Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters

The species Hovenia dulcis has become a major issue for the Brazilian biome due to its high adaptation and accelerated propagation, putting the local biodiversity at risk. In this sense, this study sought to generate a new purpose for the fruits of this peculiar species. They were carbonized with Zn...

Full description

Autores:
Lazarotto, Joseane S.
Schnorr, Carlos Eduardo
georgin, jordana
Dison S.P., Franco
Netto, Matias S.
Piccilli, Daniel G.A.
Silva Oliveira, Luis Felipe
Bohn Rhoden, Cristiano Rodrigo
Dotto, Guilherme Luiz
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10735
Acceso en línea:
https://hdl.handle.net/11323/10735
https://repositorio.cuc.edu.co/
Palabra clave:
Atrazine
Hovenia dulcis
Invasive species
Residual fruits
River water
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_054484649f06e1e0e358618e321724b3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10735
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.none.fl_str_mv Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
title Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
spellingShingle Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
Atrazine
Hovenia dulcis
Invasive species
Residual fruits
River water
title_short Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
title_full Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
title_fullStr Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
title_full_unstemmed Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
title_sort Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters
dc.creator.fl_str_mv Lazarotto, Joseane S.
Schnorr, Carlos Eduardo
georgin, jordana
Dison S.P., Franco
Netto, Matias S.
Piccilli, Daniel G.A.
Silva Oliveira, Luis Felipe
Bohn Rhoden, Cristiano Rodrigo
Dotto, Guilherme Luiz
dc.contributor.author.none.fl_str_mv Lazarotto, Joseane S.
Schnorr, Carlos Eduardo
georgin, jordana
Dison S.P., Franco
Netto, Matias S.
Piccilli, Daniel G.A.
Silva Oliveira, Luis Felipe
Bohn Rhoden, Cristiano Rodrigo
Dotto, Guilherme Luiz
dc.subject.proposal.eng.fl_str_mv Atrazine
Hovenia dulcis
Invasive species
Residual fruits
River water
topic Atrazine
Hovenia dulcis
Invasive species
Residual fruits
River water
description The species Hovenia dulcis has become a major issue for the Brazilian biome due to its high adaptation and accelerated propagation, putting the local biodiversity at risk. In this sense, this study sought to generate a new purpose for the fruits of this peculiar species. They were carbonized with ZnCl2 to produce porous activated carbon, which was used to remove the herbicide atrazine from aqueous solutions. The Hovenia dulcis activated carbon (Hd-AC) presented a surface area of 898.4 m2/g, with narrow pores with an average diameter of 1.24 nm and a pore volume of 0.296 cm3 g−1. Hd-AC for atrazine adsorption was efficient at a pH of 6.0 for an adsorbent dosage of 0.5 g/L, where the adsorption capacity was 58 mg g−1 at 328 K. The isothermal curves showed a good adjustment to the Freundlich isotherm. The thermodynamic results indicated that herbicide adsorption was spontaneous, favorable, and endothermic (ΔH° = 8.21 kJ mol−1). Besides, the linear driving force model (LDF) was used satisfactorily to describe the kinetic behavior of atrazine. Also, in treating a sample of river water contaminated with atrazine, Hd-AC showed high performance, reaching the removal of 70 % of the emerging pollutant. Therefore, using the residual fruits of the Hovenia dulcis as biomass to prepare a highly porous adsorbent reveals a promising alternative.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-02-19T21:49:24Z
dc.date.available.none.fl_str_mv 2024
2024-02-19T21:49:24Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Joseane S. Lazarotto, Carlos Schnorr, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Luis F.O. Silva, Cristiano R.B. Rhoden, Guilherme L. Dotto, Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters, Journal of Molecular Liquids, Volume 364, 2022, 120014, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2022.120014
dc.identifier.issn.spa.fl_str_mv 0167-7322
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10735
dc.identifier.doi.none.fl_str_mv 10.1016/j.molliq.2022.120014
dc.identifier.eissn.spa.fl_str_mv 1873-3166
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Joseane S. Lazarotto, Carlos Schnorr, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Luis F.O. Silva, Cristiano R.B. Rhoden, Guilherme L. Dotto, Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters, Journal of Molecular Liquids, Volume 364, 2022, 120014, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2022.120014
0167-7322
10.1016/j.molliq.2022.120014
1873-3166
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/10735
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Journal of Molecular Liquids
dc.relation.references.spa.fl_str_mv [1] M. Sbizzaro, S. César Sampaio, R. Rinaldo dos Reis, F. de Assis Beraldi, D. Medina Rosa, C. Maria Branco de Freitas Maia, C. Saramago de Carvalho Marques dos Santos Cordovil, C. Tillvitz do Nascimento, E. Antonio da Silva, C. Eduardo Borba, Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems, J. Mol. Liq. 343 (2021) 117667. doi: 10.1016/j.molliq.2021.117667.
[2] G. Bhandari, K. Atreya, P.T.J. Scheepers, V. Geissen, Concentration and distribution of pesticide residues in soil: non-dietary human health risk assessment, Chemosphere 253 (2020), https://doi.org/10.1016/j. chemosphere.2020.126594 126594.
[3] P. Palma, M. Köck-Schulmeyer, P. Alvarenga, L. Ledo, I.R. Barbosa, M. López de Alda, D. Barceló, Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal), Sci. Total Environ. 488–489 (2014) 208–219, https://doi.org/10.1016/j.scitotenv.2014.04.088.
[4] C. Postigo, D. Barceló, Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation, Sci. Total Environ. 503–504 (2015) 32–47, https://doi.org/10.1016/j.scitotenv.2014.06.019.
[5] A. Aldeguer Esquerdo, I. Sentana Gadea, P.J. Varo Galvañ, D. Prats Rico, Efficacy of atrazine pesticide reduction in aqueous solution using activated carbon, ozone and a combination of both, Sci. Total Environ. 764 (2021), https://doi. org/10.1016/j.scitotenv.2020.144301 144301.
[6] Z. Dehgani, M. Sedghi Asl, M. Ghaedi, M.M. Sabzehmeidani, E. Adhami, Removal of paraquat from aqueous solutions by a bentonite modified zerovalent iron adsorbent, New J. Chem. 44 (2020) 13368–13376, https://doi.org/ 10.1039/d0nj02259d.
[7] W. Shan, W. Hu, Y. Wen, X. Ding, X. Ma, W. Yan, Y. Xia, Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model, Reprod. Toxicol. 103 (2021) 149–158, https://doi.org/ 10.1016/j.reprotox.2021.06.009.
[8] L.N. Vandenberg, T. Colborn, T.B. Hayes, J.J. Heindel, D.R. Jacobs, D.H. Lee, T. Shioda, A.M. Soto, F.S. vom Saal, W.V. Welshons, R.T. Zoeller, J.P. Myers, Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses, Endocr. Rev. 33 (2012) 378–455, https://doi. org/10.1210/er.2011-1050.
[9] B. Liu, C. Du, J.J. Chen, J.Y. Zhai, Y. Wang, H.L. Li, Preparation of well-developed mesoporous activated carbon fibers from plant pulp fibers and its adsorption of methylene blue from solution, Chem. Phys. Lett. 771 (2021), https://doi.org/ 10.1016/j.cplett.2021.138535 138535.
[10] J. Bu, L. Yuan, N. Zhang, D. Liu, Y. Meng, X. Peng, High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite, Diam. Relat. Mater. 101 (2020), https://doi.org/ 10.1016/j.diamond.2019.107604 107604.
[11] A.-D.-C. Borja-Urzola, R.S. García-Gómez, M. Bernal-González, M.-D.-C. DuránDomínguez-de-Bazúa, Chitosan-calcite from shrimp residues: a low-cost adsorbent for three triazines removal from aqueous media, Mater. Today Commun. 26 (2021), https://doi.org/10.1016/j.mtcomm.2021.102131 102131.
[12] A. Mandal, N. Singh, Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems, Int. J. Hyg. Environ. Health. 220 (2017) 637–645, https://doi.org/ 10.1016/j.ijheh.2017.02.010.
[13] E. Tchikuala, P. Mourão, J. Nabais, Valorisation of natural fibres from African baobab wastes by the production of activated carbons for adsorption of diuron, Proc. Eng. 200 (2017) 399–407, https://doi.org/10.1016/j.proeng.2017.07.056.
[14] T. Tongur, E. Ayranci, Adsorption and electrosorption of paraquat, diquat and difenzoquat from aqueous solutions onto activated carbon cloth as monitored by in-situ uv-visible spectroscopy, J. Environ. Chem. Eng. 9 (4) (2021), https:// doi.org/10.1016/j.jece.2021.105566 105566.
[15] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4- dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ Chem. Eng. 9 (1) (2021), https://doi.org/10.1016/j.jece.2020.104911 104911.
[16] I. Anastopoulos, M.J. Ahmed, E.H. Hummadi, Eucalyptus-based materials as adsorbents for heavy metals and dyes removal from (waste)waters, J. Mol. Liq. 356 (2022). 10.1016/j.molliq.2022.118864, https://doi.org/10.1016/ j.molliq.2022.118864 118864.
[17] M. Usman, I. Anastopoulos, Y. Hamid, A. Wakeel, Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: effects on soil quality and plant growth, Environ. Sci. Pollut. Res. (2022), https://doi.org/10.1007/s11356-022-19192-0.
[18] I. Anastopoulos, J.O. Ighalo, C. Adaobi Igwegbe, D.A. Giannakoudakis, K.S. Triantafyllidis, I. Pashalidis, D. Kalderis, Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water, J. Mol. Liq. 342 (2021). 10.1016/j.molliq.2021.117540, https://doi.org/10.1016/ j.molliq.2021.117540 117540.
[19] K. Philippou, I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, M. Usman, M. Kornaros, M. Omirou, D. Kalderis, J. V Milojkovic´, Z.R. Lopicˇic´, M. Abatal, Chapter 6 - the application of pine-based adsorbents to remove potentially toxic elements from aqueous solutions, in: A. Núñez-Delgado (Ed.), Sorbents Mater. Control. Environ. Pollut. Elsevier, 2021, 113–133, doi: 10.1016/B978-0-12-820042-1.00016-X.
[20] P. Boguta, Z. Sokołowska, K. Skic, A. Tomczyk, Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste, Fuel. 256 (2019), https://doi.org/ 10.1016/j.fuel.2019.115893 115893.
[21] S. Kopachon, K. Suriya, K. Hardwick, G. Pakaad, J.F. Maxwell, V. Anusarnsunthorn, D. Blakesley, N.C. Garwood, S. Elliot, Forest restoration research in Northern Thailand, 1. The fruits, seeds and seedlings of Hovenia dulcis Thunb (Rhamnaceae), Nat. Hist. Bull. Siam Soc. 44 (1996) 41–52.
[22] B. Yang, Y. Luo, Q. Wu, Q. Yang, J. Kan, Hovenia dulcis polysaccharides: influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities, Int. J. Biol. Macromol. 148 (2020) 1010– 1020, https://doi.org/10.1016/j.ijbiomac.2020.01.006.
[23] Y. Yu, Q. An, L. Jin, N. Luo, Z. Li, J. Jiang, Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: implicit mechanism and application, Bioresour. Technol. 297 (2020) 122466.
[24] T.K. Hyun, S.H. Eom, C.Y. Yu, T. Roitsch, Hovenia dulcis - an Asian traditional herb, Planta Med. 76 (2010) 943–949, https://doi.org/10.1055/s-0030-1249776.
[25] L. Kuglerová, E.M. Hasselquist, J.S. Richardson, R.A. Sponseller, D.P. Kreutzweiser, H. Laudon, Management perspectives on Aqua incognita: connectivity and cumulative effects of small natural and artificial streams in boreal forests, Hydrol. Process. 31 (2017) 4238–4244, https://doi.org/10.1002/ hyp.11281.
[26] S. Medina-Villar, Á. Alonso, P. Castro-Díez, M.E. Pérez-Corona, Allelopathic potentials of exotic invasive and native trees over coexisting understory species: the soil as modulator, Plant Ecol. 218 (2017) 579–594, https://doi.org/ 10.1007/s11258-017-0713-2.
[27] E. Glueckauf, Theory of chromatography. Part 10—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.
[28] T.R. Steinheimer, U.S.G. Survey, M.G. Ondrus, Liquid chromatographic determination of atrazine and its degradation products in water B, 1990.
[29] H.M. Mozammel, O. Masahiro, S.C. Bhattacharya, Activated charcoal from coconut shell using ZnCl2 activation, Biomass Bioenergy 22 (2002) 397–400, https://doi.org/10.1016/S0961-9534(02)00015-6.
[30] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J. 174 (2011) 117–125, https://doi.org/10.1016/j.cej.2011.08.058.
[31] V.E. Efeovbokhan, E.E. Alagbe, B. Odika, R. Babalola, T.E. Oladimeji, O.G. Abatan, E.O. Yusuf, Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators, J. Phys. Conf. Ser. 1378 (3) (2019), https://doi.org/10.1088/1742-6596/1378/3/032035 032035.
[32] X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, C. Hua, Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber, Ionics (Kiel) 22 (2016) 545–553, https://doi.org/10.1007/s11581-015-1571-3.
[33] J. Georgin, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.O. Silva, G.L. Dotto, Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels, J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/ 10.1016/j.jece.2021.106820 106820.
[34] C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), https://doi.org/ 10.1016/j.molliq.2021.117184 117184.
[35] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106843 106843.
[36] KSW Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619. https://doi. org/10.1351/pac198557040603.
[37] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, P. Grassi, D.G.A. Piccilli, M.L.S. Oliveira, G.L. Dotto, Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations, Adv. Powder Technol. 31 (7) (2020) 2843–2852.
[38] D.S.P. Franco, J. Georgin, M.S. Netto, J.L.S. Fagundez, N.P.G. Salau, D. Allasia, G.L. Dotto, Conversion of the forest species Inga marginata and Tipuana tipu wastes into biosorbents: dye biosorption study from isotherm tomass transfer, Environ. Technol. Innov. 22 (2021), https://doi.org/10.1016/j.eti.2021.101521 101521.
[39] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012.
[40] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197 (2014) 316–323, https://doi.org/ 10.1016/j.micromeso.2014.06.020.
[41] M. Jayachandran, S. Kishore Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar, Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications, Mater. Lett. 301 (2021), https://doi.org/10.1016/j.matlet.2021.130335 130335.
[42] J. Georgin, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, M. Yilmaz, L.F.O. Silva, G.L. Dotto, Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water, J. Environ Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j.jece.2021.107006 107006.
[43] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Application of araçá fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption, Chem. Eng. Res. Des. 180 (2022) 67–78, https:// doi.org/10.1016/j.cherd.2022.01.044.
[44] E. Yagmur, Y. Gokce, S. Tekin, N.I. Semerci, Z. Aktas, Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2, Fuel. 267 (2020), https://doi.org/10.1016/ j.fuel.2020.117232 117232.
[45] V.A. Shirbhate, D.P. Gulwade, S.E. Bhandarkar, S.V. Narsing, Preparation and spectroscopic characterization of Pistachio nut shell’s activated carbon using ZnCl2 for removal of transition metal ions, Mater. Today Proc. 29 (2020) 1259– 1264, https://doi.org/10.1016/j.matpr.2020.06.233.
[46] D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, Micro– mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T, J. Solid State Chem. 269 (2019) 580–587, https://doi.org/ 10.1016/j.jssc.2018.10.035.
[47] X. Xing, W. Jiang, S. Li, X. Zhang, W. Wang, Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl2-H3PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis, Waste Manag. 89 (2019) 64–72, https://doi.org/10.1016/j.wasman.2019.04.002.
[48] Q.A. Binh, V.H. Nguyen, P. Kajitvichyanukul, Influence of pyrolysis conditions of modified corn cob bio-waste sorbents on adsorption mechanism of atrazine in contaminated water, Environ. Technol. Innov. 26 (2022), https://doi.org/ 10.1016/j.eti.2022.102381 102381.
[49] G. Lartey-Young, L. Ma, Optimization, equilibrium, adsorption behaviour of Cu/ Zn/Fe LDH and LDHBC composites towards atrazine reclamation in an aqueous environment, Chemosphere. 293 (2022), https://doi.org/10.1016/j. chemosphere.2022.133526 133526.
[50] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (3) (2022), https://doi.org/ 10.1016/j.jece.2022.107408 107408.
[51] Y.L. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022), https:// doi.org/10.1016/j.molliq.2021.117990 117990.
[52] X. Zhao, W. Ouyang, F. Hao, C. Lin, F. Wang, S. Han, X. Geng, Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine, Bioresour. Technol. 147 (2013) 338–344, https://doi.org/10.1016/j.biortech.2013.08.042.
[53] Y. Tao, S. Hu, S. Han, H. Shi, Y. Yang, H. Li, Y. Jiao, Q. Zhang, M.S. Akindolie, M. Ji, Z. Chen, Y. Zhang, Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32, Sci. Total Environ. 682 (2019) 59–69, https://doi.org/10.1016/j.scitotenv.2019.05.134.
[54] G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chem. Eng. Res. Des. 89 (2011) 2182– 2189, https://doi.org/10.1016/j.cherd.2010.11.024.
[55] I.D. Kovaios, C.A. Paraskeva, P.G. Koutsoukos, Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica, J. Colloid Interface Sci. 356 (2011) 277–285, https://doi.org/10.1016/j.jcis.2011.01.002.
[56] D.L.D. Lima, C.P. Silva, R.J. Schneider, V.I. Esteves, Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil, Talanta 85 (2011) 1494–1499, https://doi.org/10.1016/ j.talanta.2011.06.024.
[57] Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater. 241– 242 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.09.050.
[58] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust, Environ. Res. 172 (2019) 561–568, https://doi.org/10.1016/j.envres.2019.03.010.
[59] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. (China) 57 (2017) 180– 189, https://doi.org/10.1016/j.jes.2016.11.002.
[60] X. Wei, Z. Wu, Z. Wu, B.-C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.
[61] X. Wei, Z.Z. Wu, C. Du, Z.Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004.
[62] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/ 10.1016/j.apsusc.2017.07.237.
[63] W.W. Tang, G.M. Zeng, J.L. Gong, Y.Y.Y. Liu, X.Y. Wang, Y.Y.Y. Liu, Z.F. Liu, L. Chen, X.R. Zhang, D.Z. Tu, Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube, Chem. Eng. J. 211– 212 (2012) 470–478, https://doi.org/10.1016/j.cej.2012.09.102.
[64] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021) 19–32, https://doi.org/10.1016/j.cherd.2021.02.010.
[65] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sánchez-Mendieta, O. MartínHernández, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. (United Kingdom) 39 (2018) 2679–2690, https://doi.org/10.1080/ 09593330.2017.1365097.
[66] Y.u. Cao, S. Jiang, Y. Zhang, J. Xu, L. Qiu, L. Wang, Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar, J. Environ. Chem. Eng. 9 (4) (2021), https://doi.org/10.1016/ j.jece.2021.105727 105727.
[67] E.A. Allam, A.S.M. Ali, R.M. Elsharkawy, M.E. Mahmoud, Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: kinetic and adsorption studies, Environ. Nanotechnol. Monit. Manag. 16 (2021), https://doi.org/10.1016/j. enmm.2021.100481 100481.
[68] M. Bayati, M. Numaan, A. Kadhem, Z. Salahshoor, S. Qasim, H. Deng, J. Lin, Z. Yan, C.-H. Lin, M. Fidalgo de Cortalezzi, Adsorption of atrazine by laser induced graphitic material: an efficient, scalable and green alternative for pollution abatement, J. Environ. Chem. Eng. 8 (5) (2020), https://doi.org/10.1016/ j.jece.2020.104407 104407.
[69] J. Moreno-Pérez, P.S. Pauletto, A.M. Cunha, Á. Bonilla-Petriciolet, N.P.G. Salau, G.L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surf. A: Physicochem. Eng. Asp. 614 (2021), https://doi.org/10.1016/ j.colsurfa.2021.126170 126170.
[70] A. Zuorro, G. Maffei, R. Lavecchia, Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica, J. Environ. Chem. Eng. 5 (2017) 4121–4127, https://doi.org/10.1016/j.jece.2017.07.078.
dc.relation.citationendpage.spa.fl_str_mv 10
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 364
dc.rights.eng.fl_str_mv 2022 Elsevier B.V. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
2022 Elsevier B.V. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0167732222015525
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/10735/1/Microporous%20activated%20carbon%20from%20the%20fruits%20of%20the%20invasive%20species%20Hovenia%20dulcis%20to%20remove%20the%20herbicide%20atrazine%20from%20waters.pdf
https://repositorio.cuc.edu.co/bitstream/11323/10735/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/10735/3/Microporous%20activated%20carbon%20from%20the%20fruits%20of%20the%20invasive%20species%20Hovenia%20dulcis%20to%20remove%20the%20herbicide%20atrazine%20from%20waters.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/10735/4/Microporous%20activated%20carbon%20from%20the%20fruits%20of%20the%20invasive%20species%20Hovenia%20dulcis%20to%20remove%20the%20herbicide%20atrazine%20from%20waters.pdf.jpg
bitstream.checksum.fl_str_mv 14422517c1a0e00928a061beceab0bec
2f9959eaf5b71fae44bbf9ec84150c7a
7dea1e569ef5517b42e31794c7c589cb
5446fa06961aa93d34638519a73e8417
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400034038808576
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)2022 Elsevier B.V. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfLazarotto, Joseane S.689d441aab7420af9392e82ddc03c19bSchnorr, Carlos Eduardoef1b79ab5135676fbc067e6672403f6e600georgin, jordana3cb4434fbc1c630e529d2cddd15f71d4600Dison S.P., Franco617ef49ebc758ce5201754e858ead2a2600Netto, Matias S.bbafe7978c27efedfcbbfaf18ef632b6Piccilli, Daniel G.A.7ef1afbafe4b0172b98da9aeb6c9e13dSilva Oliveira, Luis Felipe615225808861349d2b8b4aa0934855d9Bohn Rhoden, Cristiano Rodrigo90d24b58283391b22c3b963a61662362600Dotto, Guilherme Luiz3ab8d419d53601feddd7cb528ff64c216002024-02-19T21:49:24Z20242024-02-19T21:49:24Z2022Joseane S. Lazarotto, Carlos Schnorr, Jordana Georgin, Dison S.P. Franco, Matias S. Netto, Daniel G.A. Piccilli, Luis F.O. Silva, Cristiano R.B. Rhoden, Guilherme L. Dotto, Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters, Journal of Molecular Liquids, Volume 364, 2022, 120014, ISSN 0167-7322, https://doi.org/10.1016/j.molliq.2022.1200140167-7322https://hdl.handle.net/11323/1073510.1016/j.molliq.2022.1200141873-3166Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/The species Hovenia dulcis has become a major issue for the Brazilian biome due to its high adaptation and accelerated propagation, putting the local biodiversity at risk. In this sense, this study sought to generate a new purpose for the fruits of this peculiar species. They were carbonized with ZnCl2 to produce porous activated carbon, which was used to remove the herbicide atrazine from aqueous solutions. The Hovenia dulcis activated carbon (Hd-AC) presented a surface area of 898.4 m2/g, with narrow pores with an average diameter of 1.24 nm and a pore volume of 0.296 cm3 g−1. Hd-AC for atrazine adsorption was efficient at a pH of 6.0 for an adsorbent dosage of 0.5 g/L, where the adsorption capacity was 58 mg g−1 at 328 K. The isothermal curves showed a good adjustment to the Freundlich isotherm. The thermodynamic results indicated that herbicide adsorption was spontaneous, favorable, and endothermic (ΔH° = 8.21 kJ mol−1). Besides, the linear driving force model (LDF) was used satisfactorily to describe the kinetic behavior of atrazine. Also, in treating a sample of river water contaminated with atrazine, Hd-AC showed high performance, reaching the removal of 70 % of the emerging pollutant. Therefore, using the residual fruits of the Hovenia dulcis as biomass to prepare a highly porous adsorbent reveals a promising alternative.10 páginasapplication/pdfengElsevierNetherlandshttps://www.sciencedirect.com/science/article/pii/S0167732222015525Microporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from watersArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Molecular Liquids[1] M. Sbizzaro, S. César Sampaio, R. Rinaldo dos Reis, F. de Assis Beraldi, D. Medina Rosa, C. Maria Branco de Freitas Maia, C. Saramago de Carvalho Marques dos Santos Cordovil, C. Tillvitz do Nascimento, E. Antonio da Silva, C. Eduardo Borba, Effect of production temperature in biochar properties from bamboo culm and its influences on atrazine adsorption from aqueous systems, J. Mol. Liq. 343 (2021) 117667. doi: 10.1016/j.molliq.2021.117667.[2] G. Bhandari, K. Atreya, P.T.J. Scheepers, V. Geissen, Concentration and distribution of pesticide residues in soil: non-dietary human health risk assessment, Chemosphere 253 (2020), https://doi.org/10.1016/j. chemosphere.2020.126594 126594.[3] P. Palma, M. Köck-Schulmeyer, P. Alvarenga, L. Ledo, I.R. Barbosa, M. López de Alda, D. Barceló, Risk assessment of pesticides detected in surface water of the Alqueva reservoir (Guadiana basin, southern of Portugal), Sci. Total Environ. 488–489 (2014) 208–219, https://doi.org/10.1016/j.scitotenv.2014.04.088.[4] C. Postigo, D. Barceló, Synthetic organic compounds and their transformation products in groundwater: occurrence, fate and mitigation, Sci. Total Environ. 503–504 (2015) 32–47, https://doi.org/10.1016/j.scitotenv.2014.06.019.[5] A. Aldeguer Esquerdo, I. Sentana Gadea, P.J. Varo Galvañ, D. Prats Rico, Efficacy of atrazine pesticide reduction in aqueous solution using activated carbon, ozone and a combination of both, Sci. Total Environ. 764 (2021), https://doi. org/10.1016/j.scitotenv.2020.144301 144301.[6] Z. Dehgani, M. Sedghi Asl, M. Ghaedi, M.M. Sabzehmeidani, E. Adhami, Removal of paraquat from aqueous solutions by a bentonite modified zerovalent iron adsorbent, New J. Chem. 44 (2020) 13368–13376, https://doi.org/ 10.1039/d0nj02259d.[7] W. Shan, W. Hu, Y. Wen, X. Ding, X. Ma, W. Yan, Y. Xia, Evaluation of atrazine neurodevelopment toxicity in vitro-application of hESC-based neural differentiation model, Reprod. Toxicol. 103 (2021) 149–158, https://doi.org/ 10.1016/j.reprotox.2021.06.009.[8] L.N. Vandenberg, T. Colborn, T.B. Hayes, J.J. Heindel, D.R. Jacobs, D.H. Lee, T. Shioda, A.M. Soto, F.S. vom Saal, W.V. Welshons, R.T. Zoeller, J.P. Myers, Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses, Endocr. Rev. 33 (2012) 378–455, https://doi. org/10.1210/er.2011-1050.[9] B. Liu, C. Du, J.J. Chen, J.Y. Zhai, Y. Wang, H.L. Li, Preparation of well-developed mesoporous activated carbon fibers from plant pulp fibers and its adsorption of methylene blue from solution, Chem. Phys. Lett. 771 (2021), https://doi.org/ 10.1016/j.cplett.2021.138535 138535.[10] J. Bu, L. Yuan, N. Zhang, D. Liu, Y. Meng, X. Peng, High-efficiency adsorption of methylene blue dye from wastewater by a thiosemicarbazide functionalized graphene oxide composite, Diam. Relat. Mater. 101 (2020), https://doi.org/ 10.1016/j.diamond.2019.107604 107604.[11] A.-D.-C. Borja-Urzola, R.S. García-Gómez, M. Bernal-González, M.-D.-C. DuránDomínguez-de-Bazúa, Chitosan-calcite from shrimp residues: a low-cost adsorbent for three triazines removal from aqueous media, Mater. Today Commun. 26 (2021), https://doi.org/10.1016/j.mtcomm.2021.102131 102131.[12] A. Mandal, N. Singh, Optimization of atrazine and imidacloprid removal from water using biochars: designing single or multi-staged batch adsorption systems, Int. J. Hyg. Environ. Health. 220 (2017) 637–645, https://doi.org/ 10.1016/j.ijheh.2017.02.010.[13] E. Tchikuala, P. Mourão, J. Nabais, Valorisation of natural fibres from African baobab wastes by the production of activated carbons for adsorption of diuron, Proc. Eng. 200 (2017) 399–407, https://doi.org/10.1016/j.proeng.2017.07.056.[14] T. Tongur, E. Ayranci, Adsorption and electrosorption of paraquat, diquat and difenzoquat from aqueous solutions onto activated carbon cloth as monitored by in-situ uv-visible spectroscopy, J. Environ. Chem. Eng. 9 (4) (2021), https:// doi.org/10.1016/j.jece.2021.105566 105566.[15] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto, High-performance removal of 2,4- dichlorophenoxyacetic acid herbicide in water using activated carbon derived from Queen palm fruit endocarp (Syagrus romanzoffiana), J. Environ Chem. Eng. 9 (1) (2021), https://doi.org/10.1016/j.jece.2020.104911 104911.[16] I. Anastopoulos, M.J. Ahmed, E.H. Hummadi, Eucalyptus-based materials as adsorbents for heavy metals and dyes removal from (waste)waters, J. Mol. Liq. 356 (2022). 10.1016/j.molliq.2022.118864, https://doi.org/10.1016/ j.molliq.2022.118864 118864.[17] M. Usman, I. Anastopoulos, Y. Hamid, A. Wakeel, Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: effects on soil quality and plant growth, Environ. Sci. Pollut. Res. (2022), https://doi.org/10.1007/s11356-022-19192-0.[18] I. Anastopoulos, J.O. Ighalo, C. Adaobi Igwegbe, D.A. Giannakoudakis, K.S. Triantafyllidis, I. Pashalidis, D. Kalderis, Sunflower-biomass derived adsorbents for toxic/heavy metals removal from (waste) water, J. Mol. Liq. 342 (2021). 10.1016/j.molliq.2021.117540, https://doi.org/10.1016/ j.molliq.2021.117540 117540.[19] K. Philippou, I. Anastopoulos, I. Pashalidis, A. Hosseini-Bandegharaei, M. Usman, M. Kornaros, M. Omirou, D. Kalderis, J. V Milojkovic´, Z.R. Lopicˇic´, M. Abatal, Chapter 6 - the application of pine-based adsorbents to remove potentially toxic elements from aqueous solutions, in: A. Núñez-Delgado (Ed.), Sorbents Mater. Control. Environ. Pollut. Elsevier, 2021, 113–133, doi: 10.1016/B978-0-12-820042-1.00016-X.[20] P. Boguta, Z. Sokołowska, K. Skic, A. Tomczyk, Chemically engineered biochar – effect of concentration and type of modifier on sorption and structural properties of biochar from wood waste, Fuel. 256 (2019), https://doi.org/ 10.1016/j.fuel.2019.115893 115893.[21] S. Kopachon, K. Suriya, K. Hardwick, G. Pakaad, J.F. Maxwell, V. Anusarnsunthorn, D. Blakesley, N.C. Garwood, S. Elliot, Forest restoration research in Northern Thailand, 1. The fruits, seeds and seedlings of Hovenia dulcis Thunb (Rhamnaceae), Nat. Hist. Bull. Siam Soc. 44 (1996) 41–52.[22] B. Yang, Y. Luo, Q. Wu, Q. Yang, J. Kan, Hovenia dulcis polysaccharides: influence of multi-frequency ultrasonic extraction on structure, functional properties, and biological activities, Int. J. Biol. Macromol. 148 (2020) 1010– 1020, https://doi.org/10.1016/j.ijbiomac.2020.01.006.[23] Y. Yu, Q. An, L. Jin, N. Luo, Z. Li, J. Jiang, Unraveling sorption of Cr (VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar: implicit mechanism and application, Bioresour. Technol. 297 (2020) 122466.[24] T.K. Hyun, S.H. Eom, C.Y. Yu, T. Roitsch, Hovenia dulcis - an Asian traditional herb, Planta Med. 76 (2010) 943–949, https://doi.org/10.1055/s-0030-1249776.[25] L. Kuglerová, E.M. Hasselquist, J.S. Richardson, R.A. Sponseller, D.P. Kreutzweiser, H. Laudon, Management perspectives on Aqua incognita: connectivity and cumulative effects of small natural and artificial streams in boreal forests, Hydrol. Process. 31 (2017) 4238–4244, https://doi.org/10.1002/ hyp.11281.[26] S. Medina-Villar, Á. Alonso, P. Castro-Díez, M.E. Pérez-Corona, Allelopathic potentials of exotic invasive and native trees over coexisting understory species: the soil as modulator, Plant Ecol. 218 (2017) 579–594, https://doi.org/ 10.1007/s11258-017-0713-2.[27] E. Glueckauf, Theory of chromatography. Part 10—Formulæ for diffusion into spheres and their application to chromatography, Trans. Faraday Soc. 51 (1955) 1540–1551, https://doi.org/10.1039/TF9555101540.[28] T.R. Steinheimer, U.S.G. Survey, M.G. Ondrus, Liquid chromatographic determination of atrazine and its degradation products in water B, 1990.[29] H.M. Mozammel, O. Masahiro, S.C. Bhattacharya, Activated charcoal from coconut shell using ZnCl2 activation, Biomass Bioenergy 22 (2002) 397–400, https://doi.org/10.1016/S0961-9534(02)00015-6.[30] A.L. Cazetta, A.M.M. Vargas, E.M. Nogami, M.H. Kunita, M.R. Guilherme, A.C. Martins, T.L. Silva, J.C.G. Moraes, V.C. Almeida, NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption, Chem. Eng. J. 174 (2011) 117–125, https://doi.org/10.1016/j.cej.2011.08.058.[31] V.E. Efeovbokhan, E.E. Alagbe, B. Odika, R. Babalola, T.E. Oladimeji, O.G. Abatan, E.O. Yusuf, Preparation and characterization of activated carbon from plantain peel and coconut shell using biological activators, J. Phys. Conf. Ser. 1378 (3) (2019), https://doi.org/10.1088/1742-6596/1378/3/032035 032035.[32] X. Du, W. Zhao, S. Ma, M. Ma, T. Qi, Y. Wang, C. Hua, Effect of ZnCl2 impregnation concentration on the microstructure and electrical performance of ramie-based activated carbon hollow fiber, Ionics (Kiel) 22 (2016) 545–553, https://doi.org/10.1007/s11581-015-1571-3.[33] J. Georgin, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, L.F.O. Silva, G.L. Dotto, Efficient removal of naproxen from aqueous solution by highly porous activated carbon produced from Grapetree (Plinia cauliflora) fruit peels, J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/ 10.1016/j.jece.2021.106820 106820.[34] C.M. Kerkhoff, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, J. Georgin, E.L. Foletto, D.G.A. Piccilli, L.F.O. Silva, G.L. Dotto, Adsorption of ketoprofen and paracetamol and treatment of a synthetic mixture by novel porous carbon derived from Butia capitata endocarp, J. Mol. Liq. 339 (2021), https://doi.org/ 10.1016/j.molliq.2021.117184 117184.[35] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide, J. Environ Chem. Eng. 9 (6) (2021), https://doi.org/10.1016/j.jece.2021.106843 106843.[36] KSW Sing, Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984), Pure Appl. Chem. 57 (1985) 603–619. https://doi. org/10.1351/pac198557040603.[37] Y.L.d.O. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, P. Grassi, D.G.A. Piccilli, M.L.S. Oliveira, G.L. Dotto, Powdered biosorbent from pecan pericarp (Carya illinoensis) as an efficient material to uptake methyl violet 2B from effluents in batch and column operations, Adv. Powder Technol. 31 (7) (2020) 2843–2852.[38] D.S.P. Franco, J. Georgin, M.S. Netto, J.L.S. Fagundez, N.P.G. Salau, D. Allasia, G.L. Dotto, Conversion of the forest species Inga marginata and Tipuana tipu wastes into biosorbents: dye biosorption study from isotherm tomass transfer, Environ. Technol. Innov. 22 (2021), https://doi.org/10.1016/j.eti.2021.101521 101521.[39] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012.[40] L. Muniandy, F. Adam, A.R. Mohamed, E.P. Ng, The synthesis and characterization of high purity mixed microporous/mesoporous activated carbon from rice husk using chemical activation with NaOH and KOH, Microporous Mesoporous Mater. 197 (2014) 316–323, https://doi.org/ 10.1016/j.micromeso.2014.06.020.[41] M. Jayachandran, S. Kishore Babu, T. Maiyalagan, N. Rajadurai, T. Vijayakumar, Activated carbon derived from bamboo-leaf with effect of various aqueous electrolytes as electrode material for supercapacitor applications, Mater. Lett. 301 (2021), https://doi.org/10.1016/j.matlet.2021.130335 130335.[42] J. Georgin, K. da Boit Martinello, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, M. Yilmaz, L.F.O. Silva, G.L. Dotto, Residual peel of pitaya fruit (Hylocereus undatus) as a precursor to obtaining an efficient carbon-based adsorbent for the removal of metanil yellow dye from water, J. Environ Chem. Eng. 10 (1) (2022), https://doi.org/10.1016/j.jece.2021.107006 107006.[43] J.S. Lazarotto, K. da Boit Martinello, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, L.F.O. Silva, E.C. Lima, G.L. Dotto, Application of araçá fruit husks (Psidium cattleianum) in the preparation of activated carbon with FeCl3 for atrazine herbicide adsorption, Chem. Eng. Res. Des. 180 (2022) 67–78, https:// doi.org/10.1016/j.cherd.2022.01.044.[44] E. Yagmur, Y. Gokce, S. Tekin, N.I. Semerci, Z. Aktas, Characteristics and comparison of activated carbons prepared from oleaster (Elaeagnus angustifolia L.) fruit using KOH and ZnCl2, Fuel. 267 (2020), https://doi.org/10.1016/ j.fuel.2020.117232 117232.[45] V.A. Shirbhate, D.P. Gulwade, S.E. Bhandarkar, S.V. Narsing, Preparation and spectroscopic characterization of Pistachio nut shell’s activated carbon using ZnCl2 for removal of transition metal ions, Mater. Today Proc. 29 (2020) 1259– 1264, https://doi.org/10.1016/j.matpr.2020.06.233.[46] D. Tian, Z. Xu, D. Zhang, W. Chen, J. Cai, H. Deng, Z. Sun, Y. Zhou, Micro– mesoporous carbon from cotton waste activated by FeCl3/ZnCl2: preparation, optimization, characterization and adsorption of methylene blue and eriochrome black T, J. Solid State Chem. 269 (2019) 580–587, https://doi.org/ 10.1016/j.jssc.2018.10.035.[47] X. Xing, W. Jiang, S. Li, X. Zhang, W. Wang, Preparation and analysis of straw activated carbon synergetic catalyzed by ZnCl2-H3PO4 through hydrothermal carbonization combined with ultrasonic assisted immersion pyrolysis, Waste Manag. 89 (2019) 64–72, https://doi.org/10.1016/j.wasman.2019.04.002.[48] Q.A. Binh, V.H. Nguyen, P. Kajitvichyanukul, Influence of pyrolysis conditions of modified corn cob bio-waste sorbents on adsorption mechanism of atrazine in contaminated water, Environ. Technol. Innov. 26 (2022), https://doi.org/ 10.1016/j.eti.2022.102381 102381.[49] G. Lartey-Young, L. Ma, Optimization, equilibrium, adsorption behaviour of Cu/ Zn/Fe LDH and LDHBC composites towards atrazine reclamation in an aqueous environment, Chemosphere. 293 (2022), https://doi.org/10.1016/j. chemosphere.2022.133526 133526.[50] P.T. Hernandes, D.S.P. Franco, J. Georgin, N.P.G. Salau, G.L. Dotto, Investigation of biochar from Cedrella fissilis applied to the adsorption of atrazine herbicide from an aqueous medium, J. Environ. Chem. Eng. 10 (3) (2022), https://doi.org/ 10.1016/j.jece.2022.107408 107408.[51] Y.L. Salomón, J. Georgin, D.S.P. Franco, M.S. Netto, D.G.A. Piccilli, E.L. Foletto, D. Pinto, M.L.S. Oliveira, G.L. Dotto, Adsorption of atrazine herbicide from water by diospyros kaki fruit waste activated carbon, J. Mol. Liq. 347 (2022), https:// doi.org/10.1016/j.molliq.2021.117990 117990.[52] X. Zhao, W. Ouyang, F. Hao, C. Lin, F. Wang, S. Han, X. Geng, Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine, Bioresour. Technol. 147 (2013) 338–344, https://doi.org/10.1016/j.biortech.2013.08.042.[53] Y. Tao, S. Hu, S. Han, H. Shi, Y. Yang, H. Li, Y. Jiao, Q. Zhang, M.S. Akindolie, M. Ji, Z. Chen, Y. Zhang, Efficient removal of atrazine by iron-modified biochar loaded Acinetobacter lwoffii DNS32, Sci. Total Environ. 682 (2019) 59–69, https://doi.org/10.1016/j.scitotenv.2019.05.134.[54] G. Moussavi, R. Khosravi, The removal of cationic dyes from aqueous solutions by adsorption onto pistachio hull waste, Chem. Eng. Res. Des. 89 (2011) 2182– 2189, https://doi.org/10.1016/j.cherd.2010.11.024.[55] I.D. Kovaios, C.A. Paraskeva, P.G. Koutsoukos, Adsorption of atrazine from aqueous electrolyte solutions on humic acid and silica, J. Colloid Interface Sci. 356 (2011) 277–285, https://doi.org/10.1016/j.jcis.2011.01.002.[56] D.L.D. Lima, C.P. Silva, R.J. Schneider, V.I. Esteves, Development of an ELISA procedure to study sorption of atrazine onto a sewage sludge-amended luvisol soil, Talanta 85 (2011) 1494–1499, https://doi.org/10.1016/ j.talanta.2011.06.024.[57] Y. Tang, S. Luo, Y. Teng, C. Liu, X. Xu, X. Zhang, L. Chen, Efficient removal of herbicide 2,4-dichlorophenoxyacetic acid from water using Ag/reduced graphene oxide co-decorated TiO2 nanotube arrays, J. Hazard. Mater. 241– 242 (2012) 323–330, https://doi.org/10.1016/j.jhazmat.2012.09.050.[58] Y. Gao, Z. Jiang, J. Li, W. Xie, Q. Jiang, M. Bi, Y. Zhang, A comparison of the characteristics and atrazine adsorption capacity of co-pyrolysed and mixed biochars generated from corn straw and sawdust, Environ. Res. 172 (2019) 561–568, https://doi.org/10.1016/j.envres.2019.03.010.[59] L. Yue, C.J. Ge, D. Feng, H. Yu, H. Deng, B. Fu, Adsorption–desorption behavior of atrazine on agricultural soils in China, J. Environ. Sci. (China) 57 (2017) 180– 189, https://doi.org/10.1016/j.jes.2016.11.002.[60] X. Wei, Z. Wu, Z. Wu, B.-C. Ye, Adsorption behaviors of atrazine and Cr(III) onto different activated carbons in single and co-solute systems, Powder Technol. 329 (2018) 207–216, https://doi.org/10.1016/j.powtec.2018.01.060.[61] X. Wei, Z.Z. Wu, C. Du, Z.Z. Wu, B.C. Ye, G. Cravotto, Enhanced adsorption of atrazine on a coal-based activated carbon modified with sodium dodecyl benzene sulfonate under microwave heating, J. Taiwan Inst. Chem. Eng. 77 (2017) 257–262, https://doi.org/10.1016/j.jtice.2017.04.004.[62] Y. Zhang, B. Cao, L. Zhao, L. Sun, Y. Gao, J. Li, F. Yang, Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions, Appl. Surf. Sci. 427 (2018) 147–155, https://doi.org/ 10.1016/j.apsusc.2017.07.237.[63] W.W. Tang, G.M. Zeng, J.L. Gong, Y.Y.Y. Liu, X.Y. Wang, Y.Y.Y. Liu, Z.F. Liu, L. Chen, X.R. Zhang, D.Z. Tu, Simultaneous adsorption of atrazine and Cu (II) from wastewater by magnetic multi-walled carbon nanotube, Chem. Eng. J. 211– 212 (2012) 470–478, https://doi.org/10.1016/j.cej.2012.09.102.[64] M.B. Chabalala, M.Z. Al-Abri, B.B. Mamba, E.N. Nxumalo, Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes, Chem. Eng. Res. Des. 169 (2021) 19–32, https://doi.org/10.1016/j.cherd.2021.02.010.[65] H.P. Toledo-Jaldin, A. Blanco-Flores, V. Sánchez-Mendieta, O. MartínHernández, Influence of the chain length of surfactant in the modification of zeolites and clays. Removal of atrazine from water solutions, Environ. Technol. (United Kingdom) 39 (2018) 2679–2690, https://doi.org/10.1080/ 09593330.2017.1365097.[66] Y.u. Cao, S. Jiang, Y. Zhang, J. Xu, L. Qiu, L. Wang, Investigation into adsorption characteristics and mechanism of atrazine on nano-MgO modified fallen leaf biochar, J. Environ. Chem. Eng. 9 (4) (2021), https://doi.org/10.1016/ j.jece.2021.105727 105727.[67] E.A. Allam, A.S.M. Ali, R.M. Elsharkawy, M.E. Mahmoud, Framework of nano metal oxides N-NiO@N-Fe3O4@N-ZnO for adsorptive removal of atrazine and bisphenol-A from wastewater: kinetic and adsorption studies, Environ. Nanotechnol. Monit. Manag. 16 (2021), https://doi.org/10.1016/j. enmm.2021.100481 100481.[68] M. Bayati, M. Numaan, A. Kadhem, Z. Salahshoor, S. Qasim, H. Deng, J. Lin, Z. Yan, C.-H. Lin, M. Fidalgo de Cortalezzi, Adsorption of atrazine by laser induced graphitic material: an efficient, scalable and green alternative for pollution abatement, J. Environ. Chem. Eng. 8 (5) (2020), https://doi.org/10.1016/ j.jece.2020.104407 104407.[69] J. Moreno-Pérez, P.S. Pauletto, A.M. Cunha, Á. Bonilla-Petriciolet, N.P.G. Salau, G.L. Dotto, Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite, Colloids Surf. A: Physicochem. Eng. Asp. 614 (2021), https://doi.org/10.1016/ j.colsurfa.2021.126170 126170.[70] A. Zuorro, G. Maffei, R. Lavecchia, Kinetic modeling of azo dye adsorption on non-living cells of Nannochloropsis oceanica, J. Environ. Chem. Eng. 5 (2017) 4121–4127, https://doi.org/10.1016/j.jece.2017.07.078.101364AtrazineHovenia dulcisInvasive speciesResidual fruitsRiver waterORIGINALMicroporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters.pdfMicroporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters.pdfArtículoapplication/pdf1995398https://repositorio.cuc.edu.co/bitstream/11323/10735/1/Microporous%20activated%20carbon%20from%20the%20fruits%20of%20the%20invasive%20species%20Hovenia%20dulcis%20to%20remove%20the%20herbicide%20atrazine%20from%20waters.pdf14422517c1a0e00928a061beceab0becMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstream/11323/10735/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTMicroporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters.pdf.txtMicroporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters.pdf.txtExtracted texttext/plain52940https://repositorio.cuc.edu.co/bitstream/11323/10735/3/Microporous%20activated%20carbon%20from%20the%20fruits%20of%20the%20invasive%20species%20Hovenia%20dulcis%20to%20remove%20the%20herbicide%20atrazine%20from%20waters.pdf.txt7dea1e569ef5517b42e31794c7c589cbMD53open accessTHUMBNAILMicroporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters.pdf.jpgMicroporous activated carbon from the fruits of the invasive species Hovenia dulcis to remove the herbicide atrazine from waters.pdf.jpgGenerated Thumbnailimage/jpeg16253https://repositorio.cuc.edu.co/bitstream/11323/10735/4/Microporous%20activated%20carbon%20from%20the%20fruits%20of%20the%20invasive%20species%20Hovenia%20dulcis%20to%20remove%20the%20herbicide%20atrazine%20from%20waters.pdf.jpg5446fa06961aa93d34638519a73e8417MD54open access11323/10735oai:repositorio.cuc.edu.co:11323/107352024-02-20 03:01:09.784An error occurred on the license name.|||https://creativecommons.org/licenses/by-nc-nd/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=0000-0002-2047-2107ef1b79ab5135676fbc067e6672403f6e6000000-0003-1692-565X3cb4434fbc1c630e529d2cddd15f71d46000000-0001-6171-422490d24b58283391b22c3b963a616623626000000-0002-4413-81383ab8d419d53601feddd7cb528ff64c21600