Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic
The Coronavirus Disease 2019 (COVID-19) pandemic has shocked world health authorities generating a global health crisis. The present study aimed to analyze the different factors associated with physical activity that could have an impact in the COVID-19, providing a practical recommendation based on...
- Autores:
-
Clemente-Suárez, Vicente Javier
Beltrán-Velasco, Ana Isabel
Ramos-Campo, Domingo Jesús
Mielgo Ayuso, Juan
Nikolaidis, Pantelis
Belando, Noelia
Tornero-Aguilera, Jose Francisco
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9292
- Acceso en línea:
- https://hdl.handle.net/11323/9292
https://doi.org/10.1016/j.physbeh.2021.113667Get
https://repositorio.cuc.edu.co/
- Palabra clave:
- Inactivity
Cardiorespiratory fitness
Metabolic health
Mitochondrial fitness
Mental health
- Rights
- embargoedAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_05aa26a1efe7fc1c3e357ef9bbc3d85c |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9292 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
title |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
spellingShingle |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic Inactivity Cardiorespiratory fitness Metabolic health Mitochondrial fitness Mental health |
title_short |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
title_full |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
title_fullStr |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
title_full_unstemmed |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
title_sort |
Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic |
dc.creator.fl_str_mv |
Clemente-Suárez, Vicente Javier Beltrán-Velasco, Ana Isabel Ramos-Campo, Domingo Jesús Mielgo Ayuso, Juan Nikolaidis, Pantelis Belando, Noelia Tornero-Aguilera, Jose Francisco |
dc.contributor.author.spa.fl_str_mv |
Clemente-Suárez, Vicente Javier Beltrán-Velasco, Ana Isabel Ramos-Campo, Domingo Jesús Mielgo Ayuso, Juan Nikolaidis, Pantelis Belando, Noelia Tornero-Aguilera, Jose Francisco |
dc.subject.proposal.eng.fl_str_mv |
Inactivity Cardiorespiratory fitness Metabolic health Mitochondrial fitness Mental health |
topic |
Inactivity Cardiorespiratory fitness Metabolic health Mitochondrial fitness Mental health |
description |
The Coronavirus Disease 2019 (COVID-19) pandemic has shocked world health authorities generating a global health crisis. The present study aimed to analyze the different factors associated with physical activity that could have an impact in the COVID-19, providing a practical recommendation based on actual scientific knowledge. We conducted a consensus critical review using primary sources, scientific articles, and secondary bibliographic indexes, databases, and web pages. The method was a narrative literature review of the available literature regarding physical activity and physical activity related factors during the COVID-19 pandemic. The main online database used in the present research were PubMed, SciELO, and Google Scholar. COVID-19 has negatively influenced motor behavior, levels of regular exercise practice, eating and nutritional patterns, and the psychological status of citizens. These factors feed into each other, worsening COVID-19 symptoms, the risk of death from SARS-CoV-2, and the symptoms and effectiveness of the vaccine. The characteristics and symptoms related with the actual COVID-19 pandemic made the physical activity interventions a valuable prevention and treatment factor. Physical activity improves body composition, the cardiorespiratory, metabolic, and mental health of patients and enhancing antibody responses in vaccination. © 2021 Elsevier Inc. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-29 |
dc.date.accessioned.none.fl_str_mv |
2022-06-23T14:14:10Z |
dc.date.available.none.fl_str_mv |
2022-11-29 2022-06-23T14:14:10Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Vicente Javier Clemente-Suárez, Ana Isabel Beltrán-Velasco, Domingo Jesús Ramos-Campo, Juan Mielgo-Ayuso, Pantelis A. Nikolaidis, Noelia Belando, Jose Francisco Tornero-Aguilera, Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic, Physiology & Behavior, Volume 244, 2022, 113667, ISSN 0031-9384, https://doi.org/10.1016/j.physbeh.2021.113667.(https://www.sciencedirect.com/science/article/pii/S0031938421003541) |
dc.identifier.issn.spa.fl_str_mv |
0031-9384 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9292 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.physbeh.2021.113667Get |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.physbeh.2021.113667Get |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Vicente Javier Clemente-Suárez, Ana Isabel Beltrán-Velasco, Domingo Jesús Ramos-Campo, Juan Mielgo-Ayuso, Pantelis A. Nikolaidis, Noelia Belando, Jose Francisco Tornero-Aguilera, Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic, Physiology & Behavior, Volume 244, 2022, 113667, ISSN 0031-9384, https://doi.org/10.1016/j.physbeh.2021.113667.(https://www.sciencedirect.com/science/article/pii/S0031938421003541) 0031-9384 10.1016/j.physbeh.2021.113667Get Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9292 https://doi.org/10.1016/j.physbeh.2021.113667Get https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Physiology & Behavior |
dc.relation.references.spa.fl_str_mv |
[1] S. Platto, Y. Wang, J. Zhou, E. Carafoli, History of the COVID-19 pandemic: origin, explosion, worldwide spreading, Biochem. Biophys. Res. Commun. 538 (2021) 14–23. [2] Who.int. [citado el 5 de julio de 2021]. Disponible en: https://www.who.int/ docs/default-source/coronaviruse/situation-reports/20200327-sitrep-67-covi d-19.pdf?sfvrsn=b65f68eb_4. [3] Coronavirus (COVID-19) vaccinations [Internet]. Ourworldindata.org. [citado el 5 de julio de 2021]. Disponible en: https://ourworldindata.org/covid-vaccina tions?country=OWID_WRL. [4] G. Lippi, B.M. Henry, Sanchis-Gomar F. Physical inactivity and cardiovascular disease at the time of coronavirus disease 2019 (COVID-19), Eur. J. Prev. Cardiol. 27 (9) (2020) 906–908. [5] S.R. Chekroud, R. Gueorguieva, A.B. Zheutlin, M. Paulus, H.M. Krumholz, J. H. Krystal, et al., Association between physical exercise and mental health in 1•2 million individuals in the USA between 2011 and 2015: a cross-sectional study, Lancet Psychiatry. 5 (9) (2018) 739–746. [6] J.L. Durstine, B. Gordon, Z. Wang, X Luo, Chronic disease and the link to physical activity, J. Sport Health Sci. 2 (1) (2013) 3–11. [7] N.T. Rogers, N.R. Waterlow, H. Brindle, L. Enria, R.M. Eggo, S. Lees, et al., Behavioral change towards reduced intensity physical activity is disproportionately prevalent among adults with serious health issues or selfperception of high risk during the UK COVID-19 lockdown, Front. Public Health. 8 (2020), 575091. [8] M. Hamer, M. Kivimaki, ¨ C.R. Gale, G.D. Batty, Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK, Brain Behav. Immun. 87 (2020) 184–187. [9] Varea V., Gonz´ alez-Calvo G., García-Monge A. Exploring the changes of physical education in the age of Covid-19. Phys. Educ. Sport Pedagogy. 2020; 1–11. [10] M.M. Hosey, D.M. Needham, Survivorship after COVID-19 ICU stay, Nat. Rev. Dis. Primers. 6 (1) (2020) 60. [11] J.R. Bermúdez Escallon, ´ A.C. Aldana Herran, ´ D.L.P. Arra P´ arraga, Y.Y. Salim Torres, J.M Tolosa Cubillos, Rehabilitacion ´ pulmonar ambulatoria en pacientes con Covid-19: un reto en ´epocas de pandemia, Rev. Colomb M´ed. Fís. Rehabil. 30 (Supl) (2020) 130. [12] A. Carfì, R. Bernabei, F. Landi, Gemelli Against COVID-19 post-acute care study Group. Persistent symptoms in patients after acute COVID-19, JAMA. 324 (6) (2020) 603–605. [13] A. Castaneda-Babarro, ˜ A. Arbillaga-Etxarri, B. Guti´errez-Santamaría, A. Coca, Physical activity change during COVID-19 confinement, Int. J. Environ. Res. Public Health [Internet] 17 (18) (2020), https://doi.org/10.3390/ ijerph17186878. Disponible en. [[14] G.H. Tison, R. Avram, P. Kuhar, S. Abreau, G.M. Marcus, M.J. Pletcher, et al., Worldwide effect of COVID-19 on physical activity: a descriptive study, Ann. Intern. Med. 173 (9) (2020) 767–770. [15] Seçer ˙ I., Ulas¸ S. An investigation of the effect of COVID-19 on OCD in youth in the context of emotional reactivity, experiential avoidance, depression and anxiety. Int. J. Ment. Health Addict. 2020;1–14. [16] A. Sonza, D. Da Cunha de S´ a-Caputo, J.A. Bachur, G. Rodrigues de Araújo M das, K.V.T. Valadares Trippo, G. Ribeiro Nogueira da Gama DRN da, et al., Brazil before and during COVID-19 pandemic: impact on the practice and habits of physical exercise, Acta. Biomed. 92 (1) (2020), e2021027. [17] J.A. Washif, S.F.A. Mohd Kassim, P.C.F. Lew, C.S.M. Chong, C James, Athlete’s perceptions of a “quarantine” training camp during the COVID-19 lockdown, Front. Sports Act Living. 2 (2020), 622858. [18] Latorre-Rom´ an P.A., ´ Guzm´ an-Guzman ´ I.P., Delgado-Floody P., Herrador Sanchez J., Aragon-Vela ´ J., García Pinillos F., et al. Protective role of physical activity patterns prior to COVID-19 confinement with the severity/duration of respiratory pathologies consistent with COVID-19 symptoms in Spanish populations. Res. Sports Med. 2021;1–12. [19] P. Chen, L. Mao, G.P. Nassis, P. Harmer, B.E. Ainsworth, F. Li, Coronavirus disease (COVID-19): the need to maintain regular physical activity while taking precautions, J. Sport Health Sci. 9 (2) (2020) 103–104. [20] J.B. Ferreira-Júnior, E.D.S. Freitas, S.F.N. Chaves, Exercise: a protective measure or an “open window” for COVID-19? A mini review, Front. Sports Act Living. 2 (2020) 61. [21] A. Ammar, M. Brach, K. Trabelsi, H. Chtourou, O. Boukhris, L. Masmoudi, et al., Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey, Nutrients. 12 (6) (2020) 1583. [22] S.L. Cindrich, J.E. Lansing, C.S. Brower, C.P. McDowell, M.P. Herring, J.D. Meyer, Associations between change in outside time pre-and post-COVID-19 public health restrictions and mental health: brief research report, Front. public health. 9 (2021) 8. [23] T.V. Varga, F. Bu, A.S. Dissing, L.K. Elsenburg, J.J.H. Bustamante, J. Matta, et al., Loneliness, worries, anxiety, and precautionary behaviours in response to the COVID-19 pandemic: a longitudinal analysis of 200,000 Western and Northern Europeans, Lancet Reg Health Eur. 2 (100020) (2021), 100020. [24] Pirkis J., John A., Shin S., DelPozo-Banos M., Arya V., Analuisa-Aguilar P., et al. Suicide trends in the early months of the COVID-19 pandemic: an interrupted time-series analysis of preliminary data from 21 countries. The Lancet Psychiatry. 2021. [25] A. Nalbandian, K. Sehgal, A. Gupta, M.V. Madhavan, C. McGroder, J.S. Stevens, et al., Post-acute COVID-19 syndrome, Nat. Med. 27 (4) (2021) 601–615. [26] F.C. Bull, T.P. Armstrong, T. Dixon, S. Ham, A. Neiman, M. Pratt, Physical inactivity. Comparative Quantification of Health Risks Global and Regional Burden of Disease Attributable to Selected Major Risk Factors, World Health Organization, Geneva, 2004. [27] R.L. Vancini, L. Camargo-Neto, C.A.B. Lira, M.S. Andrade, R.B. Viana, P. T. Nikolaidis, et al., Physical activity and sociodemographic profile of brazilian people during COVID-19 outbreak: an online and cross-sectional survey, Int. J. Environ. Res. Public Health. 17 (21) (2020) 1–9. [28] V. Giustino, A.M. Parroco, A. Gennaro, G. Musumeci, A. Palma, G. Battaglia, Physical activity levels and related energy expenditure during COVID-19 quarantine among the sicilian active population: a cross-sectional online survey study, Sustainability (Switzerland [Internet] 12 (11) (2020). Disponible en: https://doi.org/10. [29] D. Ding, M. Cheng, B. Pozo Cruz, T. Lin, S. Sun, L. Zhang, et al., How COVID-19 lockdown and reopening affected daily steps: evidence based on 164,630 persondays of prospectively collected data from Shanghai, China, Int. J. Behav. Nutrition Phys. Activity 18 (1) (2021) 1186, 12966–021–01106–. [30] D.I. Bourdas, E.D. Zacharakis, Impact of COVID-19 lockdown on physical activity in a sample of Greek adults, Sports. 8 (10) (2020) 1–13. [31] M.A. Alomari, O.F. Khabour, K.H. Alzoubi, Changes in physical activity and sedentary behavior amid confinement: the bksq-covid-19 project, Risk Manag. Healthc Policy 13 (2020) 1757–1764. [32] J.P. Fuentes-García, M.J. Martínez Patino, ˜ S. Villafaina, V.J Clemente-Su´ arez, The effect of COVID-19 confinement in behavioral, psychological, and training patterns of chess players, Front Psychol. 11 (2020) 1812. [33] V.J. Clemente-Suarez, ´ J.P. Fuentes-García, R. de la Vega Marcos, M.J. Martínez Patino, ˜ Modulators of the personal and professional threat perception of Olympic athletes in the actual COVID-19 crisis, Front Psychol. 11 (2020) 1985. [34] B. Sassone, S. Mandini, G. Grazzi, G. Mazzoni, J. Myers, G. Pasanisi, Impact of COVID-19 pandemic on physical activity in patients with implantable cardioverter-defibrillators, J. Cardiopulm Rehabil. Prev. 40 (5) (2020) 285–286. [35] M. Narici, G.D. Vito, M. Franchi, A. Paoli, T. Moro, G. Marcolin, et al., Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures, EJSS (Champaign) 21 (4) (2021) 614–635. [36] M.A. Khan, J.E. Moverley Smith, Covibesity,” a new pandemic, Obesity Med. 19 (2020), 100282. [37] D. Luis, O. Izaola, D. Primo, E. Gomez, ´ B. Torres, J.J. Lopez ´ Gomez, ´ Effect of lockdown for covid-19 on self-reported body weight gain in a sample of obese patients, Nutricion Hospitalaria. 37 (6) (2020) 1232–1237. [38] M. Mediouni, R. Madiouni, K.E. Kaczor-Urbanowicz, COVID-19: how the quarantine could lead to the depreobesity, Obesity Med. 19 (2020), 100255. [39] M. Tsenoli, J.E. Moverley Smith, M.A Khan, A community perspective of COVID19 and obesity in children: causes and consequences, Obesity Med. 22 (2021), 100327. [40] M.C. Ruiz, T.J. Devonport, C.-.H.J. Chen-Wilson, W. Nicholls, J.Y. Cagas, J. Fernandez-Montalvo, et al., A cross-cultural exploratory study of health behaviors and wellbeing during COVID-19, Front Psychol. 11 (2020), 608216. [41] K. Ng, J. Cooper, F. McHale, J. Clifford, C. Woods, Barriers and facilitators to changes in adolescent physical activity during COVID-19, BMJ Open Sport and Exercise Med. 6 (1) (2020), 1136–2020–000919. [42] G. Musumeci, A. Palma, G. Battaglia, Physical activity levels and related energy expenditure during COVID-19 quarantine among the sicilian active population: a cross-sectional online survey study, Sustainability Switzerland 12 (11) (2020) 3390, 12114356. [43] L.R.B. Silva, C.S. Seguro, C.G.A. Oliveira, P.O.S. Santos, J.C.M. Oliveira, L.F. M. Souza Filho, et al., Physical Inactivity Is Associated With Increased Levels of Anxiety, Depression, and Stress in Brazilians During the COVID-19 Pandemic: a Cross-Sectional Study, Front. Psychiatry. 11 (2020) 3389. [44] B. Sassone, S. Mandini, G. Grazzi, G. Mazzoni, J. Myers, G. Pasanisi, Impact of COVID-19 Pandemic on Physical Activity in Patients with Implantable Cardioverter-Defibrillators, J. Cardiopulm. Rehabil. Prev. 40 (5) (2020) 285–286. [45] E.J. Williamson, A.J. Walker, K. Bhaskaran, S. Bacon, C. Bates, C.E. Morton, et al., Factors associated with COVID-19-related death using OpenSAFELY, Nature. 584 (7821) (2020) 430–436. [46] Y.-.Y. Zheng, Y.-.T. Ma, J.-.Y. Zhang, X. Xie, COVID-19 and the cardiovascular system, Nat. Rev. Cardiol. 17 (5) (2020) 259–260. [47] S.Y. Tartof, L. Qian, V. Hong, R. Wei, R.F. Nadjafi, H. Fischer, et al., Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization, Ann. Intern. Med. 173 (10) (2020) 773–781. [48] C. Fiuza-Luces, N. Garatachea, N.A. Berger, A. Lucia, Exercise is the real polypill, Physiology (Bethesda) 28 (5) (2013) 330–358. [49] S.T. Nyberg, A. Singh-Manoux, J. Pentti, I.E.H. Madsen, S. Sabia, L. Alfredsson, et al., Association of healthy lifestyle with years lived without major chronic diseases, JAMA Intern. Med. 180 (5) (2020) 760–768. [50] R. Salgado-Aranda, N. P´erez-Castellano, I. Núnez-Gil, ˜ A.J. Orozco, N. TorresEsquivel, J. Flores-Soler, et al., Influence of baseline physical activity as a modifying factor on COVID-19 mortality: a single-center, retrospective study, Infect. Dis. Ther. 10 (2) (2021) 801–814. [26] F.C. Bull, T.P. Armstrong, T. Dixon, S. Ham, A. Neiman, M. Pratt, Physical inactivity. Comparative Quantification of Health Risks Global and Regional Burden of Disease Attributable to Selected Major Risk Factors, World Health Organization, Geneva, 2004. [51] H. Humphreys, L. Kilby, N. Kudiersky, R. Copeland, Long COVID and the role of physical activity: a qualitative study, BMJ Open. 11 (3) (2021), e047632. [52] X. Cao, Ll-N Song, J.-.K Yang, ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders, Clin. Sci. (Lond) 135 (3) (2021) 535–554. [53] C. Kenyon, The Forrest Gump approach to preventing severe COVID-19 – reverse the predisposing pro-inflammatory state with exercise, Microbes Infect. 22 (4–5) (2020) 151–153. [54] V.J. Clemente-Su´ arez, E. Navarro-Jim´enez, M. Jimenez, A. Hormeno-Holgado, ˜ M. B. Martinez-Gonzalez, J.C. Benitez-Agudelo, et al., Impact of COVID-19 pandemic in public mental health: an extensive narrative review, Sustainability. 13 (6) (2021) 3221. [55] V.J. Clemente-Su´ arez, D.J. Ramos-Campo, J. Mielgo-Ayuso, A.A. Dalamitros, P. A. Nikolaidis, A. Hormeno-Holgado, ˜ et al., Nutrition in the actual COVID-19 pandemic, A narrative Rev. Nutrients. 13 (6) (2021) 1924. [56] N. Yousfi, N.L. Bragazzi, W. Briki, P. Zmijewski, K. Chamari, The COVID-19 pandemic: how to maintain a healthy immune system during the lockdown–a multidisciplinary approach with special focus on athletes, Biol. sport. 37 (3) (2020) 211. [57] K. Khoramipour, A. Basereh, A.A. Hekmatikar, L. Castell, R.T. Ruhee, K. Suzuki, Physical activity and nutrition guidelines to help with the fight against COVID-19, J. Sports Sci. 39 (1) (2021) 101–107. [58] Silveira M.P., Silva Fagundes K.K., Bizuti M.R., Starck E., ´ Rossi R.C., Silva D.T.D. R. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clin. Experimental Med. 2020;1–14. [59] P.L. Valenzuela, R.J. Simpson, A. Castillo-García, A Lucia, Physical activity: a coadjuvant treatment to COVID-19 vaccination? Brain Behav. Immun. 94 (2021) 1–3. [60] Sallis R., Young D.R., Tartof S.Y., Sallis J.F., Sall J., Li Q., et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br. J. Sports Med. 2021;bjsports-2021-104080. [61] D. Jim´enez-Pavon, ´ A. Carbonell-Baeza, C.J. Lavie, Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: special focus in older people, Prog. Cardiovasc. Dis. 63 (3) (2020) 386–388. [62] R. Codella, A. Chirico, F. Lucidi, A. Ferrulli, A. La Torre, L Luzi, The immunemodulatory effects of exercise should be favorably harnessed against COVID-19, J. Endocrinol. Invest. 44 (5) (2021) 1119–1122. [63] P. Polero, C. Rebollo-Seco, J.C. Adsuar, J. P´erez-Gomez, ´ J. Rojo-Ramos, F. Manzano-Redondo, et al., Physical Activity Recommendations during COVID19: narrative Review, Int. J. Environ. Res. Public Health. 18 (1) (2020) 65. [64] Alschuler L., Chiasson A.M., Horwitz R., Sternberg E., Crocker R., Weil A., et al. Integrative medicine considerations for convalescence from mild-to-moderate COVID-19 disease. Explore (NY) [Internet]. 2020; Disponible en: 10.1016/j. explore.2020.12.005. [65] C. Curci, F. Pisano, E. Bonacci, D.M. Camozzi, C. Ceravolo, R. Bergonzi, et al., Early rehabilitation in post-acute COVID-19 patients: data from an Italian COVID19 rehabilitation unit and proposal of a treatment protocol. A cross-sectional study, Eur. J. Phys. Rehabil. Med. 56 (5) (2020) 633–641. [66] D.M. Silberman, M.R. Wald, A.M Genaro, Acute and chronic stress exert opposing effects on antibody responses associated with changes in stress hormone regulation of T-lymphocyte reactivity, J. Neuroimmunol. 144 (1–2) (2003) 53–60. [67] K.M. Edwards, V.E. Burns, L.M. Allen, J.S. McPhee, J.A. Bosch, D. Carroll, et al., Eccentric exercise as an adjuvant to influenza vaccination in humans, Brain Behav. Immun. 21 (2) (2007) 209–217. [68] K.M. Edwards, V.E. Burns, T. Reynolds, D. Carroll, M. Drayson, C Ring, Acute stress exposure prior to influenza vaccination enhances antibody response in women, Brain Behav. Immun. 20 (2) (2006) 159–168. [69] C.A. Brawner, J.K. Ehrman, S. Bole, D.J. Kerrigan, S.S. Parikh, B.K. Lewis, et al., Inverse relationship of maximal exercise capacity to hospitalization secondary to Coronavirus disease 2019, Mayo Clin. Proc. 96 (1) (2021) 32–39. [70] H. Zbinden-Foncea, M. Francaux, L. Deldicque, J.A. Hawley, Does high cardiorespiratory fitness confer some protection against proinflammatory responses after infection by SARS-CoV-2? Obesity (Silver Spring) 28 (8) (2020) 1378–1381. [71] Y. Huang, Y. Lu, Y.-.M. Huang, M. Wang, W. Ling, Y. Sui, et al., Obesity in patients with COVID-19: a systematic review and meta-analysis, Metabolism. 113 (154378) (2020), 154378. [72] S. Erener, Diabetes, infection risk and COVID-19, Mol. Metab. 39 (101044) (2020), 101044. [73] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, et al., Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis, Int. J. Infect. Dis. 10 (2020). [74] B.K. Pedersen, B. Saltin, Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases, Scandinavian J. Med. Sci. Sports. 25 (2015) 1–72. [75] J. Myers, P. Kokkinos, E. Nyelin, Physical activity, cardiorespiratory fitness, and the metabolic syndrome, Nutrients. 11 (7) (2019) 1652. [76] R. Ross, S.N. Blair, R. Arena, T.S. Church, J.-.P. Despr´es, B.A. Franklin, et al., Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American heart association, Circulation. 134 (24) (2016) e653–e699. [77] C.A. Brawner, J.K. Ehrman, S. Bole, Maximal exercise capacity is inversely related to hospitalization secondary to coronavirus disease 2019, Mayo Clin. Proc. (2020). [78] Dd-C Lee, E.G. Artero, X. Sui, S.N. Blair, Mortality trends in the general population: the importance of cardiorespiratory fitness, J. Psychopharmacol. 24 (4 Suppl) (2010) 27–35. [79] M.S. Herridge, M. Moss, C.L. Hough, R.O. Hopkins, T.W. Rice, O.J. Bienvenu, et al., Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers, Intensive Care Med. 42 (5) (2016) 725–738. [80] M.S. Herridge, C.M. Tansey, A. Matt´e, G. Tomlinson, N. Diaz-Granados, A. Cooper, et al., Functional disability 5 years after acute respiratory distress syndrome, N. Engl. J. Med. 364 (14) (2011) 1293–1304. [81] K.-.C. Ong, A.W.-.K. Ng, L.S.-.U. Lee, G. Kaw, S.-.K. Kwek, M.K.-.S. Leow, et al., Pulmonary function and exercise capacity in survivors of severe acute respiratory syndrome, Eur. Respir. J. 24 (3) (2004) 436–442. [82] T.S. Li, C.D. Gomersall, G.M. Joynt, D.P.S. Chan, P. Leung, D.S.C. Hui, Long-term outcome of acute respiratory distress syndromecaused by severe acute respiratory syndrome (SARS): an observational study, Crit. Care Resusc. 8 (2006) 302–308. [83] S. Rooney, A. Webster, L. Paul, Systematic review of changes and recovery in physical function and fitness after Severe Acute Respiratory Syndrome-related Coronavirus infection: implications for COVID-19 rehabilitation, Phys. Ther. 100 (10) (2020) 1717–1729. [84] H.M.-.C. Lau, G.Y.-.F. Ng, A.Y.-.M. Jones, E.W.-.C. Lee, E.H.-.K. Siu, D.S.-.C. Hui, A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome, Aust. J. Physiother. 51 (4) (2005) 213–219. [85] N. Stefan, A.L. Birkenfeld, M.B. Schulze, D.S. Ludwig, Obesity and impaired metabolic health in patients with COVID-19, Nat. Rev. Endocrinol. 16 (7) (2020) 341–342. [86] F. Gao, K.I. Zheng, X.-.B. Wang, Q.-.F. Sun, K.-.H. Pan, T.-.Y. Wang, et al., Obesity is a risk factor for greater COVID-19 severity, Diabetes Care. 43 (7) (2020) e72–e74. [87] X. Zhao, X. Gang, G. He, Z. Li, Y. Lv, Q. Han, et al., Obesity increases the severity and mortality of influenza and COVID-19: a systematic review and meta-analysis, Front. Endocrinol. (Lausanne) 11 (2020), 595109. [88] T. Yates, C. Razieh, F. Zaccardi, M.J. Davies, K. Khunti, Obesity and risk of COVID-19: analysis of UK biobank, Prim Care Diabetes. 14 (5) (2020) 566–567. [89] Q. Nguyen, J. Dominguez, L. Nguyen, N. Gullapalli, Hypertension management: an update, Am. Health Drug Benefits. 3 (1) (2010) 47–56. [90] X.C. Li, J. Zhang, J.L. Zhuo, The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases, Pharmacol. Res. 125 (2017) 21–38. [91] Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decadelong structural studies of SARS. J. Virology. 2020. [92] J. Lan, Structure of the SARS- CoV-2 spike receptor- binding domain bound to the ACE2 receptor, Nature. 581 (2020) 215–220. [93] M.A. Weber, E.L. Schiffrin, W.B. White, S. Mann, L.H. Lindholm, J.G. Kenerson, et al., Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension: a statement by the American society of hypertension and the international society of hypertension, J. Clin. Hypertens (Greenwich) 16 (1) (2014) 14–26. [94] P.A. Oliver-Martínez, D.J. Ramos-Campo, L.M. Martínez-Aranda, A. MartínezRodríguez, J.A. ´ Rubio-Arias, Chronic effects and optimal dosage of strength training on SBP and DBP: a systematic review with meta-analysis: a systematic review with meta-analysis, J. Hypertens 38 (10) (2020) 1909–1918. [95] A.K. Singh, R. Gupta, A. Ghosh, A. Misra, Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations, Diabetes Metab. Syndr. 14 (4) (2020) 303–310. [96] H. Roca-Ho, M. Riera, V. Palau, J. Pascual, M.J. Soler, Characterization of ACE and ACE2 expression within different organs of the NOD mouse, Int. J. Mol. Sci. 18 (3) (2017) 563. [97] Rao S., Lau A., So H.-.C. Exploring diseases/traits and blood proteins causally related to 284 expression of ACE2, the putative receptor of 2019-nCov: a Mendelian Randomization analysis. Vol. 285 medRxi. 2003. p. 2020. [98] C. Fernandez, J. Rysa, ¨ P. Almgren, J. Nilsson, G. Engstrom, ¨ M. Orho-Melander, et al., Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality, J. Intern. Med. 284 (4) (2018) 377–387. [99] W.-.J. Guan, Z.-.Y. Ni, Y. Hu, W.-.H. Liang, C.-.Q. Ou, J.-.X. He, et al., Clinical characteristics of Coronavirus disease 2019 in China, N. Engl. J. Med. 382 (18) (2020) 1708–1720. [100] E. Maddaloni, R. Buzzetti, Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics, Diabetes Metab Res. Rev. (2020), e33213321. [101] N.G. Boule, E. Haddad, G.P. Kenny, G.A. Wells, R.J. Sigal, Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials, Scand J. Med. Sci. Sports. 12 (1) (2002) 60–61. [102] Z. Yang, C.A. Scott, C. Mao, J. Tang, A.J. Farmer, Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis, Sports Med. 44 (4) (2014) 487–499. [103] C.M. Petrilli, S.A. Jones, J. Yang, H. Rajagopalan, L. O’Donnell, Y. Chernyak, et al., Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study, BMJ. 369 (2020) m1966. [104] S. Battisti, C. Pedone, N. Napoli, E. Russo, V. Agnoletti, S.G. Nigra, et al., Computed tomography highlights increased visceral adiposity associated with critical illness in COVID-19, Diabetes Care. 43 (10) (2020) e129–e130. [105] Atmosudigdo I.S., Pranata R., Lim M.A., Henrina J., Yonas E., Vania R., et al. Dyslipidemia increases the risk of severe COVID-19: a systematic review, metaanalysis, and meta-regression. J. Clin. Exp. Hepatol. [Internet]. 2021; Disponible en: 10.1016/j.jceh.2021.01.007. [106] Rg D.G.R.S., Wa B. Metabolic Syndrome and COVID-19: An update On the Associated Comorbidities and Proposed Therapies. En. 2021. [107] E. Nasonov, M. Samsonov, The role of Interleukin 6 inhibitors in therapy of severe COVID-19, Biomed. Pharmacother. 131 (2020), 110698. [108] F. Morys, A. Dagher, Poor metabolic health increases COVID-19-related mortality in the UK Biobank sample, Front. Endocrinol. (Lausanne) 12 (2021), 652765. [109] R. Bansal, S. Gubbi, R. Muniyappa, Metabolic syndrome and COVID 19: endocrine-immune-vascular interactions shapes clinical course, Endocrinology [Internet] 161 (10) (2020), https://doi.org/10.1210/endocr/bqaa112. Disponible en:. [110] S. Mohammad, R. Aziz, S. Al Mahri, S.S. Malik, E. Haji, A.H. Khan, et al., Obesity and COVID-19: what makes obese host so vulnerable? Immun. Ageing. 18 (1) (2021) 1. [111] M.V. Fedewa, E.D. Hathaway, C.L. Ward-Ritacco, Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and nonrandomised controlled trials, Br. J. Sports Med. 51 (8) (2017) 670–676. [112] F.F. Costa, W.R. Rosario, ´ A.C. Ribeiro Farias, R.G. de Souza, R.S. Duarte Gondim, W.A Barroso, Metabolic syndrome and COVID-19: an update on the associated comorbidities and proposed therapies, Diabetes Metab Syndr. 14 (5) (2020) 809–814. [113] C. Tsigos, V. Hainer, A. Basdevant, Management of obesity in adults: european clinical practice guidelines, Obes. Facts. 1 (2) (2008) 106–116. [114] D.J. Ramos-Campo, L. Andreu Caravaca, A. Martínez-Rodríguez, J.A ´ Rubio-Arias, Effects of resistance circuit-based training on body composition, strength and cardiorespiratory fitness: a systematic review and meta-analysis, Biology (Basel) [Internet] 10 (5) (2021), https://doi.org/10.3390/biology10050377. Disponible en:. [115] R.B. Batacan Jr, M.J. Duncan, V.J. Dalbo, P.S. Tucker, A.S. Fenning, Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies, Br. J. Sports Med. 51 (6) (2017) 494–503. [116] R.G. Hertzog, N.S. Bicheru, D.M. Popescu, O. C˘ alborean, A.M. Catrina, Hypoxic preconditioning—A nonpharmacological approach in COVID-19 prevention, Int. J. Infect. Diseases. 103 (2021) 415–419. [117] T.V. Serebrovskaya, E.B. Manukhina, M.L. Smith, H.F. Downey, R.T. Mallet, Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp. Biol. Med. (Maywood) 233 (6) (2008) 627–650. [118] Liesa M., Palacín M., Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 2009;89(3):799–845. [119] Memme J.M., Erlich A.T., Phukan G., Hood D.A. Exercise and mitochondrial health. J. Physiol. 2021;599(3):803–817. [120] L.D. Osellame, T.S. Blacker, M.R. Duchen, Cellular and molecular mechanisms of mitochondrial function, Best Pract. Res. Clin. Endocrinol. Metab. 26 (6) (2012) 711–723. [121] S. Myhill, N.E. Booth, J. McLaren-Howard, Chronic fatigue syndrome and mitochondrial dysfunction, Int. J. Clin. Exp. Med. 2 (1) (2009) 1–16. [122] K. Filler, D. Lyon, J. Bennett, N. McCain, R. Elswick, N. Lukkahatai, et al., Association of mitochondrial dysfunction and fatigue: a review of the literature, BBA Clin. 1 (2014) 12–23. [123] W.I. Sivitz, M.A. Yorek, Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities, Antioxid Redox Signal. 12 (4) (2010) 537–577. [124] S.W. Ballinger, Mitochondrial dysfunction in cardiovascular disease, Free Radic. Biol. Med. 38 (10) (2005) 1278–1295. [125] M.F. Beal, Bioenergetic approaches for neuroprotection in Parkinson’s disease, Ann. Neurol. 53 (S3) (2003) S39–S47. Suppl 3discussion S47-8. [126] S. Stuart, L.R. Griffiths, A possible role for mitochondrial dysfunction in migraine, Mol. Genet Genomics. 287 (11–12) (2012) 837–844. [127] M.L. Boland, A.H. Chourasia, K.F. Macleod, Mitochondrial dysfunction in cancer, Front. Oncol. 3 (2013) 292. [128] L.A.M. Demain, G.S. Conway, W.G. Newman, Genetics of mitochondrial dysfunction and infertility: genetics of mitochondrial dysfunction and infertility, Clin. Genet. 91 (2) (2017) 199–207. [129] A. Bratic, N.-.G Larsson, The role of mitochondria in aging, J. Clin. Invest. 123 (3) (2013) 951–957. [130] J. Burtscher, G.P. Millet, M. Burtscher, Low cardiorespiratory and mitochondrial fitness as risk factors in viral infections: implications for COVID-19, Br. J. Sports Med. 55 (8) (2021) 413–415. [131] D. Sebastian, ´ M. Palacín, A. Zorzano, Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging, Trends Mol. Med. 23 (3) (2017) 201–215. [132] D.C. Nieman, A.S. Williams, R.A. Shanely, F. Jin, S.R. McAnulty, N.T. Triplett, et al., Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis, Med. Sci. Sports Exerc. 42 (2) (2010) 338–345. [133] G. Lopez-Lluch, ´ P.M. Irusta, P. Navas, R. de Cabo, Mitochondrial biogenesis and healthy aging, Exp. Gerontol. 43 (9) (2008) 813–819. [134] A. Eluamai, K. Brooks, Effect of aerobic exercise on mitochondrial DNA and aging, J. Exerc. Sci. Fit. 11 (1) (2013) 1–5. [135] J.P. Little, A. Safdar, N. Cermak, M.A. Tarnopolsky, M.J. Gibala, Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle, Am. J. Physiol.Regulatory, Integrative and Comparative Physiol 298 (4) (2010) 912–917. [136] L. Wang, H. Mascher, N. Psilander, E. Blomstrand, K. Sahlin, Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle, J. Appl. Physiol. 111 (5) (2011) 1335–1344. [137] Psilander N. The effect of different exercise regimens on mitochondrial biogenesis and performance. Inst For ¨ Fysiologi Och Farmakologi/Dept of Physiology and Pharmacology. 2014. [139] D. Dutta, R. Calvani, R. Bernabei, C. Leeuwenburgh, E. Marzetti, Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities: mechanisms and therapeutic opportunities, Circ. Res. 110 (8) (2012) 1125–1138. [140] G. Bozkaya, E. Ozgu, B. Karaca, The association between estimated average glucose levels and fasting plasma glucose levels, Clinics (Sao Paulo) 65 (11) (2010) 1077–1080. [141] Q. Liu, H. Chen, J. Li, X. Huang, L. Lai, S. Li, et al., Fasting blood glucose predicts the occurrence of critical illness in COVID-19 patients: a multicenter retrospective cohort study, J. Infect. 81 (3) (2020) e20–e23. [142] S.M. Bailey, U.S. Udoh, M.E Young, Circadian regulation of metabolism, J. Endocrinol. 222 (2) (2014) R75–R96. [143] G. Escames, A. Guerra-Librero, Y. Shen, J. Florido, R. Sayed, M. Molina-Navarro, et al., PO-090: oncostatic effect of melatonin in head and neck cancer: role of mitochondrial function, Radiother. Oncol. 122 (2017) 43–44. [144] R.J. Reiter, R. Sharma, Q. Ma, A. Dominquez-Rodriguez, P.E. Marik, P. AbreuGonzalez, Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: a mechanistic analysis, Med. Drug Discov. 6 (100044) (2020), 100044. [145] S.A. Mortensen, F. Rosenfeldt, A. Kumar, P. Dolliner, K.J. Filipiak, D. Pella, et al., The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial, JACC Heart Fail. 2 (6) (2014) 641–649. [146] M.D. Cordero, E. Alcocer-Gomez, ´ M. de Miguel, O. Culic, A.M. Carrion, ´ J. M. Alvarez-Suarez, et al., Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia? Antioxid Redox Signal. 19 (12) (2013) 1356–1361. [147] M. Mancuso, D. Orsucci, L. Volpi, V. Calsolaro, G. Siciliano, Coenzyme Q10 in neuromuscular and neurodegenerative disorders, Curr. Drug Targets. 11 (1) (2010) 111–121. [148] D. Casagrande, P.H. Waib, A.A.J. Júnior, Mechanisms of action and effects of the administration of Coenzyme Q10 on metabolic syndrome, J. Nutrition & Intermediary Metab. 13 (2018) 26–32. [149] B.N. Ames, Prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake, J. Nucleic Acids. 2010 (2010) 1–11. [150] G.A. George, F.W. Heaton, Changes in cellular composition during magnesium deficiency, Biochem. J. 152 (3) (1975) 609–615. [151] J. Kucharsk´ a, Vitamins in Mitochondrial Function. En: Mitochondrial Medicine, Springer Netherlands, Dordrecht, 2008, pp. 367–384. [152] F. Depeint, W.R. Bruce, N. Shangari, R. Mehta, P.J O’Brien, Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism, Chem. Biol. Interact. 163 (1–2) (2006) 94–112. [153] B. Marriage, M.T. Clandinin, D.M. Glerum, Nutritional cofactor treatment in mitochondrial disorders, J. Am. Diet Assoc. 103 (8) (2003) 1029–1038. [154] M.G. Rosca, H. Lemieux, C.L. Hoppel, Mitochondria in the elderly: is acetylcarnitine a rejuvenator? Adv. Drug Deliv. Rev. 61 (14) (2009) 1332–1342. [155] M.C. Rodriguez, J.R. MacDonald, D.J. Mahoney, G. Parise, M.F. Beal, M. A. Tarnopolsky, Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders, Muscle Nerve. 35 (2) (2007) 235–242. [156] M.A. Tarnopolsky, The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies, Adv. Drug Deliv. Rev. 60 (13–14) (2008) 1561–1567. [157] R.M. Anderson, H. Heesterbeek, D. Klinkenberg, T.D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 395 (10228) (2020) 931–934. [158] R. Güner, I. Hasanoglu, ˘ F. Aktas¸, COVID-19: prevention and control measures in community, Turk J. Med. Sci. 50 (SI–1) (2020) 571–577. [159] C. Pieh, S. Budimir, T. Probst, The effect of age, gender, income, work, and physical activity on mental health during coronavirus disease (COVID-19) lockdown in Austria, J. Psychosom. Res. 136 (110186) (2020), 110186. [160] G.E. Duncan, A.R. Avery, E. Seto, S. Tsang, Perceived change in physical activity levels and mental health during COVID-19: findings among adult twin pairs, PLoS One. 15 (8) (2020), e0237695. [161] C.I. Jarvis, K. Van Zandvoort, A. Gimma, K. Prem, , CMMID COVID-19 working group, P. Klepac, et al., Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK, BMC Med. 18 (1) (2020) 124. [162] M.U.G. Kraemer, C.-.H. Yang, B. Gutierrez, C.-.H. Wu, B. Klein, D.M. Pigott, et al., The effect of human mobility and control measures on the COVID-19 epidemic in China, Science. 368 (6490) (2020) 493–497. [163] D. Salman, D. Vishnubala, P. Le Feuvre, T. Beaney, J. Korgaonkar, A. Majeed, et al., Returning to physical activity after covid-19, BMJ. 372 (2021) m4721. [164] H. Amini, S. Habibi, A.H. Islamoglu, E. Isanejad, C. Uz, H. Daniyari, COVID-19 pandemic-induced physical inactivity: the necessity of updating the Global Action Plan on Physical Activity 2018-2030, Environ. Health Prev. Med. 26 (1) (2021) 32. [165] M. Tomanek, A. Lis, Physical activity in the context of the COVID-19 pandemic: research profiling and mapping, Phys. Educ. Stud. 25 (3) (2021) 136–148. [166] M.J. Dwyer, M. Pasini, S. De Dominicis, E. Righi, Physical activity: benefits and challenges during the COVID-19 pandemic, Scand J. Med. Sci. Sports. 30 (7) (2020) 1291–1294. [167] E. Robinson, E. Boyland, A. Chisholm, J. Harrold, N.G. Maloney, L. Marty, et al., Obesity, eating behavior and physical activity during COVID-19 lockdown: a study of UK adults, Appetite. 156 (104853) (2021), 104853. [168] B. Pfefferbaum, C.S. North, Mental health and the covid-19 pandemic, N. Engl. J. Med. 383 (6) (2020) 510–512. [169] D. Talevi, V. Socci, M. Carai, G. Carnaghi, S. Faleri, E. Trebbi, et al., Mental health outcomes of the CoViD-19 pandemic, Riv. Psichiatr. 55 (3) (2020) 137–144. [170] L. Kola, B.A. Kohrt, C. Hanlon, J.A. Naslund, S. Sikander, M. Balaji, et al., COVID19 mental health impact and responses in low-income and middle-income countries: reimagining global mental health, Lancet Psychiatry. 8 (6) (2021) 535–550. [171] J. Torales, M. O’Higgins, J.M. Castaldelli-Maia, A Ventriglio, The outbreak of COVID-19 coronavirus and its impact on global mental health, Int. J. Soc. Psychiatry. 66 (4) (2020) 317–320. [172] N. Vindegaard, M.E. Benros, COVID-19 pandemic and mental health consequences: systematic review of the current evidence, Brain Behav. Immun. 89 (2020) 531–542. [173] M.G. Mazza, R. De Lorenzo, C. Conte, S. Poletti, B. Vai, I. Bollettini, COVID-19 BioB Outpatient Clinic Study group, Brain Behav. Immun. 89 (2020) 594–600. [174] V.J. Clemente-Suarez, ´ A. Hormeno-Holgado, ˜ M. Jim´enez, J.C. Benitez-Agudelo, E. Navarro-Jim´enez, N. Perez-Palencia, J.F. Tornero-Aguilera, Dynamics of population immunity due to the herd effect in the COVID-19 pandemic, Vaccines (Basel) 8 (2) (2020) 236. [175] V.J. Clemente-Su´ arez, E. Navarro-Jim´enez, L. Moreno-Luna, M.C. SaavedraSerrano, M. Jimenez, J.A. Simon, ´ J.F. Tornero-Aguilera, The Impact of the COVID-19 Pandemic on Social, Health, and Economy, Sustainability 13 (11) (2021) 6314. [176] A. Martín-Rodríguez, J.F. Tornero-Aguilera, P.J. Lopez-P ´ ´erez, V.J. ClementeSuarez, ´ Gender differences in nutritional, odontological and psychological patterns of adolescent students during COVID-19 pandemic, Appl. Sci. 11 (18) (2021) 8499. [177] V.J. Clemente-Suarez, ´ M.B. Martínez-Gonzalez, ´ J.C. Benitez-Agudelo, E. NavarroJim´enez, A.I. Beltran-Velasco, P. Ruisoto, J.F. Tornero-Aguilera, The Impact of the COVID-19 Pandemic on Mental Disorders. A Critical Review, Int. J. Environ. Res. Public Health 18 (19) (2021) 10041. [178] S. Rodriguez-Besteiro, J.F. Tornero-Aguilera, J. Fernandez-Lucas, ´ V.J. ClementeSuarez, ´ Gender differences in the covid-19 pandemic risk perception, psychology and behaviors of spanish university students, Int. J. Environ. Res. Public Health 18 (8) (2021) 3908. [180] Clemente-Su´ arez, V. J., Navarro-Jim´enez, E., Ruisoto, P., Dalamitros, A. A., Beltran-Velasco, A. I., Hormeno-Holgado, ˜ A., Tornero-Aguilera, J. F. (2021). Performance of Fuzzy Multi-Criteria Decision Analysis of Emergency System in COVID-19 Pandemic. An Extensive Narrative Review. International Journal of Environmental Research and Public Health, 18(10), 5208. |
dc.relation.citationendpage.spa.fl_str_mv |
11 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
244 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2021 Elsevier Inc. All rights reserved. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) © 2021 Elsevier Inc. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_f1cf |
eu_rights_str_mv |
embargoedAccess |
dc.format.extent.spa.fl_str_mv |
11 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Elsevier Inc. |
dc.publisher.place.spa.fl_str_mv |
United States |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0031938421003541?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c63ffe56-4839-40cb-ac4b-c3e67d669b1c/download https://repositorio.cuc.edu.co/bitstreams/3e5a31ff-cf1b-4621-8d18-f93d74ae8789/download https://repositorio.cuc.edu.co/bitstreams/839b7d5b-40ae-457d-9547-cb704a099903/download https://repositorio.cuc.edu.co/bitstreams/d80303c8-8bfa-4efb-97b1-be6b3409fddd/download |
bitstream.checksum.fl_str_mv |
1ad26ab597264ddc963642466da47a04 e30e9215131d99561d40d6b0abbe9bad d84638ba5d5153d8fcad1b15e650187a 6c067977c2c4dfa1561ade1a5ea35650 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760832358383616 |
spelling |
Clemente-Suárez, Vicente JavierBeltrán-Velasco, Ana IsabelRamos-Campo, Domingo JesúsMielgo Ayuso, JuanNikolaidis, PantelisBelando, NoeliaTornero-Aguilera, Jose Francisco2022-06-23T14:14:10Z2022-11-292022-06-23T14:14:10Z2021-11-29Vicente Javier Clemente-Suárez, Ana Isabel Beltrán-Velasco, Domingo Jesús Ramos-Campo, Juan Mielgo-Ayuso, Pantelis A. Nikolaidis, Noelia Belando, Jose Francisco Tornero-Aguilera, Physical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemic, Physiology & Behavior, Volume 244, 2022, 113667, ISSN 0031-9384, https://doi.org/10.1016/j.physbeh.2021.113667.(https://www.sciencedirect.com/science/article/pii/S0031938421003541)0031-9384https://hdl.handle.net/11323/9292https://doi.org/10.1016/j.physbeh.2021.113667Get10.1016/j.physbeh.2021.113667GetCorporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Coronavirus Disease 2019 (COVID-19) pandemic has shocked world health authorities generating a global health crisis. The present study aimed to analyze the different factors associated with physical activity that could have an impact in the COVID-19, providing a practical recommendation based on actual scientific knowledge. We conducted a consensus critical review using primary sources, scientific articles, and secondary bibliographic indexes, databases, and web pages. The method was a narrative literature review of the available literature regarding physical activity and physical activity related factors during the COVID-19 pandemic. The main online database used in the present research were PubMed, SciELO, and Google Scholar. COVID-19 has negatively influenced motor behavior, levels of regular exercise practice, eating and nutritional patterns, and the psychological status of citizens. These factors feed into each other, worsening COVID-19 symptoms, the risk of death from SARS-CoV-2, and the symptoms and effectiveness of the vaccine. The characteristics and symptoms related with the actual COVID-19 pandemic made the physical activity interventions a valuable prevention and treatment factor. Physical activity improves body composition, the cardiorespiratory, metabolic, and mental health of patients and enhancing antibody responses in vaccination. © 2021 Elsevier Inc.11 páginasapplication/pdfengElsevier Inc.United StatesAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2021 Elsevier Inc. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfPhysical activity and COVID-19. The basis for an efficient intervention in times of COVID-19 pandemicArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S0031938421003541?via%3DihubPhysiology & Behavior[1] S. Platto, Y. Wang, J. Zhou, E. Carafoli, History of the COVID-19 pandemic: origin, explosion, worldwide spreading, Biochem. Biophys. Res. Commun. 538 (2021) 14–23.[2] Who.int. [citado el 5 de julio de 2021]. Disponible en: https://www.who.int/ docs/default-source/coronaviruse/situation-reports/20200327-sitrep-67-covi d-19.pdf?sfvrsn=b65f68eb_4.[3] Coronavirus (COVID-19) vaccinations [Internet]. Ourworldindata.org. [citado el 5 de julio de 2021]. Disponible en: https://ourworldindata.org/covid-vaccina tions?country=OWID_WRL.[4] G. Lippi, B.M. Henry, Sanchis-Gomar F. Physical inactivity and cardiovascular disease at the time of coronavirus disease 2019 (COVID-19), Eur. J. Prev. Cardiol. 27 (9) (2020) 906–908.[5] S.R. Chekroud, R. Gueorguieva, A.B. Zheutlin, M. Paulus, H.M. Krumholz, J. H. Krystal, et al., Association between physical exercise and mental health in 1•2 million individuals in the USA between 2011 and 2015: a cross-sectional study, Lancet Psychiatry. 5 (9) (2018) 739–746.[6] J.L. Durstine, B. Gordon, Z. Wang, X Luo, Chronic disease and the link to physical activity, J. Sport Health Sci. 2 (1) (2013) 3–11.[7] N.T. Rogers, N.R. Waterlow, H. Brindle, L. Enria, R.M. Eggo, S. Lees, et al., Behavioral change towards reduced intensity physical activity is disproportionately prevalent among adults with serious health issues or selfperception of high risk during the UK COVID-19 lockdown, Front. Public Health. 8 (2020), 575091.[8] M. Hamer, M. Kivimaki, ¨ C.R. Gale, G.D. Batty, Lifestyle risk factors, inflammatory mechanisms, and COVID-19 hospitalization: a community-based cohort study of 387,109 adults in UK, Brain Behav. Immun. 87 (2020) 184–187.[9] Varea V., Gonz´ alez-Calvo G., García-Monge A. Exploring the changes of physical education in the age of Covid-19. Phys. Educ. Sport Pedagogy. 2020; 1–11.[10] M.M. Hosey, D.M. Needham, Survivorship after COVID-19 ICU stay, Nat. Rev. Dis. Primers. 6 (1) (2020) 60.[11] J.R. Bermúdez Escallon, ´ A.C. Aldana Herran, ´ D.L.P. Arra P´ arraga, Y.Y. Salim Torres, J.M Tolosa Cubillos, Rehabilitacion ´ pulmonar ambulatoria en pacientes con Covid-19: un reto en ´epocas de pandemia, Rev. Colomb M´ed. Fís. Rehabil. 30 (Supl) (2020) 130.[12] A. Carfì, R. Bernabei, F. Landi, Gemelli Against COVID-19 post-acute care study Group. Persistent symptoms in patients after acute COVID-19, JAMA. 324 (6) (2020) 603–605.[13] A. Castaneda-Babarro, ˜ A. Arbillaga-Etxarri, B. Guti´errez-Santamaría, A. Coca, Physical activity change during COVID-19 confinement, Int. J. Environ. Res. Public Health [Internet] 17 (18) (2020), https://doi.org/10.3390/ ijerph17186878. Disponible en.[[14] G.H. Tison, R. Avram, P. Kuhar, S. Abreau, G.M. Marcus, M.J. Pletcher, et al., Worldwide effect of COVID-19 on physical activity: a descriptive study, Ann. Intern. Med. 173 (9) (2020) 767–770.[15] Seçer ˙ I., Ulas¸ S. An investigation of the effect of COVID-19 on OCD in youth in the context of emotional reactivity, experiential avoidance, depression and anxiety. Int. J. Ment. Health Addict. 2020;1–14.[16] A. Sonza, D. Da Cunha de S´ a-Caputo, J.A. Bachur, G. Rodrigues de Araújo M das, K.V.T. Valadares Trippo, G. Ribeiro Nogueira da Gama DRN da, et al., Brazil before and during COVID-19 pandemic: impact on the practice and habits of physical exercise, Acta. Biomed. 92 (1) (2020), e2021027.[17] J.A. Washif, S.F.A. Mohd Kassim, P.C.F. Lew, C.S.M. Chong, C James, Athlete’s perceptions of a “quarantine” training camp during the COVID-19 lockdown, Front. Sports Act Living. 2 (2020), 622858.[18] Latorre-Rom´ an P.A., ´ Guzm´ an-Guzman ´ I.P., Delgado-Floody P., Herrador Sanchez J., Aragon-Vela ´ J., García Pinillos F., et al. Protective role of physical activity patterns prior to COVID-19 confinement with the severity/duration of respiratory pathologies consistent with COVID-19 symptoms in Spanish populations. Res. Sports Med. 2021;1–12.[19] P. Chen, L. Mao, G.P. Nassis, P. Harmer, B.E. Ainsworth, F. Li, Coronavirus disease (COVID-19): the need to maintain regular physical activity while taking precautions, J. Sport Health Sci. 9 (2) (2020) 103–104.[20] J.B. Ferreira-Júnior, E.D.S. Freitas, S.F.N. Chaves, Exercise: a protective measure or an “open window” for COVID-19? A mini review, Front. Sports Act Living. 2 (2020) 61.[21] A. Ammar, M. Brach, K. Trabelsi, H. Chtourou, O. Boukhris, L. Masmoudi, et al., Effects of COVID-19 home confinement on eating behaviour and physical activity: results of the ECLB-COVID19 international online survey, Nutrients. 12 (6) (2020) 1583.[22] S.L. Cindrich, J.E. Lansing, C.S. Brower, C.P. McDowell, M.P. Herring, J.D. Meyer, Associations between change in outside time pre-and post-COVID-19 public health restrictions and mental health: brief research report, Front. public health. 9 (2021) 8.[23] T.V. Varga, F. Bu, A.S. Dissing, L.K. Elsenburg, J.J.H. Bustamante, J. Matta, et al., Loneliness, worries, anxiety, and precautionary behaviours in response to the COVID-19 pandemic: a longitudinal analysis of 200,000 Western and Northern Europeans, Lancet Reg Health Eur. 2 (100020) (2021), 100020.[24] Pirkis J., John A., Shin S., DelPozo-Banos M., Arya V., Analuisa-Aguilar P., et al. Suicide trends in the early months of the COVID-19 pandemic: an interrupted time-series analysis of preliminary data from 21 countries. The Lancet Psychiatry. 2021.[25] A. Nalbandian, K. Sehgal, A. Gupta, M.V. Madhavan, C. McGroder, J.S. Stevens, et al., Post-acute COVID-19 syndrome, Nat. Med. 27 (4) (2021) 601–615.[26] F.C. Bull, T.P. Armstrong, T. Dixon, S. Ham, A. Neiman, M. Pratt, Physical inactivity. Comparative Quantification of Health Risks Global and Regional Burden of Disease Attributable to Selected Major Risk Factors, World Health Organization, Geneva, 2004.[27] R.L. Vancini, L. Camargo-Neto, C.A.B. Lira, M.S. Andrade, R.B. Viana, P. T. Nikolaidis, et al., Physical activity and sociodemographic profile of brazilian people during COVID-19 outbreak: an online and cross-sectional survey, Int. J. Environ. Res. Public Health. 17 (21) (2020) 1–9.[28] V. Giustino, A.M. Parroco, A. Gennaro, G. Musumeci, A. Palma, G. Battaglia, Physical activity levels and related energy expenditure during COVID-19 quarantine among the sicilian active population: a cross-sectional online survey study, Sustainability (Switzerland [Internet] 12 (11) (2020). Disponible en: https://doi.org/10.[29] D. Ding, M. Cheng, B. Pozo Cruz, T. Lin, S. Sun, L. Zhang, et al., How COVID-19 lockdown and reopening affected daily steps: evidence based on 164,630 persondays of prospectively collected data from Shanghai, China, Int. J. Behav. Nutrition Phys. Activity 18 (1) (2021) 1186, 12966–021–01106–.[30] D.I. Bourdas, E.D. Zacharakis, Impact of COVID-19 lockdown on physical activity in a sample of Greek adults, Sports. 8 (10) (2020) 1–13.[31] M.A. Alomari, O.F. Khabour, K.H. Alzoubi, Changes in physical activity and sedentary behavior amid confinement: the bksq-covid-19 project, Risk Manag. Healthc Policy 13 (2020) 1757–1764.[32] J.P. Fuentes-García, M.J. Martínez Patino, ˜ S. Villafaina, V.J Clemente-Su´ arez, The effect of COVID-19 confinement in behavioral, psychological, and training patterns of chess players, Front Psychol. 11 (2020) 1812.[33] V.J. Clemente-Suarez, ´ J.P. Fuentes-García, R. de la Vega Marcos, M.J. Martínez Patino, ˜ Modulators of the personal and professional threat perception of Olympic athletes in the actual COVID-19 crisis, Front Psychol. 11 (2020) 1985.[34] B. Sassone, S. Mandini, G. Grazzi, G. Mazzoni, J. Myers, G. Pasanisi, Impact of COVID-19 pandemic on physical activity in patients with implantable cardioverter-defibrillators, J. Cardiopulm Rehabil. Prev. 40 (5) (2020) 285–286.[35] M. Narici, G.D. Vito, M. Franchi, A. Paoli, T. Moro, G. Marcolin, et al., Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures, EJSS (Champaign) 21 (4) (2021) 614–635.[36] M.A. Khan, J.E. Moverley Smith, Covibesity,” a new pandemic, Obesity Med. 19 (2020), 100282.[37] D. Luis, O. Izaola, D. Primo, E. Gomez, ´ B. Torres, J.J. Lopez ´ Gomez, ´ Effect of lockdown for covid-19 on self-reported body weight gain in a sample of obese patients, Nutricion Hospitalaria. 37 (6) (2020) 1232–1237.[38] M. Mediouni, R. Madiouni, K.E. Kaczor-Urbanowicz, COVID-19: how the quarantine could lead to the depreobesity, Obesity Med. 19 (2020), 100255.[39] M. Tsenoli, J.E. Moverley Smith, M.A Khan, A community perspective of COVID19 and obesity in children: causes and consequences, Obesity Med. 22 (2021), 100327.[40] M.C. Ruiz, T.J. Devonport, C.-.H.J. Chen-Wilson, W. Nicholls, J.Y. Cagas, J. Fernandez-Montalvo, et al., A cross-cultural exploratory study of health behaviors and wellbeing during COVID-19, Front Psychol. 11 (2020), 608216.[41] K. Ng, J. Cooper, F. McHale, J. Clifford, C. Woods, Barriers and facilitators to changes in adolescent physical activity during COVID-19, BMJ Open Sport and Exercise Med. 6 (1) (2020), 1136–2020–000919.[42] G. Musumeci, A. Palma, G. Battaglia, Physical activity levels and related energy expenditure during COVID-19 quarantine among the sicilian active population: a cross-sectional online survey study, Sustainability Switzerland 12 (11) (2020) 3390, 12114356.[43] L.R.B. Silva, C.S. Seguro, C.G.A. Oliveira, P.O.S. Santos, J.C.M. Oliveira, L.F. M. Souza Filho, et al., Physical Inactivity Is Associated With Increased Levels of Anxiety, Depression, and Stress in Brazilians During the COVID-19 Pandemic: a Cross-Sectional Study, Front. Psychiatry. 11 (2020) 3389.[44] B. Sassone, S. Mandini, G. Grazzi, G. Mazzoni, J. Myers, G. Pasanisi, Impact of COVID-19 Pandemic on Physical Activity in Patients with Implantable Cardioverter-Defibrillators, J. Cardiopulm. Rehabil. Prev. 40 (5) (2020) 285–286.[45] E.J. Williamson, A.J. Walker, K. Bhaskaran, S. Bacon, C. Bates, C.E. Morton, et al., Factors associated with COVID-19-related death using OpenSAFELY, Nature. 584 (7821) (2020) 430–436.[46] Y.-.Y. Zheng, Y.-.T. Ma, J.-.Y. Zhang, X. Xie, COVID-19 and the cardiovascular system, Nat. Rev. Cardiol. 17 (5) (2020) 259–260.[47] S.Y. Tartof, L. Qian, V. Hong, R. Wei, R.F. Nadjafi, H. Fischer, et al., Obesity and mortality among patients diagnosed with COVID-19: results from an integrated health care organization, Ann. Intern. Med. 173 (10) (2020) 773–781.[48] C. Fiuza-Luces, N. Garatachea, N.A. Berger, A. Lucia, Exercise is the real polypill, Physiology (Bethesda) 28 (5) (2013) 330–358.[49] S.T. Nyberg, A. Singh-Manoux, J. Pentti, I.E.H. Madsen, S. Sabia, L. Alfredsson, et al., Association of healthy lifestyle with years lived without major chronic diseases, JAMA Intern. Med. 180 (5) (2020) 760–768.[50] R. Salgado-Aranda, N. P´erez-Castellano, I. Núnez-Gil, ˜ A.J. Orozco, N. TorresEsquivel, J. Flores-Soler, et al., Influence of baseline physical activity as a modifying factor on COVID-19 mortality: a single-center, retrospective study, Infect. Dis. Ther. 10 (2) (2021) 801–814. [26] F.C. Bull, T.P. Armstrong, T. Dixon, S. Ham, A. Neiman, M. Pratt, Physical inactivity. Comparative Quantification of Health Risks Global and Regional Burden of Disease Attributable to Selected Major Risk Factors, World Health Organization, Geneva, 2004.[51] H. Humphreys, L. Kilby, N. Kudiersky, R. Copeland, Long COVID and the role of physical activity: a qualitative study, BMJ Open. 11 (3) (2021), e047632.[52] X. Cao, Ll-N Song, J.-.K Yang, ACE2 and energy metabolism: the connection between COVID-19 and chronic metabolic disorders, Clin. Sci. (Lond) 135 (3) (2021) 535–554.[53] C. Kenyon, The Forrest Gump approach to preventing severe COVID-19 – reverse the predisposing pro-inflammatory state with exercise, Microbes Infect. 22 (4–5) (2020) 151–153.[54] V.J. Clemente-Su´ arez, E. Navarro-Jim´enez, M. Jimenez, A. Hormeno-Holgado, ˜ M. B. Martinez-Gonzalez, J.C. Benitez-Agudelo, et al., Impact of COVID-19 pandemic in public mental health: an extensive narrative review, Sustainability. 13 (6) (2021) 3221.[55] V.J. Clemente-Su´ arez, D.J. Ramos-Campo, J. Mielgo-Ayuso, A.A. Dalamitros, P. A. Nikolaidis, A. Hormeno-Holgado, ˜ et al., Nutrition in the actual COVID-19 pandemic, A narrative Rev. Nutrients. 13 (6) (2021) 1924.[56] N. Yousfi, N.L. Bragazzi, W. Briki, P. Zmijewski, K. Chamari, The COVID-19 pandemic: how to maintain a healthy immune system during the lockdown–a multidisciplinary approach with special focus on athletes, Biol. sport. 37 (3) (2020) 211.[57] K. Khoramipour, A. Basereh, A.A. Hekmatikar, L. Castell, R.T. Ruhee, K. Suzuki, Physical activity and nutrition guidelines to help with the fight against COVID-19, J. Sports Sci. 39 (1) (2021) 101–107.[58] Silveira M.P., Silva Fagundes K.K., Bizuti M.R., Starck E., ´ Rossi R.C., Silva D.T.D. R. Physical exercise as a tool to help the immune system against COVID-19: an integrative review of the current literature. Clin. Experimental Med. 2020;1–14.[59] P.L. Valenzuela, R.J. Simpson, A. Castillo-García, A Lucia, Physical activity: a coadjuvant treatment to COVID-19 vaccination? Brain Behav. Immun. 94 (2021) 1–3.[60] Sallis R., Young D.R., Tartof S.Y., Sallis J.F., Sall J., Li Q., et al. Physical inactivity is associated with a higher risk for severe COVID-19 outcomes: a study in 48 440 adult patients. Br. J. Sports Med. 2021;bjsports-2021-104080.[61] D. Jim´enez-Pavon, ´ A. Carbonell-Baeza, C.J. Lavie, Physical exercise as therapy to fight against the mental and physical consequences of COVID-19 quarantine: special focus in older people, Prog. Cardiovasc. Dis. 63 (3) (2020) 386–388.[62] R. Codella, A. Chirico, F. Lucidi, A. Ferrulli, A. La Torre, L Luzi, The immunemodulatory effects of exercise should be favorably harnessed against COVID-19, J. Endocrinol. Invest. 44 (5) (2021) 1119–1122.[63] P. Polero, C. Rebollo-Seco, J.C. Adsuar, J. P´erez-Gomez, ´ J. Rojo-Ramos, F. Manzano-Redondo, et al., Physical Activity Recommendations during COVID19: narrative Review, Int. J. Environ. Res. Public Health. 18 (1) (2020) 65.[64] Alschuler L., Chiasson A.M., Horwitz R., Sternberg E., Crocker R., Weil A., et al. Integrative medicine considerations for convalescence from mild-to-moderate COVID-19 disease. Explore (NY) [Internet]. 2020; Disponible en: 10.1016/j. explore.2020.12.005.[65] C. Curci, F. Pisano, E. Bonacci, D.M. Camozzi, C. Ceravolo, R. Bergonzi, et al., Early rehabilitation in post-acute COVID-19 patients: data from an Italian COVID19 rehabilitation unit and proposal of a treatment protocol. A cross-sectional study, Eur. J. Phys. Rehabil. Med. 56 (5) (2020) 633–641.[66] D.M. Silberman, M.R. Wald, A.M Genaro, Acute and chronic stress exert opposing effects on antibody responses associated with changes in stress hormone regulation of T-lymphocyte reactivity, J. Neuroimmunol. 144 (1–2) (2003) 53–60.[67] K.M. Edwards, V.E. Burns, L.M. Allen, J.S. McPhee, J.A. Bosch, D. Carroll, et al., Eccentric exercise as an adjuvant to influenza vaccination in humans, Brain Behav. Immun. 21 (2) (2007) 209–217.[68] K.M. Edwards, V.E. Burns, T. Reynolds, D. Carroll, M. Drayson, C Ring, Acute stress exposure prior to influenza vaccination enhances antibody response in women, Brain Behav. Immun. 20 (2) (2006) 159–168.[69] C.A. Brawner, J.K. Ehrman, S. Bole, D.J. Kerrigan, S.S. Parikh, B.K. Lewis, et al., Inverse relationship of maximal exercise capacity to hospitalization secondary to Coronavirus disease 2019, Mayo Clin. Proc. 96 (1) (2021) 32–39.[70] H. Zbinden-Foncea, M. Francaux, L. Deldicque, J.A. Hawley, Does high cardiorespiratory fitness confer some protection against proinflammatory responses after infection by SARS-CoV-2? Obesity (Silver Spring) 28 (8) (2020) 1378–1381.[71] Y. Huang, Y. Lu, Y.-.M. Huang, M. Wang, W. Ling, Y. Sui, et al., Obesity in patients with COVID-19: a systematic review and meta-analysis, Metabolism. 113 (154378) (2020), 154378.[72] S. Erener, Diabetes, infection risk and COVID-19, Mol. Metab. 39 (101044) (2020), 101044.[73] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, et al., Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis, Int. J. Infect. Dis. 10 (2020).[74] B.K. Pedersen, B. Saltin, Exercise as medicine–evidence for prescribing exercise as therapy in 26 different chronic diseases, Scandinavian J. Med. Sci. Sports. 25 (2015) 1–72.[75] J. Myers, P. Kokkinos, E. Nyelin, Physical activity, cardiorespiratory fitness, and the metabolic syndrome, Nutrients. 11 (7) (2019) 1652.[76] R. Ross, S.N. Blair, R. Arena, T.S. Church, J.-.P. Despr´es, B.A. Franklin, et al., Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American heart association, Circulation. 134 (24) (2016) e653–e699.[77] C.A. Brawner, J.K. Ehrman, S. Bole, Maximal exercise capacity is inversely related to hospitalization secondary to coronavirus disease 2019, Mayo Clin. Proc. (2020).[78] Dd-C Lee, E.G. Artero, X. Sui, S.N. Blair, Mortality trends in the general population: the importance of cardiorespiratory fitness, J. Psychopharmacol. 24 (4 Suppl) (2010) 27–35.[79] M.S. Herridge, M. Moss, C.L. Hough, R.O. Hopkins, T.W. Rice, O.J. Bienvenu, et al., Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers, Intensive Care Med. 42 (5) (2016) 725–738.[80] M.S. Herridge, C.M. Tansey, A. Matt´e, G. Tomlinson, N. Diaz-Granados, A. Cooper, et al., Functional disability 5 years after acute respiratory distress syndrome, N. Engl. J. Med. 364 (14) (2011) 1293–1304.[81] K.-.C. Ong, A.W.-.K. Ng, L.S.-.U. Lee, G. Kaw, S.-.K. Kwek, M.K.-.S. Leow, et al., Pulmonary function and exercise capacity in survivors of severe acute respiratory syndrome, Eur. Respir. J. 24 (3) (2004) 436–442.[82] T.S. Li, C.D. Gomersall, G.M. Joynt, D.P.S. Chan, P. Leung, D.S.C. Hui, Long-term outcome of acute respiratory distress syndromecaused by severe acute respiratory syndrome (SARS): an observational study, Crit. Care Resusc. 8 (2006) 302–308.[83] S. Rooney, A. Webster, L. Paul, Systematic review of changes and recovery in physical function and fitness after Severe Acute Respiratory Syndrome-related Coronavirus infection: implications for COVID-19 rehabilitation, Phys. Ther. 100 (10) (2020) 1717–1729.[84] H.M.-.C. Lau, G.Y.-.F. Ng, A.Y.-.M. Jones, E.W.-.C. Lee, E.H.-.K. Siu, D.S.-.C. Hui, A randomised controlled trial of the effectiveness of an exercise training program in patients recovering from severe acute respiratory syndrome, Aust. J. Physiother. 51 (4) (2005) 213–219.[85] N. Stefan, A.L. Birkenfeld, M.B. Schulze, D.S. Ludwig, Obesity and impaired metabolic health in patients with COVID-19, Nat. Rev. Endocrinol. 16 (7) (2020) 341–342.[86] F. Gao, K.I. Zheng, X.-.B. Wang, Q.-.F. Sun, K.-.H. Pan, T.-.Y. Wang, et al., Obesity is a risk factor for greater COVID-19 severity, Diabetes Care. 43 (7) (2020) e72–e74.[87] X. Zhao, X. Gang, G. He, Z. Li, Y. Lv, Q. Han, et al., Obesity increases the severity and mortality of influenza and COVID-19: a systematic review and meta-analysis, Front. Endocrinol. (Lausanne) 11 (2020), 595109.[88] T. Yates, C. Razieh, F. Zaccardi, M.J. Davies, K. Khunti, Obesity and risk of COVID-19: analysis of UK biobank, Prim Care Diabetes. 14 (5) (2020) 566–567.[89] Q. Nguyen, J. Dominguez, L. Nguyen, N. Gullapalli, Hypertension management: an update, Am. Health Drug Benefits. 3 (1) (2010) 47–56.[90] X.C. Li, J. Zhang, J.L. Zhuo, The vasoprotective axes of the renin-angiotensin system: physiological relevance and therapeutic implications in cardiovascular, hypertensive and kidney diseases, Pharmacol. Res. 125 (2017) 21–38.[91] Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decadelong structural studies of SARS. J. Virology. 2020.[92] J. Lan, Structure of the SARS- CoV-2 spike receptor- binding domain bound to the ACE2 receptor, Nature. 581 (2020) 215–220.[93] M.A. Weber, E.L. Schiffrin, W.B. White, S. Mann, L.H. Lindholm, J.G. Kenerson, et al., Clinical practice guidelines for the management of hypertension in the community: a statement by the American Society of Hypertension and the International Society of Hypertension: a statement by the American society of hypertension and the international society of hypertension, J. Clin. Hypertens (Greenwich) 16 (1) (2014) 14–26.[94] P.A. Oliver-Martínez, D.J. Ramos-Campo, L.M. Martínez-Aranda, A. MartínezRodríguez, J.A. ´ Rubio-Arias, Chronic effects and optimal dosage of strength training on SBP and DBP: a systematic review with meta-analysis: a systematic review with meta-analysis, J. Hypertens 38 (10) (2020) 1909–1918.[95] A.K. Singh, R. Gupta, A. Ghosh, A. Misra, Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations, Diabetes Metab. Syndr. 14 (4) (2020) 303–310.[96] H. Roca-Ho, M. Riera, V. Palau, J. Pascual, M.J. Soler, Characterization of ACE and ACE2 expression within different organs of the NOD mouse, Int. J. Mol. Sci. 18 (3) (2017) 563.[97] Rao S., Lau A., So H.-.C. Exploring diseases/traits and blood proteins causally related to 284 expression of ACE2, the putative receptor of 2019-nCov: a Mendelian Randomization analysis. Vol. 285 medRxi. 2003. p. 2020.[98] C. Fernandez, J. Rysa, ¨ P. Almgren, J. Nilsson, G. Engstrom, ¨ M. Orho-Melander, et al., Plasma levels of the proprotein convertase furin and incidence of diabetes and mortality, J. Intern. Med. 284 (4) (2018) 377–387.[99] W.-.J. Guan, Z.-.Y. Ni, Y. Hu, W.-.H. Liang, C.-.Q. Ou, J.-.X. He, et al., Clinical characteristics of Coronavirus disease 2019 in China, N. Engl. J. Med. 382 (18) (2020) 1708–1720.[100] E. Maddaloni, R. Buzzetti, Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics, Diabetes Metab Res. Rev. (2020), e33213321.[101] N.G. Boule, E. Haddad, G.P. Kenny, G.A. Wells, R.J. Sigal, Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials, Scand J. Med. Sci. Sports. 12 (1) (2002) 60–61.[102] Z. Yang, C.A. Scott, C. Mao, J. Tang, A.J. Farmer, Resistance exercise versus aerobic exercise for type 2 diabetes: a systematic review and meta-analysis, Sports Med. 44 (4) (2014) 487–499.[103] C.M. Petrilli, S.A. Jones, J. Yang, H. Rajagopalan, L. O’Donnell, Y. Chernyak, et al., Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study, BMJ. 369 (2020) m1966.[104] S. Battisti, C. Pedone, N. Napoli, E. Russo, V. Agnoletti, S.G. Nigra, et al., Computed tomography highlights increased visceral adiposity associated with critical illness in COVID-19, Diabetes Care. 43 (10) (2020) e129–e130.[105] Atmosudigdo I.S., Pranata R., Lim M.A., Henrina J., Yonas E., Vania R., et al. Dyslipidemia increases the risk of severe COVID-19: a systematic review, metaanalysis, and meta-regression. J. Clin. Exp. Hepatol. [Internet]. 2021; Disponible en: 10.1016/j.jceh.2021.01.007.[106] Rg D.G.R.S., Wa B. Metabolic Syndrome and COVID-19: An update On the Associated Comorbidities and Proposed Therapies. En. 2021.[107] E. Nasonov, M. Samsonov, The role of Interleukin 6 inhibitors in therapy of severe COVID-19, Biomed. Pharmacother. 131 (2020), 110698.[108] F. Morys, A. Dagher, Poor metabolic health increases COVID-19-related mortality in the UK Biobank sample, Front. Endocrinol. (Lausanne) 12 (2021), 652765.[109] R. Bansal, S. Gubbi, R. Muniyappa, Metabolic syndrome and COVID 19: endocrine-immune-vascular interactions shapes clinical course, Endocrinology [Internet] 161 (10) (2020), https://doi.org/10.1210/endocr/bqaa112. Disponible en:.[110] S. Mohammad, R. Aziz, S. Al Mahri, S.S. Malik, E. Haji, A.H. Khan, et al., Obesity and COVID-19: what makes obese host so vulnerable? Immun. Ageing. 18 (1) (2021) 1.[111] M.V. Fedewa, E.D. Hathaway, C.L. Ward-Ritacco, Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and nonrandomised controlled trials, Br. J. Sports Med. 51 (8) (2017) 670–676.[112] F.F. Costa, W.R. Rosario, ´ A.C. Ribeiro Farias, R.G. de Souza, R.S. Duarte Gondim, W.A Barroso, Metabolic syndrome and COVID-19: an update on the associated comorbidities and proposed therapies, Diabetes Metab Syndr. 14 (5) (2020) 809–814.[113] C. Tsigos, V. Hainer, A. Basdevant, Management of obesity in adults: european clinical practice guidelines, Obes. Facts. 1 (2) (2008) 106–116.[114] D.J. Ramos-Campo, L. Andreu Caravaca, A. Martínez-Rodríguez, J.A ´ Rubio-Arias, Effects of resistance circuit-based training on body composition, strength and cardiorespiratory fitness: a systematic review and meta-analysis, Biology (Basel) [Internet] 10 (5) (2021), https://doi.org/10.3390/biology10050377. Disponible en:.[115] R.B. Batacan Jr, M.J. Duncan, V.J. Dalbo, P.S. Tucker, A.S. Fenning, Effects of high-intensity interval training on cardiometabolic health: a systematic review and meta-analysis of intervention studies, Br. J. Sports Med. 51 (6) (2017) 494–503.[116] R.G. Hertzog, N.S. Bicheru, D.M. Popescu, O. C˘ alborean, A.M. Catrina, Hypoxic preconditioning—A nonpharmacological approach in COVID-19 prevention, Int. J. Infect. Diseases. 103 (2021) 415–419.[117] T.V. Serebrovskaya, E.B. Manukhina, M.L. Smith, H.F. Downey, R.T. Mallet, Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp. Biol. Med. (Maywood) 233 (6) (2008) 627–650.[118] Liesa M., Palacín M., Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 2009;89(3):799–845.[119] Memme J.M., Erlich A.T., Phukan G., Hood D.A. Exercise and mitochondrial health. J. Physiol. 2021;599(3):803–817.[120] L.D. Osellame, T.S. Blacker, M.R. Duchen, Cellular and molecular mechanisms of mitochondrial function, Best Pract. Res. Clin. Endocrinol. Metab. 26 (6) (2012) 711–723.[121] S. Myhill, N.E. Booth, J. McLaren-Howard, Chronic fatigue syndrome and mitochondrial dysfunction, Int. J. Clin. Exp. Med. 2 (1) (2009) 1–16.[122] K. Filler, D. Lyon, J. Bennett, N. McCain, R. Elswick, N. Lukkahatai, et al., Association of mitochondrial dysfunction and fatigue: a review of the literature, BBA Clin. 1 (2014) 12–23.[123] W.I. Sivitz, M.A. Yorek, Mitochondrial dysfunction in diabetes: from molecular mechanisms to functional significance and therapeutic opportunities, Antioxid Redox Signal. 12 (4) (2010) 537–577.[124] S.W. Ballinger, Mitochondrial dysfunction in cardiovascular disease, Free Radic. Biol. Med. 38 (10) (2005) 1278–1295.[125] M.F. Beal, Bioenergetic approaches for neuroprotection in Parkinson’s disease, Ann. Neurol. 53 (S3) (2003) S39–S47. Suppl 3discussion S47-8.[126] S. Stuart, L.R. Griffiths, A possible role for mitochondrial dysfunction in migraine, Mol. Genet Genomics. 287 (11–12) (2012) 837–844.[127] M.L. Boland, A.H. Chourasia, K.F. Macleod, Mitochondrial dysfunction in cancer, Front. Oncol. 3 (2013) 292.[128] L.A.M. Demain, G.S. Conway, W.G. Newman, Genetics of mitochondrial dysfunction and infertility: genetics of mitochondrial dysfunction and infertility, Clin. Genet. 91 (2) (2017) 199–207.[129] A. Bratic, N.-.G Larsson, The role of mitochondria in aging, J. Clin. Invest. 123 (3) (2013) 951–957.[130] J. Burtscher, G.P. Millet, M. Burtscher, Low cardiorespiratory and mitochondrial fitness as risk factors in viral infections: implications for COVID-19, Br. J. Sports Med. 55 (8) (2021) 413–415.[131] D. Sebastian, ´ M. Palacín, A. Zorzano, Mitochondrial dynamics: coupling mitochondrial fitness with healthy aging, Trends Mol. Med. 23 (3) (2017) 201–215.[132] D.C. Nieman, A.S. Williams, R.A. Shanely, F. Jin, S.R. McAnulty, N.T. Triplett, et al., Quercetin’s influence on exercise performance and muscle mitochondrial biogenesis, Med. Sci. Sports Exerc. 42 (2) (2010) 338–345.[133] G. Lopez-Lluch, ´ P.M. Irusta, P. Navas, R. de Cabo, Mitochondrial biogenesis and healthy aging, Exp. Gerontol. 43 (9) (2008) 813–819.[134] A. Eluamai, K. Brooks, Effect of aerobic exercise on mitochondrial DNA and aging, J. Exerc. Sci. Fit. 11 (1) (2013) 1–5.[135] J.P. Little, A. Safdar, N. Cermak, M.A. Tarnopolsky, M.J. Gibala, Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle, Am. J. Physiol.Regulatory, Integrative and Comparative Physiol 298 (4) (2010) 912–917.[136] L. Wang, H. Mascher, N. Psilander, E. Blomstrand, K. Sahlin, Resistance exercise enhances the molecular signaling of mitochondrial biogenesis induced by endurance exercise in human skeletal muscle, J. Appl. Physiol. 111 (5) (2011) 1335–1344.[137] Psilander N. The effect of different exercise regimens on mitochondrial biogenesis and performance. Inst For ¨ Fysiologi Och Farmakologi/Dept of Physiology and Pharmacology. 2014.[139] D. Dutta, R. Calvani, R. Bernabei, C. Leeuwenburgh, E. Marzetti, Contribution of impaired mitochondrial autophagy to cardiac aging: mechanisms and therapeutic opportunities: mechanisms and therapeutic opportunities, Circ. Res. 110 (8) (2012) 1125–1138.[140] G. Bozkaya, E. Ozgu, B. Karaca, The association between estimated average glucose levels and fasting plasma glucose levels, Clinics (Sao Paulo) 65 (11) (2010) 1077–1080.[141] Q. Liu, H. Chen, J. Li, X. Huang, L. Lai, S. Li, et al., Fasting blood glucose predicts the occurrence of critical illness in COVID-19 patients: a multicenter retrospective cohort study, J. Infect. 81 (3) (2020) e20–e23.[142] S.M. Bailey, U.S. Udoh, M.E Young, Circadian regulation of metabolism, J. Endocrinol. 222 (2) (2014) R75–R96.[143] G. Escames, A. Guerra-Librero, Y. Shen, J. Florido, R. Sayed, M. Molina-Navarro, et al., PO-090: oncostatic effect of melatonin in head and neck cancer: role of mitochondrial function, Radiother. Oncol. 122 (2017) 43–44.[144] R.J. Reiter, R. Sharma, Q. Ma, A. Dominquez-Rodriguez, P.E. Marik, P. AbreuGonzalez, Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: a mechanistic analysis, Med. Drug Discov. 6 (100044) (2020), 100044.[145] S.A. Mortensen, F. Rosenfeldt, A. Kumar, P. Dolliner, K.J. Filipiak, D. Pella, et al., The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial, JACC Heart Fail. 2 (6) (2014) 641–649.[146] M.D. Cordero, E. Alcocer-Gomez, ´ M. de Miguel, O. Culic, A.M. Carrion, ´ J. M. Alvarez-Suarez, et al., Can coenzyme q10 improve clinical and molecular parameters in fibromyalgia? Antioxid Redox Signal. 19 (12) (2013) 1356–1361.[147] M. Mancuso, D. Orsucci, L. Volpi, V. Calsolaro, G. Siciliano, Coenzyme Q10 in neuromuscular and neurodegenerative disorders, Curr. Drug Targets. 11 (1) (2010) 111–121.[148] D. Casagrande, P.H. Waib, A.A.J. Júnior, Mechanisms of action and effects of the administration of Coenzyme Q10 on metabolic syndrome, J. Nutrition & Intermediary Metab. 13 (2018) 26–32.[149] B.N. Ames, Prevention of mutation, cancer, and other age-associated diseases by optimizing micronutrient intake, J. Nucleic Acids. 2010 (2010) 1–11.[150] G.A. George, F.W. Heaton, Changes in cellular composition during magnesium deficiency, Biochem. J. 152 (3) (1975) 609–615.[151] J. Kucharsk´ a, Vitamins in Mitochondrial Function. En: Mitochondrial Medicine, Springer Netherlands, Dordrecht, 2008, pp. 367–384.[152] F. Depeint, W.R. Bruce, N. Shangari, R. Mehta, P.J O’Brien, Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism, Chem. Biol. Interact. 163 (1–2) (2006) 94–112.[153] B. Marriage, M.T. Clandinin, D.M. Glerum, Nutritional cofactor treatment in mitochondrial disorders, J. Am. Diet Assoc. 103 (8) (2003) 1029–1038.[154] M.G. Rosca, H. Lemieux, C.L. Hoppel, Mitochondria in the elderly: is acetylcarnitine a rejuvenator? Adv. Drug Deliv. Rev. 61 (14) (2009) 1332–1342.[155] M.C. Rodriguez, J.R. MacDonald, D.J. Mahoney, G. Parise, M.F. Beal, M. A. Tarnopolsky, Beneficial effects of creatine, CoQ10, and lipoic acid in mitochondrial disorders, Muscle Nerve. 35 (2) (2007) 235–242.[156] M.A. Tarnopolsky, The mitochondrial cocktail: rationale for combined nutraceutical therapy in mitochondrial cytopathies, Adv. Drug Deliv. Rev. 60 (13–14) (2008) 1561–1567.[157] R.M. Anderson, H. Heesterbeek, D. Klinkenberg, T.D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic? Lancet. 395 (10228) (2020) 931–934.[158] R. Güner, I. Hasanoglu, ˘ F. Aktas¸, COVID-19: prevention and control measures in community, Turk J. Med. Sci. 50 (SI–1) (2020) 571–577.[159] C. Pieh, S. Budimir, T. Probst, The effect of age, gender, income, work, and physical activity on mental health during coronavirus disease (COVID-19) lockdown in Austria, J. Psychosom. Res. 136 (110186) (2020), 110186.[160] G.E. Duncan, A.R. Avery, E. Seto, S. Tsang, Perceived change in physical activity levels and mental health during COVID-19: findings among adult twin pairs, PLoS One. 15 (8) (2020), e0237695.[161] C.I. Jarvis, K. Van Zandvoort, A. Gimma, K. Prem, , CMMID COVID-19 working group, P. Klepac, et al., Quantifying the impact of physical distance measures on the transmission of COVID-19 in the UK, BMC Med. 18 (1) (2020) 124.[162] M.U.G. Kraemer, C.-.H. Yang, B. Gutierrez, C.-.H. Wu, B. Klein, D.M. Pigott, et al., The effect of human mobility and control measures on the COVID-19 epidemic in China, Science. 368 (6490) (2020) 493–497.[163] D. Salman, D. Vishnubala, P. Le Feuvre, T. Beaney, J. Korgaonkar, A. Majeed, et al., Returning to physical activity after covid-19, BMJ. 372 (2021) m4721.[164] H. Amini, S. Habibi, A.H. Islamoglu, E. Isanejad, C. Uz, H. Daniyari, COVID-19 pandemic-induced physical inactivity: the necessity of updating the Global Action Plan on Physical Activity 2018-2030, Environ. Health Prev. Med. 26 (1) (2021) 32.[165] M. Tomanek, A. Lis, Physical activity in the context of the COVID-19 pandemic: research profiling and mapping, Phys. Educ. Stud. 25 (3) (2021) 136–148.[166] M.J. Dwyer, M. Pasini, S. De Dominicis, E. Righi, Physical activity: benefits and challenges during the COVID-19 pandemic, Scand J. Med. Sci. Sports. 30 (7) (2020) 1291–1294.[167] E. Robinson, E. Boyland, A. Chisholm, J. Harrold, N.G. Maloney, L. Marty, et al., Obesity, eating behavior and physical activity during COVID-19 lockdown: a study of UK adults, Appetite. 156 (104853) (2021), 104853.[168] B. Pfefferbaum, C.S. North, Mental health and the covid-19 pandemic, N. Engl. J. Med. 383 (6) (2020) 510–512.[169] D. Talevi, V. Socci, M. Carai, G. Carnaghi, S. Faleri, E. Trebbi, et al., Mental health outcomes of the CoViD-19 pandemic, Riv. Psichiatr. 55 (3) (2020) 137–144.[170] L. Kola, B.A. Kohrt, C. Hanlon, J.A. Naslund, S. Sikander, M. Balaji, et al., COVID19 mental health impact and responses in low-income and middle-income countries: reimagining global mental health, Lancet Psychiatry. 8 (6) (2021) 535–550.[171] J. Torales, M. O’Higgins, J.M. Castaldelli-Maia, A Ventriglio, The outbreak of COVID-19 coronavirus and its impact on global mental health, Int. J. Soc. Psychiatry. 66 (4) (2020) 317–320.[172] N. Vindegaard, M.E. Benros, COVID-19 pandemic and mental health consequences: systematic review of the current evidence, Brain Behav. Immun. 89 (2020) 531–542.[173] M.G. Mazza, R. De Lorenzo, C. Conte, S. Poletti, B. Vai, I. Bollettini, COVID-19 BioB Outpatient Clinic Study group, Brain Behav. Immun. 89 (2020) 594–600.[174] V.J. Clemente-Suarez, ´ A. Hormeno-Holgado, ˜ M. Jim´enez, J.C. Benitez-Agudelo, E. Navarro-Jim´enez, N. Perez-Palencia, J.F. Tornero-Aguilera, Dynamics of population immunity due to the herd effect in the COVID-19 pandemic, Vaccines (Basel) 8 (2) (2020) 236.[175] V.J. Clemente-Su´ arez, E. Navarro-Jim´enez, L. Moreno-Luna, M.C. SaavedraSerrano, M. Jimenez, J.A. Simon, ´ J.F. Tornero-Aguilera, The Impact of the COVID-19 Pandemic on Social, Health, and Economy, Sustainability 13 (11) (2021) 6314.[176] A. Martín-Rodríguez, J.F. Tornero-Aguilera, P.J. Lopez-P ´ ´erez, V.J. ClementeSuarez, ´ Gender differences in nutritional, odontological and psychological patterns of adolescent students during COVID-19 pandemic, Appl. Sci. 11 (18) (2021) 8499.[177] V.J. Clemente-Suarez, ´ M.B. Martínez-Gonzalez, ´ J.C. Benitez-Agudelo, E. NavarroJim´enez, A.I. Beltran-Velasco, P. Ruisoto, J.F. Tornero-Aguilera, The Impact of the COVID-19 Pandemic on Mental Disorders. A Critical Review, Int. J. Environ. Res. Public Health 18 (19) (2021) 10041.[178] S. Rodriguez-Besteiro, J.F. Tornero-Aguilera, J. Fernandez-Lucas, ´ V.J. ClementeSuarez, ´ Gender differences in the covid-19 pandemic risk perception, psychology and behaviors of spanish university students, Int. J. Environ. Res. Public Health 18 (8) (2021) 3908.[180] Clemente-Su´ arez, V. J., Navarro-Jim´enez, E., Ruisoto, P., Dalamitros, A. A., Beltran-Velasco, A. I., Hormeno-Holgado, ˜ A., Tornero-Aguilera, J. F. (2021). Performance of Fuzzy Multi-Criteria Decision Analysis of Emergency System in COVID-19 Pandemic. An Extensive Narrative Review. International Journal of Environmental Research and Public Health, 18(10), 5208.111244InactivityCardiorespiratory fitnessMetabolic healthMitochondrial fitnessMental healthPublicationORIGINAL1-s2.0-S0031938421003541-main.pdf1-s2.0-S0031938421003541-main.pdfapplication/pdf1562972https://repositorio.cuc.edu.co/bitstreams/c63ffe56-4839-40cb-ac4b-c3e67d669b1c/download1ad26ab597264ddc963642466da47a04MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/3e5a31ff-cf1b-4621-8d18-f93d74ae8789/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S0031938421003541-main.pdf.txt1-s2.0-S0031938421003541-main.pdf.txttext/plain88314https://repositorio.cuc.edu.co/bitstreams/839b7d5b-40ae-457d-9547-cb704a099903/downloadd84638ba5d5153d8fcad1b15e650187aMD53THUMBNAIL1-s2.0-S0031938421003541-main.pdf.jpg1-s2.0-S0031938421003541-main.pdf.jpgimage/jpeg14318https://repositorio.cuc.edu.co/bitstreams/d80303c8-8bfa-4efb-97b1-be6b3409fddd/download6c067977c2c4dfa1561ade1a5ea35650MD5411323/9292oai:repositorio.cuc.edu.co:11323/92922024-09-17 14:07:17.872https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |