Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification

The construction of patient classification (or risk adjustment) systems allows comparison of the effectiveness and quality of hospitals and hospital services, providing useful information for management decision making and management of hospitals. Risk adjustment systems to stratify patients’ severi...

Full description

Autores:
Silva, Jesús
Herazo-Beltrán, Yaneth
Marín-González, Freddy
Varela Izquierdo, Noel
Pineda, Omar
Palencia-Domínguez, Pablo
Vargas Mercado, Carlos
Marín González, Freddy
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7741
Acceso en línea:
https://hdl.handle.net/11323/7741
https://doi.org/10.1007/978-981-15-4875-8_16
https://repositorio.cuc.edu.co/
Palabra clave:
Hospital mortality
Risk stratification
Intensive care unit
Artificial neural networks
Bootstrap
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_0675d2eb71409693e81dc8a6beeef048
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7741
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
title Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
spellingShingle Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
Hospital mortality
Risk stratification
Intensive care unit
Artificial neural networks
Bootstrap
title_short Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
title_full Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
title_fullStr Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
title_full_unstemmed Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
title_sort Comparison of bio-inspired algorithms applied to the hospital mortality risk stratification
dc.creator.fl_str_mv Silva, Jesús
Herazo-Beltrán, Yaneth
Marín-González, Freddy
Varela Izquierdo, Noel
Pineda, Omar
Palencia-Domínguez, Pablo
Vargas Mercado, Carlos
Marín González, Freddy
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Herazo-Beltrán, Yaneth
Marín-González, Freddy
Varela Izquierdo, Noel
Pineda, Omar
Palencia-Domínguez, Pablo
Vargas Mercado, Carlos
dc.contributor.author.none.fl_str_mv Marín González, Freddy
dc.subject.spa.fl_str_mv Hospital mortality
Risk stratification
Intensive care unit
Artificial neural networks
Bootstrap
topic Hospital mortality
Risk stratification
Intensive care unit
Artificial neural networks
Bootstrap
description The construction of patient classification (or risk adjustment) systems allows comparison of the effectiveness and quality of hospitals and hospital services, providing useful information for management decision making and management of hospitals. Risk adjustment systems to stratify patients’ severity in a clinical outcome are generally constructed from care variables and using statistical techniques based on logistic regression (RL). The objective of this investigation is to compare the hospital mortality prediction capacity of an artificial neural network (RNA) with other methods already known.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-01-21T13:39:17Z
dc.date.available.none.fl_str_mv 2021-01-21T13:39:17Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7741
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-4875-8_16
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7741
https://doi.org/10.1007/978-981-15-4875-8_16
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Sargent, D.J.: Comparison of artificial neural networks with other statistical approaches results from medical data sets. Cancer 91, 1636–1642 (2001)
2. Bifet, A., De Morales, G. F: Big data stream learning with Samoa. Recuperado de (2014).
3. Clermont, G., Angus, D.C., DiRusso, S.M., Griffin, M., Linde-Zwirble, W.T.: Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Crit. Care Med. 29, 291–296 (2001)
4. Wong, L.S.S., Young, J.D.: A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural network. Anaesthesia 54, 1048–1054 (1999)
5. Bravo, M., Alvarado, M.: Similarity measures for substituting web services. Int. J. Web Serv. Res. 7(3), 1–29 (2010)
6. Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. J. Cental South Univ. 20, 2708–2714 (2013)
7. Viloria, A., Lezama, O. B. P: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, pp 1201–1206 (2019)
8. Viloria, A., Lis-Gutiérrez J. P., Gaitán-Angulo, M., Godoy, A. R. M., Moreno, G. C., Kamatkar, S. J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—Learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018)
9. Zhu, J., Fang, X. et al.: IBM cloud computing powering a smarter planet. In: Libro Cloud Computing, vol. 599.51, pp 621– 625 (2009)
10. Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Syst. Appl. 37(7), 5484–5490 (2010)
11. Thames, L., Schaefer, D.: Software defined cloud manufacturing for industry 4.0. Procedía CIRP 52, 12–17 (2016)
12. Álvarez, M., Nava, J.M., Rue, M., Quintana, S.: Mortality prediction in head trauma patients: Performance of glasgow coma score and general severity systems. Crit. Care Med. 26, 142–148 (1998)
13. Setnes, M., Kaymak, U.: Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Trans. Fuzzy Syst. 9(1), 153–163 (2001)
14. Llorca, J., Dierssen, T.: Comparación de dos métodos para el cálculo de la incertidumbre en los análisis de laboratorio. Gac. Sanit. 14, 458–463 (2000)
15. Viloria, A., Neira-Rodado, D., Pineda Lezama, O. B.: Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40, pp 1249–1254 (2019)
16. Wu, Q., Yan, H. S., Yang, H. B.: A forecasting model based support vector machine and particle swarm optimization. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 218–222 (2008)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Smart Innovation, Systems and Technologies
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-4875-8_16
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c53e12df-a8f2-41b6-be7a-ae406d575e7d/download
https://repositorio.cuc.edu.co/bitstreams/5923814d-4db0-488f-82ed-849cd6f18906/download
https://repositorio.cuc.edu.co/bitstreams/9ecd186b-fd01-4101-a323-cbcce0eac7e0/download
https://repositorio.cuc.edu.co/bitstreams/79a1b045-4d67-46cc-9f9c-0a874527b0ae/download
https://repositorio.cuc.edu.co/bitstreams/3cb6897c-aa4b-4ec9-bff1-a05d585f3916/download
bitstream.checksum.fl_str_mv 91ac91d5e1b3afd3c368e4434ebfcbd7
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
6b60615852fe002a873b836682fbc284
89971d099756b291f07fc26e447810fd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166904930369536
spelling Silva, JesúsHerazo-Beltrán, YanethMarín-González, FreddyVarela Izquierdo, NoelPineda, OmarPalencia-Domínguez, PabloVargas Mercado, CarlosMarín González, Freddyvirtual::358-12021-01-21T13:39:17Z2021-01-21T13:39:17Z2020https://hdl.handle.net/11323/7741https://doi.org/10.1007/978-981-15-4875-8_16Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The construction of patient classification (or risk adjustment) systems allows comparison of the effectiveness and quality of hospitals and hospital services, providing useful information for management decision making and management of hospitals. Risk adjustment systems to stratify patients’ severity in a clinical outcome are generally constructed from care variables and using statistical techniques based on logistic regression (RL). The objective of this investigation is to compare the hospital mortality prediction capacity of an artificial neural network (RNA) with other methods already known.Silva, JesúsHerazo-Beltrán, YanethMarín González, Freddy-will be generated-orcid-0000-0002-3935-8806-600Varela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600Palencia-Domínguez, Pablo-will be generated-orcid-0000-0003-3679-6015-600Vargas Mercado, Carlos-will be generated-orcid-0000-0002-5436-0568-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Smart Innovation, Systems and Technologieshttps://link.springer.com/chapter/10.1007/978-981-15-4875-8_16Hospital mortalityRisk stratificationIntensive care unitArtificial neural networksBootstrapComparison of bio-inspired algorithms applied to the hospital mortality risk stratificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Sargent, D.J.: Comparison of artificial neural networks with other statistical approaches results from medical data sets. Cancer 91, 1636–1642 (2001)2. Bifet, A., De Morales, G. F: Big data stream learning with Samoa. Recuperado de (2014).3. Clermont, G., Angus, D.C., DiRusso, S.M., Griffin, M., Linde-Zwirble, W.T.: Predicting hospital mortality for patients in the intensive care unit: A comparison of artificial neural networks with logistic regression models. Crit. Care Med. 29, 291–296 (2001)4. Wong, L.S.S., Young, J.D.: A comparison of ICU mortality prediction using the APACHE II scoring system and artificial neural network. Anaesthesia 54, 1048–1054 (1999)5. Bravo, M., Alvarado, M.: Similarity measures for substituting web services. Int. J. Web Serv. Res. 7(3), 1–29 (2010)6. Chen, L., Zhang, Y., Song, Z.L., Miao, Z.: Automatic web services classification based on rough set theory. J. Cental South Univ. 20, 2708–2714 (2013)7. Viloria, A., Lezama, O. B. P: Improvements for determining the number of clusters in k-means for innovation databases in SMEs. ANT/EDI40, pp 1201–1206 (2019)8. Viloria, A., Lis-Gutiérrez J. P., Gaitán-Angulo, M., Godoy, A. R. M., Moreno, G. C., Kamatkar, S. J.: Methodology for the design of a student pattern recognition tool to facilitate the teaching—Learning process through knowledge data discovery (big data). In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham (2018)9. Zhu, J., Fang, X. et al.: IBM cloud computing powering a smarter planet. In: Libro Cloud Computing, vol. 599.51, pp 621– 625 (2009)10. Mohanty, R., Ravi, V., Patra, M.R.: Web-services classification using intelligent techniques. Expert Syst. Appl. 37(7), 5484–5490 (2010)11. Thames, L., Schaefer, D.: Software defined cloud manufacturing for industry 4.0. Procedía CIRP 52, 12–17 (2016)12. Álvarez, M., Nava, J.M., Rue, M., Quintana, S.: Mortality prediction in head trauma patients: Performance of glasgow coma score and general severity systems. Crit. Care Med. 26, 142–148 (1998)13. Setnes, M., Kaymak, U.: Fuzzy modeling of client preference from large data sets: an application to target selection in direct marketing. IEEE Trans. Fuzzy Syst. 9(1), 153–163 (2001)14. Llorca, J., Dierssen, T.: Comparación de dos métodos para el cálculo de la incertidumbre en los análisis de laboratorio. Gac. Sanit. 14, 458–463 (2000)15. Viloria, A., Neira-Rodado, D., Pineda Lezama, O. B.: Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40, pp 1249–1254 (2019)16. Wu, Q., Yan, H. S., Yang, H. B.: A forecasting model based support vector machine and particle swarm optimization. In: 2008 Workshop on Power Electronics and Intelligent Transportation System, pp. 218–222 (2008)Publication008b0766-3695-47f5-a613-53890b5cf267virtual::358-1008b0766-3695-47f5-a613-53890b5cf267virtual::358-1https://scholar.google.es/citations?user=TmoQZU4AAAAJ&hl=esvirtual::358-10000-0002-3935-8806virtual::358-1ORIGINALComparison of bio-inspired algorithms applied to the hospital mortality risk stratification.pdfComparison of bio-inspired algorithms applied to the hospital mortality risk stratification.pdfapplication/pdf101338https://repositorio.cuc.edu.co/bitstreams/c53e12df-a8f2-41b6-be7a-ae406d575e7d/download91ac91d5e1b3afd3c368e4434ebfcbd7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/5923814d-4db0-488f-82ed-849cd6f18906/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/9ecd186b-fd01-4101-a323-cbcce0eac7e0/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILComparison of bio-inspired algorithms applied to the hospital mortality risk stratification.pdf.jpgComparison of bio-inspired algorithms applied to the hospital mortality risk stratification.pdf.jpgimage/jpeg27956https://repositorio.cuc.edu.co/bitstreams/79a1b045-4d67-46cc-9f9c-0a874527b0ae/download6b60615852fe002a873b836682fbc284MD54TEXTComparison of bio-inspired algorithms applied to the hospital mortality risk stratification.pdf.txtComparison of bio-inspired algorithms applied to the hospital mortality risk stratification.pdf.txttext/plain995https://repositorio.cuc.edu.co/bitstreams/3cb6897c-aa4b-4ec9-bff1-a05d585f3916/download89971d099756b291f07fc26e447810fdMD5511323/7741oai:repositorio.cuc.edu.co:11323/77412025-02-20 12:21:09.799http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==