Improving the quality of user generated data sets for activity recognition
It is fully appreciated that progress in the development of data driven approaches to activity recognition are being hampered due to the lack of large scale, high quality, annotated data sets. In an effort to address this the Open Data Initiative (ODI) was conceived as a potential solution for the c...
- Autores:
-
Nugent, Chris D.
Synnott, Jonathan
Gabrielli, Celeste
Zhang, Shuai
Espinilla, Macarena
Calzada, Alberto
Lundström, Jens
Cleland, Ian
Synnes, Kåre
Hallberg, Josef
Spinsante, Susanna
Ortiz Barrios, Miguel Angel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1387
- Acceso en línea:
- https://hdl.handle.net/11323/1387
https://repositorio.cuc.edu.co/
- Palabra clave:
- Activity recognition
Data driven classification
Data validation
Open data sets
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_0628fe0f4b9a0cbafbec9af33825099b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1387 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Improving the quality of user generated data sets for activity recognition |
title |
Improving the quality of user generated data sets for activity recognition |
spellingShingle |
Improving the quality of user generated data sets for activity recognition Activity recognition Data driven classification Data validation Open data sets |
title_short |
Improving the quality of user generated data sets for activity recognition |
title_full |
Improving the quality of user generated data sets for activity recognition |
title_fullStr |
Improving the quality of user generated data sets for activity recognition |
title_full_unstemmed |
Improving the quality of user generated data sets for activity recognition |
title_sort |
Improving the quality of user generated data sets for activity recognition |
dc.creator.fl_str_mv |
Nugent, Chris D. Synnott, Jonathan Gabrielli, Celeste Zhang, Shuai Espinilla, Macarena Calzada, Alberto Lundström, Jens Cleland, Ian Synnes, Kåre Hallberg, Josef Spinsante, Susanna Ortiz Barrios, Miguel Angel |
dc.contributor.author.spa.fl_str_mv |
Nugent, Chris D. Synnott, Jonathan Gabrielli, Celeste Zhang, Shuai Espinilla, Macarena Calzada, Alberto Lundström, Jens Cleland, Ian Synnes, Kåre Hallberg, Josef Spinsante, Susanna Ortiz Barrios, Miguel Angel |
dc.subject.eng.fl_str_mv |
Activity recognition Data driven classification Data validation Open data sets |
topic |
Activity recognition Data driven classification Data validation Open data sets |
description |
It is fully appreciated that progress in the development of data driven approaches to activity recognition are being hampered due to the lack of large scale, high quality, annotated data sets. In an effort to address this the Open Data Initiative (ODI) was conceived as a potential solution for the creation of shared resources for the collection and sharing of open data sets. As part of this process, an analysis was undertaken of datasets collected using a smart environment simulation tool. A noticeable difference was found in the first 1–2 cycles of users generating data. Further analysis demonstrated the effects that this had on the development of activity recognition models with a decrease of performance for both support vector machine and decision tree based classifiers. The outcome of the study has led to the production of a strategy to ensure an initial training phase is considered prior to full scale collection of the data. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-11-20T12:37:15Z |
dc.date.available.none.fl_str_mv |
2018-11-20T12:37:15Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-331948798-4 |
dc.identifier.issn.spa.fl_str_mv |
03029743 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1387 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/978-3-319-48799-1_13 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-331948798-4 03029743 10.1007/978-3-319-48799-1_13 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1387 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/124c0bd5-20d3-49ac-8c57-b0b16971646a/download https://repositorio.cuc.edu.co/bitstreams/041d5694-c35f-476d-9757-c2318a904006/download https://repositorio.cuc.edu.co/bitstreams/bf0936f7-4ad0-4d1a-8759-2f990b64e5b2/download https://repositorio.cuc.edu.co/bitstreams/dfbbe29e-bd09-4275-8999-9601b2a2e624/download |
bitstream.checksum.fl_str_mv |
d9caa657058160495f47ecb3e3f3059c 8a4605be74aa9ea9d79846c1fba20a33 34dcbab371c03dae02e2867b7a989596 266d28d0760dbae781e672613ff0a568 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166853114986496 |
spelling |
Nugent, Chris D.Synnott, JonathanGabrielli, CelesteZhang, ShuaiEspinilla, MacarenaCalzada, AlbertoLundström, JensCleland, IanSynnes, KåreHallberg, JosefSpinsante, SusannaOrtiz Barrios, Miguel Angel2018-11-20T12:37:15Z2018-11-20T12:37:15Z2016978-331948798-403029743https://hdl.handle.net/11323/138710.1007/978-3-319-48799-1_13Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/It is fully appreciated that progress in the development of data driven approaches to activity recognition are being hampered due to the lack of large scale, high quality, annotated data sets. In an effort to address this the Open Data Initiative (ODI) was conceived as a potential solution for the creation of shared resources for the collection and sharing of open data sets. As part of this process, an analysis was undertaken of datasets collected using a smart environment simulation tool. A noticeable difference was found in the first 1–2 cycles of users generating data. Further analysis demonstrated the effects that this had on the development of activity recognition models with a decrease of performance for both support vector machine and decision tree based classifiers. The outcome of the study has led to the production of a strategy to ensure an initial training phase is considered prior to full scale collection of the data.Nugent, Chris D.-a62f3693-f352-4c1a-a7f9-cc92b4e8461a-0Synnott, Jonathan-25c4fa00-6bfb-480b-851b-438a358f6f06-0Gabrielli, Celeste-c88e3fdd-6a87-4b57-a73c-2707baece5a9-0Zhang, Shuai-9db0f591-4d7f-4ec3-8f60-1f77e45421ad-0Espinilla, Macarena-afacc23a-28d1-4010-9464-2d0e243bdc87-0Calzada, Alberto-b62960b7-1304-4913-b18c-c66790485ce1-0Lundström, Jens-2f523295-8b4c-41b0-b6ae-5d3ee5de773a-0Cleland, Ian-ff6671da-ccb3-4f60-beca-456d7d829936-0Synnes, Kåre-72e932b9-fe39-4013-a50c-d31f60ac478b-0Hallberg, Josef-6a690c68-a3a5-447d-895a-8252d3131b90-0Spinsante, Susanna-79a4bcdf-9f66-4cdf-879f-ece55ba24371-0Ortiz Barrios, Miguel Angel-0000-0001-6890-7547-600engAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Activity recognitionData driven classificationData validationOpen data setsImproving the quality of user generated data sets for activity recognitionArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALImproving the quality of user generated data sets.pdfImproving the quality of user generated data sets.pdfapplication/pdf276723https://repositorio.cuc.edu.co/bitstreams/124c0bd5-20d3-49ac-8c57-b0b16971646a/downloadd9caa657058160495f47ecb3e3f3059cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/041d5694-c35f-476d-9757-c2318a904006/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILImproving the quality of user generated data sets.pdf.jpgImproving the quality of user generated data sets.pdf.jpgimage/jpeg41324https://repositorio.cuc.edu.co/bitstreams/bf0936f7-4ad0-4d1a-8759-2f990b64e5b2/download34dcbab371c03dae02e2867b7a989596MD54TEXTImproving the quality of user generated data sets.pdf.txtImproving the quality of user generated data sets.pdf.txttext/plain1377https://repositorio.cuc.edu.co/bitstreams/dfbbe29e-bd09-4275-8999-9601b2a2e624/download266d28d0760dbae781e672613ff0a568MD5511323/1387oai:repositorio.cuc.edu.co:11323/13872024-09-17 14:18:15.783open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |