Near ω-continuous multifunctions on bitopological spaces
In this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space.
- Autores:
-
Rosas, E.
Carpintero, C.
Rajesh, N.
Shanthi, S.
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5265
- Acceso en línea:
- https://hdl.handle.net/11323/5265
https://repositorio.cuc.edu.co/
- Palabra clave:
- Bitopological spaces
Multifunction
Properties of upper
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_06df998842cd8595353a1339076ed68b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5265 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Near ω-continuous multifunctions on bitopological spaces |
title |
Near ω-continuous multifunctions on bitopological spaces |
spellingShingle |
Near ω-continuous multifunctions on bitopological spaces Bitopological spaces Multifunction Properties of upper |
title_short |
Near ω-continuous multifunctions on bitopological spaces |
title_full |
Near ω-continuous multifunctions on bitopological spaces |
title_fullStr |
Near ω-continuous multifunctions on bitopological spaces |
title_full_unstemmed |
Near ω-continuous multifunctions on bitopological spaces |
title_sort |
Near ω-continuous multifunctions on bitopological spaces |
dc.creator.fl_str_mv |
Rosas, E. Carpintero, C. Rajesh, N. Shanthi, S. |
dc.contributor.author.spa.fl_str_mv |
Rosas, E. Carpintero, C. Rajesh, N. Shanthi, S. |
dc.subject.spa.fl_str_mv |
Bitopological spaces Multifunction Properties of upper |
topic |
Bitopological spaces Multifunction Properties of upper |
description |
In this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-09-13T19:06:25Z |
dc.date.available.none.fl_str_mv |
2019-09-13T19:06:25Z |
dc.date.issued.none.fl_str_mv |
2019-10 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5265 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/5265 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] S. Acharjee, B. C. Tripathy, p-j-generator and pI-j-generatorin bitopology; Boletim da Sociedade Paranaense de Matematica, 36 No 2 (2018),17-31. [2] K. Al-Zoubi and B. Al-Nashef, The topology of !-open subsets, Al-Manarah 9 (2003), 169-179. [3] K. Al-Zoubi, On generalized !-closed sets, Int. J. Math. Math. Sci. 13 (2005), 2011-2021. [4] A. Al-Omari and M. S. M. Noorani, Contra-!-continuous and almost !-continuous functions, Int. J. Math. Math. Sci. 9, (2007), 169-179. doi:10.1155/2007/40469. [5] A. Al-Omari, T. Noiri and M. S. M. Noorani, Weak and strong forms of !-continuous functions, Int. J. Math. Math. Sci. 9, (2009), 1-13. doi:10.1155/2009/174042. [6] C. Carpintero, J. Pacheco, N. Rajesh and E. Rosas, Properties of nearly !-continuous multifunctions, Acta Univ. Sapientiae, Mathematic, 9, No. 1 (2017),13-25. doi: 10.1515/ausm-2017-0002. [7] E. Ekici, S. Jafari and S.P. Moshokoa, On a weak form of !-continuity, Annals Univ. Craiova, Math. Comp. Sci. 37. No 2 (2010), 38-46. [8] H.Z. Hdeib, !-closed mappings, Revista Colombiana Mat., 16 (1982),65-78. [9] H.Z. Hdeib, !-continuous functions, Dirasat, 16. No. 2 (1989),136-142. [10] A. Richlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces, Novi Sad J. Math., 38, No. 2 (2008), 5-14. [11] B. C. Tripathy and D. J. Sarma, On b-locally open sets in bitopological spaces, Kyungpook Math. Journal, 51, No. 4 (2011),429-433. [12] B. C. Tripathy and D. J. Sarma, On weakly b-continuous functions in bitopo- logical spaces, Acta Scientiarum Technology, 35, No. 3 (2013),521-525. [13] B. C. Tripathy and S. Acharjee, On ( ; )-Bitopological semi-closed set via topological ideal, Proyecciones J. Math., 33, No. 3 (2014),245-257. [14] B. C. Tripathy and D. J. Sarma, Generalized b-closed sets in ideal bitopological spaces, Proyecciones J. Math., 33, No. 3 (2014),315-324. [15] D. J. Sarma and B. C. Tripathy, Pairwise generalized b-R0-spaces in bitopo- logical spaces, Proyecciones J. Math., 36, No. 4 (2017),589-600. [16] B. C. Tripathy and S. Debnath, Fuzzy m-structures, m-open multifunctions and bitopological spaces, Boletim da Sociedade Paranaense de Matematica, 37, No. 4 (2019),119-128. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/9384d601-5269-4512-baf4-e758e98bab34/download https://repositorio.cuc.edu.co/bitstreams/63fbe749-a273-498b-a4e6-c27cffd40d52/download https://repositorio.cuc.edu.co/bitstreams/c9e2206d-7db1-4c64-945c-a6d0c5113cc2/download https://repositorio.cuc.edu.co/bitstreams/c369080d-17df-4fb4-b6fa-a0eb1fb16cbf/download https://repositorio.cuc.edu.co/bitstreams/7812cf4d-9fca-49c1-9573-25488b1c62d5/download |
bitstream.checksum.fl_str_mv |
2a8985caaca92f3f079f2f59bb41b390 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 3beae6db48858c1cce661f20602972e3 920aff1655879b752f1518de6c87a21e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760852460634112 |
spelling |
Rosas, E.Carpintero, C.Rajesh, N.Shanthi, S.2019-09-13T19:06:25Z2019-09-13T19:06:25Z2019-10https://hdl.handle.net/11323/5265Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this paper, we introduce and study basic characterizations, several properties of upper (lower) nearly (i; j)-!-continuous multifunctions on bitopological space.Rosas, E.Carpintero, C.Rajesh, N.Shanthi, S.engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bitopological spacesMultifunctionProperties of upperNear ω-continuous multifunctions on bitopological spacesPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] S. Acharjee, B. C. Tripathy, p-j-generator and pI-j-generatorin bitopology; Boletim da Sociedade Paranaense de Matematica, 36 No 2 (2018),17-31. [2] K. Al-Zoubi and B. Al-Nashef, The topology of !-open subsets, Al-Manarah 9 (2003), 169-179. [3] K. Al-Zoubi, On generalized !-closed sets, Int. J. Math. Math. Sci. 13 (2005), 2011-2021. [4] A. Al-Omari and M. S. M. Noorani, Contra-!-continuous and almost !-continuous functions, Int. J. Math. Math. Sci. 9, (2007), 169-179. doi:10.1155/2007/40469. [5] A. Al-Omari, T. Noiri and M. S. M. Noorani, Weak and strong forms of !-continuous functions, Int. J. Math. Math. Sci. 9, (2009), 1-13. doi:10.1155/2009/174042. [6] C. Carpintero, J. Pacheco, N. Rajesh and E. Rosas, Properties of nearly !-continuous multifunctions, Acta Univ. Sapientiae, Mathematic, 9, No. 1 (2017),13-25. doi: 10.1515/ausm-2017-0002. [7] E. Ekici, S. Jafari and S.P. Moshokoa, On a weak form of !-continuity, Annals Univ. Craiova, Math. Comp. Sci. 37. No 2 (2010), 38-46. [8] H.Z. Hdeib, !-closed mappings, Revista Colombiana Mat., 16 (1982),65-78. [9] H.Z. Hdeib, !-continuous functions, Dirasat, 16. No. 2 (1989),136-142. [10] A. Richlewicz, On almost nearly continuity with reference to multifunctions in bitopological spaces, Novi Sad J. Math., 38, No. 2 (2008), 5-14. [11] B. C. Tripathy and D. J. Sarma, On b-locally open sets in bitopological spaces, Kyungpook Math. Journal, 51, No. 4 (2011),429-433. [12] B. C. Tripathy and D. J. Sarma, On weakly b-continuous functions in bitopo- logical spaces, Acta Scientiarum Technology, 35, No. 3 (2013),521-525. [13] B. C. Tripathy and S. Acharjee, On ( ; )-Bitopological semi-closed set via topological ideal, Proyecciones J. Math., 33, No. 3 (2014),245-257. [14] B. C. Tripathy and D. J. Sarma, Generalized b-closed sets in ideal bitopological spaces, Proyecciones J. Math., 33, No. 3 (2014),315-324. [15] D. J. Sarma and B. C. Tripathy, Pairwise generalized b-R0-spaces in bitopo- logical spaces, Proyecciones J. Math., 36, No. 4 (2017),589-600. [16] B. C. Tripathy and S. Debnath, Fuzzy m-structures, m-open multifunctions and bitopological spaces, Boletim da Sociedade Paranaense de Matematica, 37, No. 4 (2019),119-128.PublicationORIGINALNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdfNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdfapplication/pdf86745https://repositorio.cuc.edu.co/bitstreams/9384d601-5269-4512-baf4-e758e98bab34/download2a8985caaca92f3f079f2f59bb41b390MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/63fbe749-a273-498b-a4e6-c27cffd40d52/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/c9e2206d-7db1-4c64-945c-a6d0c5113cc2/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.jpgNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.jpgimage/jpeg50677https://repositorio.cuc.edu.co/bitstreams/c369080d-17df-4fb4-b6fa-a0eb1fb16cbf/download3beae6db48858c1cce661f20602972e3MD55TEXTNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.txtNEAR !-CONTINUOUS MULTIFUNCTIONS ON BITOPOLOGICAL SPACES.pdf.txttext/plain14272https://repositorio.cuc.edu.co/bitstreams/7812cf4d-9fca-49c1-9573-25488b1c62d5/download920aff1655879b752f1518de6c87a21eMD5611323/5265oai:repositorio.cuc.edu.co:11323/52652024-09-17 14:11:20.324http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |