Shapley value: its algorithms and application to supply chains

Introduction− Coalitional game theorists have studied the coalition struc-ture and the payoff schemes attributed to such coalition. With respect to the payoff value, there are number ways of obtaining to “best” distribution of the value of the game. The solution concept or payoff value distribution...

Full description

Autores:
Landinez-Lamadrid, Daniela C.
Ramirez-Ríos, Diana G.
Neira Rodado, Dionicio
Parra Negrete, Kevin Armando
Combita Niño, Johana Patricia
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2482
Acceso en línea:
https://hdl.handle.net/11323/2482
https://doi.org/10.17981/ingecuc.13.1.2017.06
https://repositorio.cuc.edu.co/
Palabra clave:
Juegos cooperativos
Valor de Shapley
Cadena de suministro
Competitividad
Clúster
Cooperative games
Shapley value
Supply chain
Competitiveness
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_06a9da70847084c26eff52bfacafc706
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2482
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Shapley value: its algorithms and application to supply chains
dc.title.translated.spa.fl_str_mv El valor de Shapley: sus algoritmos y aplicación en cadenas de suministro
title Shapley value: its algorithms and application to supply chains
spellingShingle Shapley value: its algorithms and application to supply chains
Juegos cooperativos
Valor de Shapley
Cadena de suministro
Competitividad
Clúster
Cooperative games
Shapley value
Supply chain
Competitiveness
title_short Shapley value: its algorithms and application to supply chains
title_full Shapley value: its algorithms and application to supply chains
title_fullStr Shapley value: its algorithms and application to supply chains
title_full_unstemmed Shapley value: its algorithms and application to supply chains
title_sort Shapley value: its algorithms and application to supply chains
dc.creator.fl_str_mv Landinez-Lamadrid, Daniela C.
Ramirez-Ríos, Diana G.
Neira Rodado, Dionicio
Parra Negrete, Kevin Armando
Combita Niño, Johana Patricia
dc.contributor.author.spa.fl_str_mv Landinez-Lamadrid, Daniela C.
Ramirez-Ríos, Diana G.
Neira Rodado, Dionicio
Parra Negrete, Kevin Armando
Combita Niño, Johana Patricia
dc.subject.proposal.spa.fl_str_mv Juegos cooperativos
Valor de Shapley
Cadena de suministro
Competitividad
Clúster
topic Juegos cooperativos
Valor de Shapley
Cadena de suministro
Competitividad
Clúster
Cooperative games
Shapley value
Supply chain
Competitiveness
dc.subject.proposal.eng.fl_str_mv Cooperative games
Shapley value
Supply chain
Competitiveness
description Introduction− Coalitional game theorists have studied the coalition struc-ture and the payoff schemes attributed to such coalition. With respect to the payoff value, there are number ways of obtaining to “best” distribution of the value of the game. The solution concept or payoff value distribution that is canonically held to fairly dividing a coalition’s value is called the Shapley Value. It is probably the most important regulatory payoff scheme in coali-tion games. The reason the Shapley value has been the focus of so much interest is that it represents a distinct approach to the problems of complex strategic interaction that game theory tries to solve. Objective−This study aims to do a brief literature review of the application of Shapley Value for solving problems in different cooperation fields and the importance of studying existing methods to facilitate their calculation. This review is focused on the algorithmic view of cooperative game theory with a special emphasis on supply chains. Additionally, an algorithm for the calcu-lation of the Shapley Value is proposed and numerical examples are used in order to validate the proposed algorithm. Methodology−First of all, the algorithms used to calculate Shapley value were identified. The element forming a supply chain were also identified. The cooperation between the members of the supply chain ways is simulated and the Shapley Value is calculated using the proposed algorithm in order to check its applicability. Results and Conclusions− The algorithmic approach introduced in this paper does not wish to belittle the contributions made so far but intends to provide a straightforward solution for decision problems that involve supply chains. An efficient and feasible way of calculating the Shapley Value when player structures are known beforehand provides the advantage of reducing the amount of effort in calculating all possible coalition structures prior to the Shapley.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-01-01
dc.date.accessioned.none.fl_str_mv 2019-02-14T00:48:37Z
dc.date.available.none.fl_str_mv 2019-02-14T00:48:37Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv D.C. Landinez-Lamadrid, D. G. Ramirez-Ríos, D. Neira Rodado, K. Parra Negrete and J.P. Combita Niño “Shapley Value: its algorithms and application to supply chains,” INGE CUC, vol. 13, no. 1, pp. 61-69, 2017. DOI: http://dx.doi.org/10.17981/ingecuc.13.1.2017.06
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/2482
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.13.1.2017.06
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.13.1.2017.06
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv D.C. Landinez-Lamadrid, D. G. Ramirez-Ríos, D. Neira Rodado, K. Parra Negrete and J.P. Combita Niño “Shapley Value: its algorithms and application to supply chains,” INGE CUC, vol. 13, no. 1, pp. 61-69, 2017. DOI: http://dx.doi.org/10.17981/ingecuc.13.1.2017.06
10.17981/ingecuc.13.1.2017.06
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/2482
https://doi.org/10.17981/ingecuc.13.1.2017.06
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 13, Núm. 1 (2017)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv [1] D. Neira Rodado, J. W. Escobar, R. G. García-Cáceres and N. A. Andrés, "A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand," International Journal of Industrial Engineering Computations, no. 8, pp. 237-250, 2017.
[2] A. Baykasoğlu and B. K. Özbel, "Cooperative interval game theory and the grey Shapley value approach for solving the maximun flow problem," in XIV International Logistics and Supply Chain Congress, Izmir, Turkey , 2016.
[3] A. Fréchette, L. Kotthoff, T. P. Michalak, T. Rahwan, H. H. Hoos and K. Leyton-Brown, "Using the Shapley Value to Analyze Algorithm Portfolios," AAAI, pp. 3397-3403, 2016.
[4] A. Owen and C. Prieur, "On Shapley value for measuring importance of dependent inputs," 2016.
[5] T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran and N. R. Jennings, "Efficient computation of the Shapley value for game-theoretic network centrality," Journal of Artificial Intelligence Research, vol. 46, pp. 607-650, 2013.
[6] R. Aumann and R. Myerson, "Endogenous formation of links between players and coalitions: an application of the Shapley value," in The Shapley Value, Cambridge University, 1988, pp. 175-191.
[7] J. Quigley and L. Walls, "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering & System safety, vol. 92, no. 10, pp. 1448-1457, 2007.
[7] J. Quigley and L. Walls, "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering & System safety, vol. 92, no. 10, pp. 1448-1457, 2007.
[8] W. Yu, C. Dong-mei and Z. Xiao-min, "Study on mechanism of profit allocation in virtual enterprise based on shapley value considering harmony degree," in 16th International Conference on Industrial Engineering and Engineering Management, IE&EM'09, Beijing, China, 2009.
[9] B. Xin-zhong and L. Xiao-fei, "Cost Allocation of Integrated Supply Based on Shapley Value Method," in International Conference on Intelligent Computation Technology and Automation (ICICTA), Beijing, China, 2010.
[10] S. Yu, Y. M. Wei and K. Wang, "Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, vol. 66, pp. 630-644, 2014.
[11] Z. Liao, X. Zhu and J. Shi, "Case study on initial allocation of Shanghai carbon emission trading based on Shapley value," Journal of Cleaner Production, vol. 103, pp. 338-344, 2015.
[12] H. Sheng and H. Shi, "Research on Cost Allocation Model of Telecom Infrastructure Co-construction Based on Value Shapley Algorithm," International Journal of Future Generation Communication and Networking, vol. 9, no. 7, pp. 165-172, 2016.
[13] G. Chalkiadakis, E. Elkind and M. Wooldridge, "Cooperative game theory: Basic concepts and computational challenges," IEEE Intelligent Systems, vol. 3, pp. 86-9, 2012.
[14] Y. Li and V. Conitzer, "Cooperative Game Solution Concepts that Maximize Stability under Noise," AAAI, pp. 979-985, 2015.
[15] G. Owen, Game Theory, 3rd Edition ed. ed., San Diego: Academic Press, 1995, p. 192.
[16] S. R. Dabbagh and M. K. Sheikh-El-Eslami, "Risk-based profit allocation to DERs integrated with a virtual power plant using cooperative Game theory," Electric Power Systems Research, vol. 121, pp. 368-378, 2015.
[17] B. Xinzhong, W. Yanfang and S. Ying, "Cost allocation model and its solution about inter-organizational cooperation based on game theory," in 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 2011.
[18] S. S. Fatima, M. Wooldridge and N. R. Jennings, "A linear approximation method for the Shapley value," Artificial Intelligence, vol. 172, no. 14, pp. 1673-1699, 2008.
[19] H. Hong and W. Yanhong, "The optimization study on profit allocation among partners in supply chain alliance based on the Shapley Value," in Control and Decision Conference, Yantai, Shandong, China, 2008.
[20] S. Kim, "Cooperative game theoretic routing algorithm based on Shapley-value approach," in Proceedings of the 23rd international conference on Information Networking, Osaka, Japon, 2009.
[21] Y. Chao-hui, "Using Modified Shapley Value to Determine Revenue Allocation within Supply Chain," in International Conference on Information Management, Innovation Management and Industrial Engineering, Xi'an, China, 2009.
[22] D. H. Cui, L. Yao and R. Yang, "An algorithm for improving Shapley Value method for time claim in concurrent delay," in International Conference Logistics Systems and Intelligent Management, Harbin, China, 2010.
[23] W. Xu, Z. Yang and H. Wang, "A Shapley value perspective on profit allocation for RFID technology alliance," in 11th International Conference on Service Systems and Service Management (ICSSSM), Beijing, China, 2014.
[24] F. J. Muros, J. M. Maestre, E. Algaba, T. Alamo and E. F. Camacho, "An algorithm with low computational requirements to constrain the Shapley value in coalitional networks.," in Control and Automation (MED), 2015.
[25] J. Castro, D. Gómez, E. Molina and J. Tejada, "Improving Polynomial estimation of the Shapley value by stratified random sampling with optimum allocation," Computers & Operations Research, 2017.
[26] D. G. Ramirez-Rios, N. Puello-Pereira, J. Ferro-Correa and S. Sankar Sana, "A cooperative game approach applied to the furniture supply chain of clusters for improving its competitive value: a case study," Control and Cybernetics, vol. 46, no. 1, 2016.
dc.relation.citationendpage.none.fl_str_mv 60
dc.relation.citationstartpage.spa.fl_str_mv 53
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 13
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1495
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6ddec5f4-97e4-47d3-95cd-57128f059dde/download
https://repositorio.cuc.edu.co/bitstreams/a078972a-cede-4813-8f28-b60c4b5d90bd/download
https://repositorio.cuc.edu.co/bitstreams/4a2e17b8-925c-4851-bf47-13bf811ce242/download
https://repositorio.cuc.edu.co/bitstreams/898520c5-63b9-45eb-ad8b-8aafd6b067d1/download
bitstream.checksum.fl_str_mv a47aa4fc63f7ade06f10237af430802b
8a4605be74aa9ea9d79846c1fba20a33
fe61c654dd1fa3ff033637831ac509e4
e29cdb264e89f3d01320fac84002c3c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760735139659776
spelling Landinez-Lamadrid, Daniela C.Ramirez-Ríos, Diana G.Neira Rodado, DionicioParra Negrete, Kevin ArmandoCombita Niño, Johana Patricia2019-02-14T00:48:37Z2019-02-14T00:48:37Z2017-01-01D.C. Landinez-Lamadrid, D. G. Ramirez-Ríos, D. Neira Rodado, K. Parra Negrete and J.P. Combita Niño “Shapley Value: its algorithms and application to supply chains,” INGE CUC, vol. 13, no. 1, pp. 61-69, 2017. DOI: http://dx.doi.org/10.17981/ingecuc.13.1.2017.06https://hdl.handle.net/11323/2482https://doi.org/10.17981/ingecuc.13.1.2017.0610.17981/ingecuc.13.1.2017.062382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− Coalitional game theorists have studied the coalition struc-ture and the payoff schemes attributed to such coalition. With respect to the payoff value, there are number ways of obtaining to “best” distribution of the value of the game. The solution concept or payoff value distribution that is canonically held to fairly dividing a coalition’s value is called the Shapley Value. It is probably the most important regulatory payoff scheme in coali-tion games. The reason the Shapley value has been the focus of so much interest is that it represents a distinct approach to the problems of complex strategic interaction that game theory tries to solve. Objective−This study aims to do a brief literature review of the application of Shapley Value for solving problems in different cooperation fields and the importance of studying existing methods to facilitate their calculation. This review is focused on the algorithmic view of cooperative game theory with a special emphasis on supply chains. Additionally, an algorithm for the calcu-lation of the Shapley Value is proposed and numerical examples are used in order to validate the proposed algorithm. Methodology−First of all, the algorithms used to calculate Shapley value were identified. The element forming a supply chain were also identified. The cooperation between the members of the supply chain ways is simulated and the Shapley Value is calculated using the proposed algorithm in order to check its applicability. Results and Conclusions− The algorithmic approach introduced in this paper does not wish to belittle the contributions made so far but intends to provide a straightforward solution for decision problems that involve supply chains. An efficient and feasible way of calculating the Shapley Value when player structures are known beforehand provides the advantage of reducing the amount of effort in calculating all possible coalition structures prior to the Shapley.Introducción: Los teóricos del juego cooperativos han estudiado la estructura de coalición y los esquemas de pago atribuidos a esas coaliciones. En relación al valor del pago, hay varias maneras de obtener la “mejor” distribución del valor del juego. El concepto de solución o la distribución del valor de recompensa que se mantiene canónicamente para dividir justamente el valor de una coalición se llama Valor de Shapley. Es probablemente el esquema de pago más importante en los juegos cooperativos. La razón por la cual el valor de Shapley ha sido el foco de tanto interés es que representa un acercamiento distinto a los problemas de la interacción estratégica compleja que la teoría del juego intenta resolver.Objetivo: Este estudio tiene como objetivo hacer una breve revisión bibliográfica de la aplicación del Valor de Shapley para resolver problemas en diferentes campos de cooperación y la importancia de estudiar los métodos existentes para facilitar su cálculo. Esta revisión se centra en la visión algorítmica de la teoría cooperativa de juegos con un énfasis especial en las cadenas de suministro. Adicionalmente se propone un algoritmo para el cálculo del Valor de Shapley y se utilizan ejemplos numéricos para validar el algoritmo propuesto.Metodología: En primer lugar, se identificaron los algoritmos utilizados para calcular el valor de Shapley. También se identificó los elementos que forman una cadena de suministro. Luego se simula la cooperación entre los miembros de las vías de la cadena de suministro y se calcula el valor de Shapley utilizando el algoritmo propuesto para comprobar su aplicabilidad.Resultados y Conclusiones: El enfoque algorítmico introducido en este documento no pretende menospreciar las contribuciones hechas hasta ahora, pero tiene la intención de proporcionar una solución directa para problemas de decisión que involucran cadenas de suministro. Una manera eficiente y factible de calcular el valor de Shapley cuando las estructuras de jugador se conocen de antemano proporciona la ventaja de reducir la cantidad de esfuerzo en el cálculo de todas las estructuras de coalición posibles antes del Shapley.Landinez-Lamadrid, Daniela C.Ramirez-Ríos, Diana G.Neira Rodado, DionicioParra Negrete, Kevin ArmandoCombita Niño, Johana Patricia9 páginasapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 13, Núm. 1 (2017)INGE CUCINGE CUC[1] D. Neira Rodado, J. W. Escobar, R. G. García-Cáceres and N. A. Andrés, "A mathematical model for the product mixing and lot-sizing problem by considering stochastic demand," International Journal of Industrial Engineering Computations, no. 8, pp. 237-250, 2017.[2] A. Baykasoğlu and B. K. Özbel, "Cooperative interval game theory and the grey Shapley value approach for solving the maximun flow problem," in XIV International Logistics and Supply Chain Congress, Izmir, Turkey , 2016.[3] A. Fréchette, L. Kotthoff, T. P. Michalak, T. Rahwan, H. H. Hoos and K. Leyton-Brown, "Using the Shapley Value to Analyze Algorithm Portfolios," AAAI, pp. 3397-3403, 2016.[4] A. Owen and C. Prieur, "On Shapley value for measuring importance of dependent inputs," 2016.[5] T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran and N. R. Jennings, "Efficient computation of the Shapley value for game-theoretic network centrality," Journal of Artificial Intelligence Research, vol. 46, pp. 607-650, 2013.[6] R. Aumann and R. Myerson, "Endogenous formation of links between players and coalitions: an application of the Shapley value," in The Shapley Value, Cambridge University, 1988, pp. 175-191.[7] J. Quigley and L. Walls, "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering & System safety, vol. 92, no. 10, pp. 1448-1457, 2007.[7] J. Quigley and L. Walls, "Trading reliability targets within a supply chain using Shapley's value," Reliability Engineering & System safety, vol. 92, no. 10, pp. 1448-1457, 2007.[8] W. Yu, C. Dong-mei and Z. Xiao-min, "Study on mechanism of profit allocation in virtual enterprise based on shapley value considering harmony degree," in 16th International Conference on Industrial Engineering and Engineering Management, IE&EM'09, Beijing, China, 2009.[9] B. Xin-zhong and L. Xiao-fei, "Cost Allocation of Integrated Supply Based on Shapley Value Method," in International Conference on Intelligent Computation Technology and Automation (ICICTA), Beijing, China, 2010.[10] S. Yu, Y. M. Wei and K. Wang, "Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition," Energy Policy, vol. 66, pp. 630-644, 2014.[11] Z. Liao, X. Zhu and J. Shi, "Case study on initial allocation of Shanghai carbon emission trading based on Shapley value," Journal of Cleaner Production, vol. 103, pp. 338-344, 2015.[12] H. Sheng and H. Shi, "Research on Cost Allocation Model of Telecom Infrastructure Co-construction Based on Value Shapley Algorithm," International Journal of Future Generation Communication and Networking, vol. 9, no. 7, pp. 165-172, 2016.[13] G. Chalkiadakis, E. Elkind and M. Wooldridge, "Cooperative game theory: Basic concepts and computational challenges," IEEE Intelligent Systems, vol. 3, pp. 86-9, 2012.[14] Y. Li and V. Conitzer, "Cooperative Game Solution Concepts that Maximize Stability under Noise," AAAI, pp. 979-985, 2015.[15] G. Owen, Game Theory, 3rd Edition ed. ed., San Diego: Academic Press, 1995, p. 192.[16] S. R. Dabbagh and M. K. Sheikh-El-Eslami, "Risk-based profit allocation to DERs integrated with a virtual power plant using cooperative Game theory," Electric Power Systems Research, vol. 121, pp. 368-378, 2015.[17] B. Xinzhong, W. Yanfang and S. Ying, "Cost allocation model and its solution about inter-organizational cooperation based on game theory," in 6th IEEE Conference on Industrial Electronics and Applications, Beijing, China, 2011.[18] S. S. Fatima, M. Wooldridge and N. R. Jennings, "A linear approximation method for the Shapley value," Artificial Intelligence, vol. 172, no. 14, pp. 1673-1699, 2008.[19] H. Hong and W. Yanhong, "The optimization study on profit allocation among partners in supply chain alliance based on the Shapley Value," in Control and Decision Conference, Yantai, Shandong, China, 2008.[20] S. Kim, "Cooperative game theoretic routing algorithm based on Shapley-value approach," in Proceedings of the 23rd international conference on Information Networking, Osaka, Japon, 2009.[21] Y. Chao-hui, "Using Modified Shapley Value to Determine Revenue Allocation within Supply Chain," in International Conference on Information Management, Innovation Management and Industrial Engineering, Xi'an, China, 2009.[22] D. H. Cui, L. Yao and R. Yang, "An algorithm for improving Shapley Value method for time claim in concurrent delay," in International Conference Logistics Systems and Intelligent Management, Harbin, China, 2010.[23] W. Xu, Z. Yang and H. Wang, "A Shapley value perspective on profit allocation for RFID technology alliance," in 11th International Conference on Service Systems and Service Management (ICSSSM), Beijing, China, 2014.[24] F. J. Muros, J. M. Maestre, E. Algaba, T. Alamo and E. F. Camacho, "An algorithm with low computational requirements to constrain the Shapley value in coalitional networks.," in Control and Automation (MED), 2015.[25] J. Castro, D. Gómez, E. Molina and J. Tejada, "Improving Polynomial estimation of the Shapley value by stratified random sampling with optimum allocation," Computers & Operations Research, 2017.[26] D. G. Ramirez-Rios, N. Puello-Pereira, J. Ferro-Correa and S. Sankar Sana, "A cooperative game approach applied to the furniture supply chain of clusters for improving its competitive value: a case study," Control and Cybernetics, vol. 46, no. 1, 2016.6053113INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1495Shapley value: its algorithms and application to supply chainsEl valor de Shapley: sus algoritmos y aplicación en cadenas de suministroArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Juegos cooperativosValor de ShapleyCadena de suministroCompetitividadClústerCooperative gamesShapley valueSupply chainCompetitivenessPublicationORIGINALShapley Value its Algorithms and Application to Supply Chains.pdfShapley Value its Algorithms and Application to Supply Chains.pdfapplication/pdf420896https://repositorio.cuc.edu.co/bitstreams/6ddec5f4-97e4-47d3-95cd-57128f059dde/downloada47aa4fc63f7ade06f10237af430802bMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/a078972a-cede-4813-8f28-b60c4b5d90bd/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILShapley Value its Algorithms and Application to Supply Chains.pdf.jpgShapley Value its Algorithms and Application to Supply Chains.pdf.jpgimage/jpeg51409https://repositorio.cuc.edu.co/bitstreams/4a2e17b8-925c-4851-bf47-13bf811ce242/downloadfe61c654dd1fa3ff033637831ac509e4MD54TEXTShapley Value its Algorithms and Application to Supply Chains.pdf.txtShapley Value its Algorithms and Application to Supply Chains.pdf.txttext/plain44134https://repositorio.cuc.edu.co/bitstreams/898520c5-63b9-45eb-ad8b-8aafd6b067d1/downloade29cdb264e89f3d01320fac84002c3c4MD5511323/2482oai:repositorio.cuc.edu.co:11323/24822024-09-17 10:53:07.276open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=