.net/11323/5265Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space.Rosas, E.Carpintero, C.Rajesh, N.Shanthi, S.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bitopological spacesMultifunctionProperties of upperNear ω-continuous multifunctions on bitopological spacesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] S. Acharjee, B. C. Tripathy, p-j-generator and pI-j-generatorin bitopology; Boletim da Sociedade Paranaense de Matematica, 36 No 2 (2018),17-31. [2] K. Al-Zoubi and B. Al-Nashef, The topology of !-open subsets, Al-Manarah 9 (2003), 169-179. [3] K. Al-Zoubi, On generalized !-closed sets, Int. J. Math. Math. Sci. 13 (2005), 2011-2021. [4] A. Al-Omari and M. S. M. Noorani, Contra-!-continuous and almost !-continuous functions, Int. J. Math. Math. Sci. 9, (2007), 169-179. doi:10.1155/2007/40469. [5] A. Al-Omari, T. Noiri and M. S. M. Noorani, Weak and strong forms of !-continuous functions, Int. J. Math. Math. Sci. 9, (2009), 1-13. doi:10.1155/2009/174042. [6] C. Carpintero, J. Pacheco, N. Rajesh and E. Rosas, Properties of nearly !-continuous multifunctions, Acta Univ. Sapientiae, Mathematic, 9, No. 1 (2017),13-25. doi: 10.1515/ausm-2017-0002. [7] E. Ekici, S. Jafari and S.P. Moshokoa, On a weak form of !-continuity, Annals Univ. Craiova, Math. Comp. Sci. 37. No 2 (2010), 38-46. [8] H.Z. Hdeib, !-closed mappings, Revista Colombiana Mat., 16 (1982),65-78. [9] H.Z. Hdeib, !-continuous functions, Dirasat, 16. No. 2 (1989),136-142. [10] A. Richlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces, Novi Sad J. Math., 38, No. 2 (2008), 5-14. [11] B. C. Tripathy and D. J. Sarma, On b-locally open sets in bitopological spaces, Kyungpook Math. Journal, 51, No. 4 (2011),429-433. [12] B. C. Tripathy and D. J. Sarma, On weakly b-continuous functions in bitopo- logical spaces, Acta Scientiarum Technology, 35, No. 3 (2013),521-525. [13] B. C. Tripathy and S. Acharjee, On ( ; )-Bitopological semi-closed set via topological ideal, Proyecciones J. Math., 33, No. 3 (2014),245-257. [14] B. C. Tripathy and D. J. Sarma, Generalized b-closed sets in ideal bitopological spaces, Proyecciones J. Math., 33, No. 3 (2014),315-324. [15] D. J. Sarma and B. C. Tripathy, Pairwise generalized b-R0-spaces in bitopo- logical spaces, Proyecciones J. Math., 36, No. 4 (2017),589-600. [16] B. C. Tripathy and S. Debnath, Fuzzy m-structures, m-open multifunctions and bitopological spaces, Boletim da Sociedade Paranaense de Matematica, 37, No. 4 (2019),119-128.PublicationORIGINALNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdfNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdfapplication/pdf86745https://repositorio.cuc.edu.co/bitstreams/9384d601-5269-4512-baf4-e758e98bab34/download2a8985caaca92f3f079f2f59bb41b390MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/63fbe749-a273-498b-a4e6-c27cffd40d52/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c9e2206d-7db1-4c64-945c-a6d0c5113cc2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.jpgNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.jpgimage/jpeg50677https://repositorio.cuc.edu.co/bitstreams/c369080d-17df-4fb4-b6fa-a0eb1fb16cbf/download3beae6db48858c1cce661f20602972e3MD55TEXTNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.txtNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.txttext/plain14272https://repositorio.cuc.edu.co/bitstreams/7812cf4d-9fca-49c1-9573-25488b1c62d5/download920aff1655879b752f1518de6c87a21eMD5611323/5265oai:repositorio.cuc.edu.co:11323/52652024-09-17 14:11:20.324http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=