Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana
La planificación de un proyecto para la generación de energía eólica es compleja, dado que hay que tener en cuenta una gran cantidad de variables para la selección de zonas aceptables para ubicar este tipo de proyectos. Una de las principales dificultades para desarrollar un parque offshore wind es...
- Autores:
-
Mangones Cordero, Amanda De Jesus
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10362
- Acceso en línea:
- https://hdl.handle.net/11323/10362
https://repositorio.cuc.edu.co/
- Palabra clave:
- GIS
AHP
FAHP y Offshore wind
FAHP and Offshore wind
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
RCUC2_051ac86abc138bba3da1fe68c6f7316d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10362 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
title |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
spellingShingle |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana GIS AHP FAHP y Offshore wind FAHP and Offshore wind |
title_short |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
title_full |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
title_fullStr |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
title_full_unstemmed |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
title_sort |
Técnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombiana |
dc.creator.fl_str_mv |
Mangones Cordero, Amanda De Jesus |
dc.contributor.advisor.none.fl_str_mv |
Ospino Castro, Adalberto Robles Algarín, Carlos |
dc.contributor.author.none.fl_str_mv |
Mangones Cordero, Amanda De Jesus |
dc.contributor.jury.none.fl_str_mv |
Moreno Rocha, Christian Muñoz Maldonado, Yesid |
dc.subject.proposal.spa.fl_str_mv |
GIS AHP FAHP y Offshore wind |
topic |
GIS AHP FAHP y Offshore wind FAHP and Offshore wind |
dc.subject.proposal.eng.fl_str_mv |
FAHP and Offshore wind |
description |
La planificación de un proyecto para la generación de energía eólica es compleja, dado que hay que tener en cuenta una gran cantidad de variables para la selección de zonas aceptables para ubicar este tipo de proyectos. Una de las principales dificultades para desarrollar un parque offshore wind es encontrar la ubicación idónea para construirlo; esto puede llevar años de estudios de factibilidad. El objetivo principal de esta investigación es utilizar el proceso de jerarquía analítica difusa (FAHP) para priorizar un grupo de criterios y subcriterios, como apoyo a la toma de decisiones para la selección de áreas adecuadas para la implementación de proyectos de offshore wind en el mar caribe colombiano. En conjunto a un sistema de Información geográfica (GIS) el cual ayuda a desglosar las características físicas en la superficie del mar caribe para la gestión, análisis y la visualización de datos geográficos. Esta herramienta desempeña un papel crítico en la evaluación y selección de los sitios que cumplan con todos los criterios evaluados, dado que este proporcionaría una base de datos de indicadores y la visualización de mapas. Los criterios a aplicar en este estudio fueron seleccionados en base a los parámetros más recurrentemente empleados en otros trabajos de investigación. Se presentan cuatro criterios: técnico, ambiental, social y económico. Y catorce subcriterios. Además, todos los factores fueron priorizados por medio de la opinión expertos en el tema y utilizando el FAHP. Los resultados mostraron que los subcriterios más relevantes fueron las áreas protegidas (19,59%) y la velocidad del viento (13,61%). Finalmente, aplicando la herramienta ArcGIS Pro se detectaron cinco zonas que cumplen con todos los criterios escogidos, lo cual permite definir las áreas más factibles para la instalación de parques offshore wind, Estas se encuentran ubicadas en la parte norte del país, más exactamente en los departamentos de: Guajira, Magdalena, Atlántico y Bolívar. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-04T14:27:47Z |
dc.date.available.none.fl_str_mv |
2023-08-04T14:27:47Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10362 |
dc.identifier.instname.spa.fl_str_mv |
Corporacion Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/10362 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporacion Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ajanaku, B. A., Strager, M. P., & Collins, A. R. (2022). GIS-based multi-criteria decision analysis of utility-scale wind farm site suitability in West Virginia. GeoJournal, 87(5), 3735–3757. https://doi.org/10.1007/s10708-021-10453-y Alkhalidi, A., Kaylani, H., & Alawawdeh, N. (2023). Technology Assessment of offshore wind turbines: Floating platforms – Validated by case study. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2022.100831 Arco De Mora, A., Canales, S., Galiana, L., & Jado, J. (2013). Análisis y Diseño de un Parque Eólico Offshore en EE . UU . Escuela de organizacion industrial. Aşchilean, I., Badea, G., Giurca, I., Naghiu, G. S., & Iloaie, F. G. (2017). Choosing the Optimal Technology to Rehabilitate the Pipes in Water Distribution Systems Using the AHP Method. Energy Procedia, 112, 19–26. https://doi.org/10.1016/J.EGYPRO.2017.03.1109 Ashkezari, A. D., Hosseinzadeh, N., Chebli, A., & Albadi, M. (2018). Development of an enterprise Geographic Information System (GIS) integrated with smart grid. Sustainable Energy, Grids and Networks, 14, 25–34. https://doi.org/10.1016/j.segan.2018.02.001 Aydin, N. Y., Kentel, E., & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364–373. https://doi.org/10.1016/j.rser.2009.07.023 Ayodele, T. R., Ogunjuyigbe, A. S. O., Odigie, O., & Munda, J. L. (2018). A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Applied Energy, 228, 1853–1869. https://doi.org/10.1016/J.APENERGY.2018.07.051 Bachchhav, B., Bharne, S., Choudhari, A., & Pattanshetti, S. (2023). Selection of spot welding electrode material by AHP, TOPSIS, and SAW. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.02.253 Bahaj, A. B. S., Mahdy, M., Alghamdi, A. S., & Richards, D. J. (2020). New approach to determine the Importance Index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies. Renewable Energy, 152, 441–457. https://doi.org/10.1016/J.RENENE.2019.12.070 Breton, S. P., & Moe, G. (2009). Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, 34(3), 646–654. https://doi.org/10.1016/J.RENENE.2008.05.040 Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. https://doi.org/10.1016/0165-0114(85)90090-9 Candel, L. (2014). Diseño e Impacto Ambiental de Un Parque Eólico Offshore. Universidad Politecnica De Cartagena. Carlos, R., Adalberto, O., & Autor, M. (n.d.). An Analytic Hierarchy Process Based Approach for Evaluating Feasibility Offshore Wind Farm on the Colombian Caribbean Coast . 1–10. Cerdá, E., André, F. J., & De Castro, L. M. (2012). Las energías renovables en el ámbito internacional. Cuadernos Económicos de ICE, 83. https://doi.org/10.32796/cice.2012.83.6031 Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2 Cortés, M., & Andrea, P. (2013). ENERGÍA EÓLICA: VENTAJAS Y DESVENTAJAS DE SU UTILIZACIÓN EN COLOMBIA ENERGÍA EÓLICA: VENTAJAS Y DESVENTAJAS DE SU UTILIZACIÓN EN COLOMBIA TABLA DE CONTENIDO CONTENIDO. Costoya, X., deCastro, M., Santos, F., Sousa, M. C., & Gómez-Gesteira, M. (2019). Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178, 356–367. https://doi.org/10.1016/J.ENERGY.2019.04.121 Cullinane, M., Judge, F., O’Shea, M., Thandayutham, K., & Murphy, J. (2022). Subsea superconductors: The future of offshore renewable energy transmission? In Renewable and Sustainable Energy Reviews (Vol. 156). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111943 David, C., Bastidas, H., Raúl, A. :, Rodríguez, C., & Pulido, P. S. (2022). IMPACTO EN EL PRECIO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DEBIDO A LA INCORPORACIÓN DE FUENTES NO CONVENCIONALES DE ENERGÍA RENOVABLE Deveci, M., Ozcan, E., & John, R. (2020a, February 1). Offshore wind farms: A fuzzy approach to site selection in a black sea region. 2020 IEEE Texas Power and Energy Conference, TPEC 2020. https://doi.org/10.1109/TPEC48276.2020.9042530 Felipe, J., & Guerrero, M. (2020). ASSESSMENT OF THE DEVELOPMENT OF AN OFFSHORE WIND ENERGY PROJECT IN THE ARCHIPELAGO OF SAN ANDRES, PROVIDENCIA AND SANTA CATALINA FROM A COST- EFFICIENCY PERSPECTIVE (Issue December). Johns Hopkins University. Fetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17–28. https://doi.org/10.1016/J.OCECOAMAN.2015.02.005 Gavériaux, L., Laverrière, G., Wang, T., Maslov, N., & Claramunt, C. (2019). GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Annals of GIS, 25(3), 207–218. https://doi.org/10.1080/19475683.2019.1618393 Geometry, R., Analysis, G., Efecto, E. L., Aporte, D. E. L., Del, D. E. S., Dique, D. E. L., La, E. N., Cartagena, B. D. E., Galeano, A., Guillermo, J., Mu, C., Actores, S. U. S., León-Sicard, T., de Prager, M. S., & Acevedo Osorio, Á. (2017). De colombia. Documento Interno Corporación Ecofondo. Bogota, 41(3–4), 296–310. http://dx.doi.org/10.1080/21683565.2017.1285843%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Estado+actual+y+retos+de+la+agroecología+en+el+contexto+de+la+política+agraria+colombiana#0 Gil-García, I. C., Ramos-Escudero, A., García-Cascales, M. S., Dagher, H., & Molina-García, A. (2022). Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case. Renewable Energy, 183, 130–147. https://doi.org/10.1016/j.renene.2021.10.058 Global Wind Energy Council (GWEC). (2022). Global Wind Report 2022. https://gwec.net/wp-content/uploads/2022/04/Annual-Wind-Report-2022_screen_final_April.pdf Gomez, E., & Alzate, Y. (2022). Estudio de prefactibilidad de un proyecto que evalúe la implementación de paneles solares en siete instituciones educativas en el municipio de chinchiná caldas mediante el sistema general de regalías. Universidad EAFIT. Gonca, C. H. (2009). Remote sensing and gis techniques for temporal evaluation of environmental impacts on major drinking water dam and basin of metropolis Istanbul. Fresenius Environmental Bulletin, 261–269. https://www.scopus.com/inward/record.uri?eid=2-s2.0- González-Serrano, A., & Ordoñez-Octavo, R. (2011). Análisis del impacto en la red eléctrica al adicionar nueva capacidad en la CNLV. 133. http://132.248.52.100:8080/xmlui/handle/132.248.52.100/312?show=full Guerrero Hoyos, B. G., Vélez Macías, F. D. J., & Morales Quintero, D. E. (2020). Energía eólica y territorio: sistemas de información geográfica y métodos de decisión multicriterio en La Guajira (Colombia). Ambiente y Desarrollo, 23(44). https://doi.org/10.11144/javeriana.ayd23-44.eets Guo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L. R., Liu, W., Wang, X., Gao, J., & Huang, J. (2018). Assessing global ocean wind energy resources using multiple satellite data. Remote Sensing, 10(1). https://doi.org/10.3390/rs10010100 Guzmán Manrique, J. A. (2021a). Análisis de la distribución espacial del potencial eólico en el territorio colombiano. Ingenierías USBMed, 12(1), 1–11. https://doi.org/10.21500/20275846.4366 Guzmán Manrique, J. A. (2021b). Análisis de la distribución espacial del potencial eólico en el territorio colombiano. Ingenierías USBMed, 12(1). https://doi.org/10.21500/20275846.4366 Hansen, H. S., National Environmental Research Institute, & Aalborg University. (2005). GIS-based multi-criteria analysis of wind farm development (Elsevier B.V, Ed.; pp. 75–87). Harjanne, A., & Korhonen, J. M. (2019). Abandoning the concept of renewable energy. Energy Policy, 127, 330–340. https://doi.org/10.1016/J.ENPOL.2018.12.029 Infante, A., Ojeda, F., Belette, O., Reyes, E., & Zambrano, G. (2021). Propuesta metodológica para la selección de Tecnologías Renovables (Vol. 7). Jiménez, A. R., & Diazgranados, J. A. (2012). ELECTRICITY GENERATION AND WIND POTENTIAL ASSESSMENT IN REGIONS OF COLOMBIA GENERACIÓN ELÉCTRICA Y EVALUACIÓN DEL POTENCIAL DE ENERGÍA EÓLICA EN REGIONES DE COLOMBIA MARÍA TERESA ACEVEDO MORANTES. 79, 116–122. Johnston, M. H., Homann, P. S., Engstrom, J. K., & Grigal, D. F. (1996). Changes in ecosystem carbon storage over 40 years on an old-field/forest landscape in east-central Minnesota. Forest Ecology and Management, 83(1–2), 17–26. https://doi.org/10.1016/0378-1127(96)03704-8 Kim, C. K., Jang, S., & Kim, T. Y. (2018). Site selection for offshore wind farms in the southwest coast of South Korea. Renewable Energy, 120, 151–162. https://doi.org/10.1016/J.RENENE.2017.12.081 Kim, T., Park, J. Il, & Maeng, J. (2016). Offshore wind farm site selection study around Jeju Island, South Korea. Renewable Energy, 94, 619–628. https://doi.org/10.1016/J.RENENE.2016.03.083 Latinopoulos, D., & Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550–560. https://doi.org/10.1016/J.RENENE.2015.01.041 Li, Z., Tian, G., & El-Shafay, A. S. (2022). Statistical-analytical study on world development trend in offshore wind energy production capacity focusing on Great Britain with the aim of MCDA based offshore wind farm siting. Journal of Cleaner Production, 363, 132326. https://doi.org/10.1016/J.JCLEPRO.2022.132326 Lin, R., Lin, J. S. J., Chang, J., Tang, D., Chao, H., & Julian, P. C. (2008). Note on group consistency in analytic hierarchy process. European Journal of Operational Research, 190(3), 672–678. https://doi.org/10.1016/J.EJOR.2007.07.007 Linzer, M., Manwell, L. B., Williams, E., & Bobula, J. (2009). Working Conditions in Primary Care: Physician Reactions and Care Quality. Annals of Internal Medicine, 151, 28–26. https://doi.org/10.7326/0003-4819-151-1-200907070-00006 Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738. https://doi.org/10.1016/j.eswa.2020.113738 Lowell, K. (1991). Utilizing discriminant function analysis with a geographical information system to model ecological succession spatially. International Journal of Geographical Information Systems, 5(2), 175–191. https://doi.org/10.1080/02693799108927842 Mahdy, M., & Bahaj, A. S. (2018). Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278–289. https://doi.org/10.1016/j.renene.2017.11.021 Marques, A. T., Santos, C. D., Hanssen, F., Muñoz, A. R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J. M., & Silva, J. P. (2020). Wind turbines cause functional habitat loss for migratory soaring birds. Journal of Animal Ecology, 89(1), 93–103. https://doi.org/10.1111/1365-2656.12961 Martinez, A., & Iglesias, G. (2022). Site selection of floating offshore wind through the levelised cost of energy: A case study in Ireland. Energy Conversion and Management, 266, 115802. https://doi.org/10.1016/J.ENCONMAN.2022.115802 McKenney, D. W., Mackey, B. G., & Joyce, D. (1999). Seedwhere: a computer tool to support seed transfer and ecological restoration decisions. Environmental Modelling & Software, 14(6), 589–595. https://doi.org/10.1016/S1364-8152(98)00095-4 Mejía C., L. E., Maiguashca O., M. F., Romero R., L. C., & Zapata L., H. J. (2010). Integración de las energías renovables no convencionales en Colombia. Unidad de Planeación Mineroenergética UPME, Ministerio de Minas y Energía, 188. http://www1.upme.gov.co/sgic/ Mekonnen, A. D., & Gorsevski, P. V. (2015). A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews, 41, 162–177. https://doi.org/10.1016/J.RSER.2014.08.030 Moriguchi, S., Mukai, H., Komachi, R., & Sekijima, T. (2019). Wind Farm Effects on Migratory Flight of Swans and Foraging Distribution at Their Stopover Site. In Wind Energy and Wildlife Impacts (pp. 125–133). Springer International Publishing. https://doi.org/10.1007/978-3-030-05520-2_8 Nag, K., & Helal, M. (2019). Multicriteria Inventory Classification of Diabetes Drugs Using a Comparison of AHP and Fuzzy AHP Models. IEEE International Conference on Industrial Engineering and Engineering Management, 2019-Decem, 1456–1460. https://doi.org/10.1109/IEEM.2018.8607678 Nagababu, G., Puppala, H., Pritam, K., & Kantipudi, M. P. (2022). Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India. Energy, 248, 123594. https://doi.org/10.1016/J.ENERGY.2022.123594 Nezhad, M. M., Neshat, M., Groppi, D., Marzialetti, P., Heydari, A., Sylaios, G., & Garcia, D. A. (2021). A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island. Renewable Energy, 172, 667–679. https://doi.org/10.1016/J.RENENE.2021.03.045 Nguyen, K. Q. (2007). Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy, 35(2), 1405–1413. https://doi.org/10.1016/j.enpol.2006.04.011 Niemcewicz, P. (2021). The use of the multi-criteria AHP method to select a cloud computing provider. Procedia Computer Science, 192, 2558–2567. https://doi.org/10.1016/J.PROCS.2021.09.025 Ochieng, E. G., Melaine, Y., Potts, S. J., Zuofa, T., Egbu, C. O., Price, A. D. F., & Ruan, X. (2014). Future for offshore wind energy in the United Kingdom: The way forward. Renewable and Sustainable Energy Reviews, 39, 655–666. https://doi.org/10.1016/J.RSER.2014.07.105 Olivero-Ortíz, V., Robles-Algarín, C., & Viloria-Porto, J. (2021). An ahp-gis based approach for site suitability analysis of solar-wind projects in santa marta, Colombia. In International Journal of Energy Economics and Policy (Vol. 11, Issue 5, pp. 211–223). https://doi.org/10.32479/ijeep.11266 Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1 Ordóñez, G., Osma, G., Vergara, P., & Rey, J. (2014). Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series: Materials Science and Engineering, 59(1). https://doi.org/10.1088/1757-899X/59/1/012004 Orrego, S. G. (2021). Análisis espacial multicriterio para la ubicación de parques eólicos y granjas solares en Colombia. Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/79490 Ortíz Royero, J. C. (2007). Huracanes y tormentas tropicales en el mar Caribe colombiano desde 1900. Boletín Científico CIOH, 60(25), 54–60. https://doi.org/10.26640/22159045.162 Pahlke, T., Kraft, H.-P., & Adam, D. (2007). European Wind Energy Conference and Exhibition. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875346058&partnerID=40&md5=9408ae8f3a3384e7d3ce2093d30b3a3 Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146–161. https://doi.org/10.1016/J.RENENE.2020.11.067 Program E. S. M. A. (2019). Going Global: Expanding Offshore Wind To Emerging Markets. https://elibrary.worldbank.org/doi/abs/10.1596/32801 Rabia, M. A. Ben, & Bellabdaoui, A. (2023). Collaborative intuitionistic fuzzy-AHP to evaluate simulation-based analytics for freight transport. Expert Systems with Applications, 225, 120116. https://doi.org/10.1016/J.ESWA.2023.120116 Rafaat, S. M., & Hussein, R. (2018). Power Maximization and Control of Variable-Speed Wind Turbine System Using Extremum Seeking. Journal of Power and Energy Engineering, 06(01), 51–69. https://doi.org/10.4236/jpee.2018.61005 Restrepo-Trujillo, J., Moreno-Chuquen, R., Jiménez-García, F. N., Flores, W. C., & Chamorro, H. R. (2022). Scenario Analysis of an Electric Power System in Colombia Considering the El Niño Phenomenon and the Inclusion of Renewable Energies. Energies, 15(18). https://doi.org/10.3390/en15186690 Reyes, R., Turriago, Á., Cárdenas, M., & Buitrago, J. (2022). Análisis de Políticas Públicas para la adopción de Energías Renovables No Convencionales en Colombia. Robles Algarín, C., Llanos, A. P., & Castro, A. O. (2017). International Journal of Energy Economics and Policy An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy |, 7(4), 38–47. http:www.econjournals.com Rodman, L. C., & Meentemeyer, R. K. (2006). A geographic analysis of wind turbine placement in Northern California. Energy Policy, 34(15), 2137–2149. https://doi.org/10.1016/J.ENPOL.2005.03.004 Rodriguez-Bachiller, A., & Glasson, J. (2004). Expert Systems and Geographic Information Systems for Impact Assessment. Journal of Environmental Assessment Policy and Management, 2, 369–414. https://doi.org/https://doi.org/10.1142/S1464333200000412 Rodriguez-Caviedes, A., & Gil-García, I. C. (2022). Multifactorial Analysis to Determine the Applicability of Wind Power Technologies in Favorable Areas of the Colombian Territory. Wind, 2(2), 357–393. https://doi.org/10.3390/wind2020020 Rosso-Cerón, A. M., & Kafarov, V. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 10, 103–110. https://doi.org/10.1016/J.COCHE.2015.08.003 Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529–543. https://doi.org/10.1016/J.JCLEPRO.2019.02.174 Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I Santos, L. J. T., De Araújo Costa, I. P., Moreira, M. Â. L., Da Silva, R. F., Alves, C. G., Pereira, R. C. A., Dos Santos, M., & Da Costa, L. M. H. A. (2022). A variation of the Diet Problem: hybrid application of the AHP Method and Linear Programming to maximize meal satisfaction in a Brazilian company. Procedia Computer Science, 214(C), 448–455. https://doi.org/10.1016/J.PROCS.2022.11.198 Schallenberg-Rodríguez, J., & García Montesdeoca, N. (2018). Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy, 143, 91–103. https://doi.org/10.1016/J.ENERGY.2017.10.084 Sharpton, T., Lawrence, T., & Hall, M. (2020). Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States. Renewable and Sustainable Energy Reviews, 126, 109826. https://doi.org/10.1016/J.RSER.2020.109826 Sulaiman, O. O., Magee, A., Bahrain, Z., Kader, A. S. A., Maimun, A., Pauzi, A. G., Wan Nick, W. B., & Othman, K. (2013). Mooring analysis for very large offshore aquaculture ocean plantation floating structure. Ocean and Coastal Management, 80, 80–88. https://doi.org/10.1016/j.ocecoaman.2013.02.010 . Tegou, L.-I., Polatidis, H., & Haralambopoulos, D. A. (2010). Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134–2147. https://doi.org/10.1016/J.JENVMAN.2010.05.010 TELEGEOGRAPHY. (2022). Submarine Cable Map. http://www.submarinecablemap.com/ Tercan, E., Tapkın, S., Latinopoulos, D., Dereli, M. A., Tsiropoulos, A., & Ak, M. F. (2020). A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea. Environmental Monitoring and Assessment, 192(10). https://doi.org/10.1007/s10661-020-08603-9 Thomas, Y. F., Nicolae Lerma, A., Durand, P., Posada Posada, B. O., García Valencia, C., & Andrade Amaya, C. A. (2011). Altura significativa del oleaje en la Cuenca Colombiana del Caribe, datos de altimetría radar. Boletín Científico CIOH, 29, 27–45. https://doi.org/10.26640/01200542.29.27_45 UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA - UPME. (2020). PLAN ENERGÉTICO NACIONAL 2020- 2050. Vasileiou, M., Loukogeorgaki, E., & Vagiona, D. G. (2017a). GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73(January), 745–757. https://doi.org/10.1016/j.rser.2017.01.161 Vasileiou, M., Loukogeorgaki, E., & Vagiona, D. G. (2017b). GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745–757. https://doi.org/10.1016/J.RSER.2017.01.161 Vidal, C. (2010). FUNDAMENTOS DE CONTROL Y GESTIÓN DE INVENTARIOS. Programa Editorial Universidad del Valle Villacreses, G., Gaona, G., Martínez-Gómez, J., & Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275–286. https://doi.org/10.1016/J.RENENE.2017.03.041 Vinhoza, A., & Schaeffer, R. (2021). Brazil’s offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renewable and Sustainable Energy Reviews, 146, 111185. https://doi.org/10.1016/J.RSER.2021.111185 Viviescas, C., Lima, L., Diuana, F. A., Vasquez, E., Ludovique, C., Silva, G. N., Huback, V., Magalar, L., Szklo, A., Lucena, A. F. P., Schaeffer, R., & Paredes, J. R. (2019). Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renewable and Sustainable Energy Reviews, 113, 109232. https://doi.org/10.1016/J.RSER.2019.06.039 Wen Cheng, P. (2002). A Reliability Based Design Methodology for Extreme Response of Offshore Wind Turbine TremAc View project Robust Active Disturbance Rejection Control for Nonlinear Uncertain Systems View project. https://www.researchgate.net/publication/27348048 Willsteed, E. A., Jude, S., Gill, A. B., & Birchenough, S. N. R. (2018). Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renewable and Sustainable Energy Reviews, 82, 2332–2345. https://doi.org/10.1016/J.RSER.2017.08.079 Wu, B., Yip, T. L., Xie, L., & Wang, Y. (2018). A fuzzy-MADM based approach for site selection of offshore wind farm in busy waterways in China. Ocean Engineering, 168, 121–132. https://doi.org/10.1016/J.OCEANENG.2018.08.065 Zahid, F., Tahir, A., Khan, H. U., & Naeem, M. A. (2021). Wind farms selection using geospatial technologies and energy generation capacity in Gwadar. Energy Reports, 7, 5857–5870. https://doi.org/10.1016/j.egyr.2021.08.165 Zalhaf, A. S., Elboshy, B., Kotb, K. M., Han, Y., Almaliki, A. H., Aly, R. M. H., & Elkadeem, M. R. (2022). A high-resolution wind farms suitability mapping using gis and fuzzy ahp approach: A national-level case study in Sudan. Sustainability (Switzerland), 14(1), 1–21. https://doi.org/10.3390/su14010358 Zheng, C. W., Li, C. Y., & Li, X. (2017). Recent Decadal Trend in the North Atlantic Wind Energy Resources. Advances in Meteorology, 2017. https://doi.org/10.1155/2017/7257492 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
111 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.coverage.region.none.fl_str_mv |
Región Caribe |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.department.spa.fl_str_mv |
Energía |
dc.publisher.place.spa.fl_str_mv |
Barranquilla, Colombia |
dc.publisher.program.spa.fl_str_mv |
Maestría en Eficiencia Energética y Energía Renovable |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4f1f0fab-9280-4472-9c29-12b21e6f5c3e/download https://repositorio.cuc.edu.co/bitstreams/3cce1d3f-a260-4665-ad70-1303885479f2/download https://repositorio.cuc.edu.co/bitstreams/b27e804c-a74f-4199-9882-6e4116716f47/download https://repositorio.cuc.edu.co/bitstreams/3fc23735-66fa-47e6-99ab-cbb71803c6e4/download |
bitstream.checksum.fl_str_mv |
5463c02a951f8afefa067f58571a6d27 2f9959eaf5b71fae44bbf9ec84150c7a 85df7d004eb75f579d53d7996c990028 e455363ac68fec48a6e6588e7078eba1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760815427026944 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospino Castro, AdalbertoRobles Algarín, CarlosMangones Cordero, Amanda De JesusMoreno Rocha, ChristianMuñoz Maldonado, Yesid2023-08-04T14:27:47Z2023-08-04T14:27:47Z2023https://hdl.handle.net/11323/10362Corporacion Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/La planificación de un proyecto para la generación de energía eólica es compleja, dado que hay que tener en cuenta una gran cantidad de variables para la selección de zonas aceptables para ubicar este tipo de proyectos. Una de las principales dificultades para desarrollar un parque offshore wind es encontrar la ubicación idónea para construirlo; esto puede llevar años de estudios de factibilidad. El objetivo principal de esta investigación es utilizar el proceso de jerarquía analítica difusa (FAHP) para priorizar un grupo de criterios y subcriterios, como apoyo a la toma de decisiones para la selección de áreas adecuadas para la implementación de proyectos de offshore wind en el mar caribe colombiano. En conjunto a un sistema de Información geográfica (GIS) el cual ayuda a desglosar las características físicas en la superficie del mar caribe para la gestión, análisis y la visualización de datos geográficos. Esta herramienta desempeña un papel crítico en la evaluación y selección de los sitios que cumplan con todos los criterios evaluados, dado que este proporcionaría una base de datos de indicadores y la visualización de mapas. Los criterios a aplicar en este estudio fueron seleccionados en base a los parámetros más recurrentemente empleados en otros trabajos de investigación. Se presentan cuatro criterios: técnico, ambiental, social y económico. Y catorce subcriterios. Además, todos los factores fueron priorizados por medio de la opinión expertos en el tema y utilizando el FAHP. Los resultados mostraron que los subcriterios más relevantes fueron las áreas protegidas (19,59%) y la velocidad del viento (13,61%). Finalmente, aplicando la herramienta ArcGIS Pro se detectaron cinco zonas que cumplen con todos los criterios escogidos, lo cual permite definir las áreas más factibles para la instalación de parques offshore wind, Estas se encuentran ubicadas en la parte norte del país, más exactamente en los departamentos de: Guajira, Magdalena, Atlántico y Bolívar.Planning a wind power generation project is intricate, considering the number of variables to be careful in the acceptable zone selection for its siting. One of the difficulties of developing a wind farm is finding the most satisfactory location to build it; this can take years of feasibility studies. The main objective of this research is to use the Fuzzy Analytic Hierarchy Process (FAHP) to prioritize a group of criteria and sub-criteria as decision-making support for the selection of suitable areas in which implementing wind energy projects in the Colombian Caribbean Sea. In conjunction with a Geographic Information System (GIS), which aids in the breakdown of physical characteristics on the surface of the Caribbean Sea for the management, analysis, and visualization of geographic data. This tool plays a critical role in the evaluation and selection of sites that meet all the assessed criteria, as it provides a database of indicators and map visualization. The criteria to be applied in this study were selected based on the most recurrently employed criteria in other research papers. Four criteria are presented: technical, environmental, social, and economic; and fourteen sub-criteria. Also, all factors were prioritized through the participation of experts and using the FAHP. The results showed that the most relevant sub-criteria were protected areas (19,59%) and wind speed (13,61%). Finally, applying the ArcGIS Pro tool, five zones were detected that meet all the selected criteria, thereby enabling the definition of the most feasible areas for offshore wind farm installation. These zones are located in the northern part of the country, specifically in the departments of La Guajira, Magdalena, Atlántico, and Bolívar.Lista de tablas y figuras 6--Capítulo 1 8--Introducción 8--Objetivos 13--Capítulo 2 14--Estado del arte 14--Capítulo 3 23--Marco teórico 23--Energía eólica en Colombia 23--Sistema de Información Geográfica (GIS) 24--Criterios Técnicos 28 Criterios Económicos 33--Criterios ambientales 39--Criterios Sociales / Políticos 41 Proceso de jerarquía analítica (FAHP) 46--Construcción de la estructura jerárquica 47--Establecimiento de las comparaciones pareadas 48--Cálculo de las matrices de comparación 49--Cálculo de las ponderaciones 49--Evaluación de las alternativas 51--Toma de decisión 53--Capítulo 4 54--Metodología 54--Capítulo 5 60--Resultados 60--Conclusiones73--Referencias75Magíster en Eficiencia Energética y Energía RenovableMaestría111 páginasapplication/pdfspaCorporación Universidad de la CostaEnergíaBarranquilla, ColombiaMaestría en Eficiencia Energética y Energía RenovableTécnica multicriterio basada en Gis-Fahp para la factibilidad de proyectos Offshore Wind en la región caribe colombianaTrabajo de grado - MaestríaTextinfo:eu-repo/semantics/masterThesishttp://purl.org/redcol/resource_type/TMinfo:eu-repo/semantics/acceptedVersionColombiaRegión CaribeAjanaku, B. A., Strager, M. P., & Collins, A. R. (2022). GIS-based multi-criteria decision analysis of utility-scale wind farm site suitability in West Virginia. GeoJournal, 87(5), 3735–3757. https://doi.org/10.1007/s10708-021-10453-yAlkhalidi, A., Kaylani, H., & Alawawdeh, N. (2023). Technology Assessment of offshore wind turbines: Floating platforms – Validated by case study. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2022.100831Arco De Mora, A., Canales, S., Galiana, L., & Jado, J. (2013). Análisis y Diseño de un Parque Eólico Offshore en EE . UU . Escuela de organizacion industrial.Aşchilean, I., Badea, G., Giurca, I., Naghiu, G. S., & Iloaie, F. G. (2017). Choosing the Optimal Technology to Rehabilitate the Pipes in Water Distribution Systems Using the AHP Method. Energy Procedia, 112, 19–26. https://doi.org/10.1016/J.EGYPRO.2017.03.1109Ashkezari, A. D., Hosseinzadeh, N., Chebli, A., & Albadi, M. (2018). Development of an enterprise Geographic Information System (GIS) integrated with smart grid. Sustainable Energy, Grids and Networks, 14, 25–34. https://doi.org/10.1016/j.segan.2018.02.001Aydin, N. Y., Kentel, E., & Duzgun, S. (2010). GIS-based environmental assessment of wind energy systems for spatial planning: A case study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364–373. https://doi.org/10.1016/j.rser.2009.07.023Ayodele, T. R., Ogunjuyigbe, A. S. O., Odigie, O., & Munda, J. L. (2018). A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria. Applied Energy, 228, 1853–1869. https://doi.org/10.1016/J.APENERGY.2018.07.051Bachchhav, B., Bharne, S., Choudhari, A., & Pattanshetti, S. (2023). Selection of spot welding electrode material by AHP, TOPSIS, and SAW. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2023.02.253Bahaj, A. B. S., Mahdy, M., Alghamdi, A. S., & Richards, D. J. (2020). New approach to determine the Importance Index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies. Renewable Energy, 152, 441–457. https://doi.org/10.1016/J.RENENE.2019.12.070Breton, S. P., & Moe, G. (2009). Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, 34(3), 646–654. https://doi.org/10.1016/J.RENENE.2008.05.040Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233–247. https://doi.org/10.1016/0165-0114(85)90090-9Candel, L. (2014). Diseño e Impacto Ambiental de Un Parque Eólico Offshore. Universidad Politecnica De Cartagena.Carlos, R., Adalberto, O., & Autor, M. (n.d.). An Analytic Hierarchy Process Based Approach for Evaluating Feasibility Offshore Wind Farm on the Colombian Caribbean Coast . 1–10.Cerdá, E., André, F. J., & De Castro, L. M. (2012). Las energías renovables en el ámbito internacional. Cuadernos Económicos de ICE, 83. https://doi.org/10.32796/cice.2012.83.6031Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649–655. https://doi.org/10.1016/0377-2217(95)00300-2Cortés, M., & Andrea, P. (2013). ENERGÍA EÓLICA: VENTAJAS Y DESVENTAJAS DE SU UTILIZACIÓN EN COLOMBIA ENERGÍA EÓLICA: VENTAJAS Y DESVENTAJAS DE SU UTILIZACIÓN EN COLOMBIA TABLA DE CONTENIDO CONTENIDO.Costoya, X., deCastro, M., Santos, F., Sousa, M. C., & Gómez-Gesteira, M. (2019). Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178, 356–367. https://doi.org/10.1016/J.ENERGY.2019.04.121Cullinane, M., Judge, F., O’Shea, M., Thandayutham, K., & Murphy, J. (2022). Subsea superconductors: The future of offshore renewable energy transmission? In Renewable and Sustainable Energy Reviews (Vol. 156). Elsevier Ltd. https://doi.org/10.1016/j.rser.2021.111943David, C., Bastidas, H., Raúl, A. :, Rodríguez, C., & Pulido, P. S. (2022). IMPACTO EN EL PRECIO DE LA ENERGÍA ELÉCTRICA EN COLOMBIA DEBIDO A LA INCORPORACIÓN DE FUENTES NO CONVENCIONALES DE ENERGÍA RENOVABLEDeveci, M., Ozcan, E., & John, R. (2020a, February 1). Offshore wind farms: A fuzzy approach to site selection in a black sea region. 2020 IEEE Texas Power and Energy Conference, TPEC 2020. https://doi.org/10.1109/TPEC48276.2020.9042530Felipe, J., & Guerrero, M. (2020). ASSESSMENT OF THE DEVELOPMENT OF AN OFFSHORE WIND ENERGY PROJECT IN THE ARCHIPELAGO OF SAN ANDRES, PROVIDENCIA AND SANTA CATALINA FROM A COST- EFFICIENCY PERSPECTIVE (Issue December). Johns Hopkins University.Fetanat, A., & Khorasaninejad, E. (2015). A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean & Coastal Management, 109, 17–28. https://doi.org/10.1016/J.OCECOAMAN.2015.02.005Gavériaux, L., Laverrière, G., Wang, T., Maslov, N., & Claramunt, C. (2019). GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Annals of GIS, 25(3), 207–218. https://doi.org/10.1080/19475683.2019.1618393Geometry, R., Analysis, G., Efecto, E. L., Aporte, D. E. L., Del, D. E. S., Dique, D. E. L., La, E. N., Cartagena, B. D. E., Galeano, A., Guillermo, J., Mu, C., Actores, S. U. S., León-Sicard, T., de Prager, M. S., & Acevedo Osorio, Á. (2017). De colombia. Documento Interno Corporación Ecofondo. Bogota, 41(3–4), 296–310. http://dx.doi.org/10.1080/21683565.2017.1285843%0Ahttp://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Estado+actual+y+retos+de+la+agroecología+en+el+contexto+de+la+política+agraria+colombiana#0Gil-García, I. C., Ramos-Escudero, A., García-Cascales, M. S., Dagher, H., & Molina-García, A. (2022). Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case. Renewable Energy, 183, 130–147. https://doi.org/10.1016/j.renene.2021.10.058Global Wind Energy Council (GWEC). (2022). Global Wind Report 2022. https://gwec.net/wp-content/uploads/2022/04/Annual-Wind-Report-2022_screen_final_April.pdfGomez, E., & Alzate, Y. (2022). Estudio de prefactibilidad de un proyecto que evalúe la implementación de paneles solares en siete instituciones educativas en el municipio de chinchiná caldas mediante el sistema general de regalías. Universidad EAFIT.Gonca, C. H. (2009). Remote sensing and gis techniques for temporal evaluation of environmental impacts on major drinking water dam and basin of metropolis Istanbul. Fresenius Environmental Bulletin, 261–269. https://www.scopus.com/inward/record.uri?eid=2-s2.0-González-Serrano, A., & Ordoñez-Octavo, R. (2011). Análisis del impacto en la red eléctrica al adicionar nueva capacidad en la CNLV. 133. http://132.248.52.100:8080/xmlui/handle/132.248.52.100/312?show=fullGuerrero Hoyos, B. G., Vélez Macías, F. D. J., & Morales Quintero, D. E. (2020). Energía eólica y territorio: sistemas de información geográfica y métodos de decisión multicriterio en La Guajira (Colombia). Ambiente y Desarrollo, 23(44). https://doi.org/10.11144/javeriana.ayd23-44.eetsGuo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L. R., Liu, W., Wang, X., Gao, J., & Huang, J. (2018). Assessing global ocean wind energy resources using multiple satellite data. Remote Sensing, 10(1). https://doi.org/10.3390/rs10010100Guzmán Manrique, J. A. (2021a). Análisis de la distribución espacial del potencial eólico en el territorio colombiano. Ingenierías USBMed, 12(1), 1–11. https://doi.org/10.21500/20275846.4366Guzmán Manrique, J. A. (2021b). Análisis de la distribución espacial del potencial eólico en el territorio colombiano. Ingenierías USBMed, 12(1). https://doi.org/10.21500/20275846.4366Hansen, H. S., National Environmental Research Institute, & Aalborg University. (2005). GIS-based multi-criteria analysis of wind farm development (Elsevier B.V, Ed.; pp. 75–87).Harjanne, A., & Korhonen, J. M. (2019). Abandoning the concept of renewable energy. Energy Policy, 127, 330–340. https://doi.org/10.1016/J.ENPOL.2018.12.029Infante, A., Ojeda, F., Belette, O., Reyes, E., & Zambrano, G. (2021). Propuesta metodológica para la selección de Tecnologías Renovables (Vol. 7).Jiménez, A. R., & Diazgranados, J. A. (2012). ELECTRICITY GENERATION AND WIND POTENTIAL ASSESSMENT IN REGIONS OF COLOMBIA GENERACIÓN ELÉCTRICA Y EVALUACIÓN DEL POTENCIAL DE ENERGÍA EÓLICA EN REGIONES DE COLOMBIA MARÍA TERESA ACEVEDO MORANTES. 79, 116–122.Johnston, M. H., Homann, P. S., Engstrom, J. K., & Grigal, D. F. (1996). Changes in ecosystem carbon storage over 40 years on an old-field/forest landscape in east-central Minnesota. Forest Ecology and Management, 83(1–2), 17–26. https://doi.org/10.1016/0378-1127(96)03704-8Kim, C. K., Jang, S., & Kim, T. Y. (2018). Site selection for offshore wind farms in the southwest coast of South Korea. Renewable Energy, 120, 151–162. https://doi.org/10.1016/J.RENENE.2017.12.081Kim, T., Park, J. Il, & Maeng, J. (2016). Offshore wind farm site selection study around Jeju Island, South Korea. Renewable Energy, 94, 619–628. https://doi.org/10.1016/J.RENENE.2016.03.083Latinopoulos, D., & Kechagia, K. (2015). A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550–560. https://doi.org/10.1016/J.RENENE.2015.01.041Li, Z., Tian, G., & El-Shafay, A. S. (2022). Statistical-analytical study on world development trend in offshore wind energy production capacity focusing on Great Britain with the aim of MCDA based offshore wind farm siting. Journal of Cleaner Production, 363, 132326. https://doi.org/10.1016/J.JCLEPRO.2022.132326Lin, R., Lin, J. S. J., Chang, J., Tang, D., Chao, H., & Julian, P. C. (2008). Note on group consistency in analytic hierarchy process. European Journal of Operational Research, 190(3), 672–678. https://doi.org/10.1016/J.EJOR.2007.07.007Linzer, M., Manwell, L. B., Williams, E., & Bobula, J. (2009). Working Conditions in Primary Care: Physician Reactions and Care Quality. Annals of Internal Medicine, 151, 28–26. https://doi.org/10.7326/0003-4819-151-1-200907070-00006Liu, Y., Eckert, C. M., & Earl, C. (2020). A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems with Applications, 161, 113738. https://doi.org/10.1016/j.eswa.2020.113738Lowell, K. (1991). Utilizing discriminant function analysis with a geographical information system to model ecological succession spatially. International Journal of Geographical Information Systems, 5(2), 175–191. https://doi.org/10.1080/02693799108927842Mahdy, M., & Bahaj, A. S. (2018). Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278–289. https://doi.org/10.1016/j.renene.2017.11.021Marques, A. T., Santos, C. D., Hanssen, F., Muñoz, A. R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J. M., & Silva, J. P. (2020). Wind turbines cause functional habitat loss for migratory soaring birds. Journal of Animal Ecology, 89(1), 93–103. https://doi.org/10.1111/1365-2656.12961Martinez, A., & Iglesias, G. (2022). Site selection of floating offshore wind through the levelised cost of energy: A case study in Ireland. Energy Conversion and Management, 266, 115802. https://doi.org/10.1016/J.ENCONMAN.2022.115802McKenney, D. W., Mackey, B. G., & Joyce, D. (1999). Seedwhere: a computer tool to support seed transfer and ecological restoration decisions. Environmental Modelling & Software, 14(6), 589–595. https://doi.org/10.1016/S1364-8152(98)00095-4Mejía C., L. E., Maiguashca O., M. F., Romero R., L. C., & Zapata L., H. J. (2010). Integración de las energías renovables no convencionales en Colombia. Unidad de Planeación Mineroenergética UPME, Ministerio de Minas y Energía, 188. http://www1.upme.gov.co/sgic/Mekonnen, A. D., & Gorsevski, P. V. (2015). A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews, 41, 162–177. https://doi.org/10.1016/J.RSER.2014.08.030Moriguchi, S., Mukai, H., Komachi, R., & Sekijima, T. (2019). Wind Farm Effects on Migratory Flight of Swans and Foraging Distribution at Their Stopover Site. In Wind Energy and Wildlife Impacts (pp. 125–133). Springer International Publishing. https://doi.org/10.1007/978-3-030-05520-2_8Nag, K., & Helal, M. (2019). Multicriteria Inventory Classification of Diabetes Drugs Using a Comparison of AHP and Fuzzy AHP Models. IEEE International Conference on Industrial Engineering and Engineering Management, 2019-Decem, 1456–1460. https://doi.org/10.1109/IEEM.2018.8607678Nagababu, G., Puppala, H., Pritam, K., & Kantipudi, M. P. (2022). Two-stage GIS-MCDM based algorithm to identify plausible regions at micro level to install wind farms: A case study of India. Energy, 248, 123594. https://doi.org/10.1016/J.ENERGY.2022.123594Nezhad, M. M., Neshat, M., Groppi, D., Marzialetti, P., Heydari, A., Sylaios, G., & Garcia, D. A. (2021). A primary offshore wind farm site assessment using reanalysis data: a case study for Samothraki island. Renewable Energy, 172, 667–679. https://doi.org/10.1016/J.RENENE.2021.03.045Nguyen, K. Q. (2007). Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy, 35(2), 1405–1413. https://doi.org/10.1016/j.enpol.2006.04.011Niemcewicz, P. (2021). The use of the multi-criteria AHP method to select a cloud computing provider. Procedia Computer Science, 192, 2558–2567. https://doi.org/10.1016/J.PROCS.2021.09.025Ochieng, E. G., Melaine, Y., Potts, S. J., Zuofa, T., Egbu, C. O., Price, A. D. F., & Ruan, X. (2014). Future for offshore wind energy in the United Kingdom: The way forward. Renewable and Sustainable Energy Reviews, 39, 655–666. https://doi.org/10.1016/J.RSER.2014.07.105Olivero-Ortíz, V., Robles-Algarín, C., & Viloria-Porto, J. (2021). An ahp-gis based approach for site suitability analysis of solar-wind projects in santa marta, Colombia. In International Journal of Energy Economics and Policy (Vol. 11, Issue 5, pp. 211–223). https://doi.org/10.32479/ijeep.11266Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1Ordóñez, G., Osma, G., Vergara, P., & Rey, J. (2014). Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series: Materials Science and Engineering, 59(1). https://doi.org/10.1088/1757-899X/59/1/012004Orrego, S. G. (2021). Análisis espacial multicriterio para la ubicación de parques eólicos y granjas solares en Colombia. Repositorio.Unal.Edu.Co. https://repositorio.unal.edu.co/handle/unal/79490Ortíz Royero, J. C. (2007). Huracanes y tormentas tropicales en el mar Caribe colombiano desde 1900. Boletín Científico CIOH, 60(25), 54–60. https://doi.org/10.26640/22159045.162Pahlke, T., Kraft, H.-P., & Adam, D. (2007). European Wind Energy Conference and Exhibition. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84875346058&partnerID=40&md5=9408ae8f3a3384e7d3ce2093d30b3a3Perez, A., & Garcia-Rendon, J. J. (2021). Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146–161. https://doi.org/10.1016/J.RENENE.2020.11.067Program E. S. M. A. (2019). Going Global: Expanding Offshore Wind To Emerging Markets. https://elibrary.worldbank.org/doi/abs/10.1596/32801Rabia, M. A. Ben, & Bellabdaoui, A. (2023). Collaborative intuitionistic fuzzy-AHP to evaluate simulation-based analytics for freight transport. Expert Systems with Applications, 225, 120116. https://doi.org/10.1016/J.ESWA.2023.120116Rafaat, S. M., & Hussein, R. (2018). Power Maximization and Control of Variable-Speed Wind Turbine System Using Extremum Seeking. Journal of Power and Energy Engineering, 06(01), 51–69. https://doi.org/10.4236/jpee.2018.61005Restrepo-Trujillo, J., Moreno-Chuquen, R., Jiménez-García, F. N., Flores, W. C., & Chamorro, H. R. (2022). Scenario Analysis of an Electric Power System in Colombia Considering the El Niño Phenomenon and the Inclusion of Renewable Energies. Energies, 15(18). https://doi.org/10.3390/en15186690Reyes, R., Turriago, Á., Cárdenas, M., & Buitrago, J. (2022). Análisis de Políticas Públicas para la adopción de Energías Renovables No Convencionales en Colombia.Robles Algarín, C., Llanos, A. P., & Castro, A. O. (2017). International Journal of Energy Economics and Policy An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy |, 7(4), 38–47. http:www.econjournals.comRodman, L. C., & Meentemeyer, R. K. (2006). A geographic analysis of wind turbine placement in Northern California. Energy Policy, 34(15), 2137–2149. https://doi.org/10.1016/J.ENPOL.2005.03.004Rodriguez-Bachiller, A., & Glasson, J. (2004). Expert Systems and Geographic Information Systems for Impact Assessment. Journal of Environmental Assessment Policy and Management, 2, 369–414. https://doi.org/https://doi.org/10.1142/S1464333200000412Rodriguez-Caviedes, A., & Gil-García, I. C. (2022). Multifactorial Analysis to Determine the Applicability of Wind Power Technologies in Favorable Areas of the Colombian Territory. Wind, 2(2), 357–393. https://doi.org/10.3390/wind2020020Rosso-Cerón, A. M., & Kafarov, V. (2015). Barriers to social acceptance of renewable energy systems in Colombia. Current Opinion in Chemical Engineering, 10, 103–110. https://doi.org/10.1016/J.COCHE.2015.08.003Rueda-Bayona, J. G., Guzmán, A., Eras, J. J. C., Silva-Casarín, R., Bastidas-Arteaga, E., & Horrillo-Caraballo, J. (2019). Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529–543. https://doi.org/10.1016/J.JCLEPRO.2019.02.174Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-ISantos, L. J. T., De Araújo Costa, I. P., Moreira, M. Â. L., Da Silva, R. F., Alves, C. G., Pereira, R. C. A., Dos Santos, M., & Da Costa, L. M. H. A. (2022). A variation of the Diet Problem: hybrid application of the AHP Method and Linear Programming to maximize meal satisfaction in a Brazilian company. Procedia Computer Science, 214(C), 448–455. https://doi.org/10.1016/J.PROCS.2022.11.198Schallenberg-Rodríguez, J., & García Montesdeoca, N. (2018). Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands. Energy, 143, 91–103. https://doi.org/10.1016/J.ENERGY.2017.10.084Sharpton, T., Lawrence, T., & Hall, M. (2020). Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States. Renewable and Sustainable Energy Reviews, 126, 109826. https://doi.org/10.1016/J.RSER.2020.109826Sulaiman, O. O., Magee, A., Bahrain, Z., Kader, A. S. A., Maimun, A., Pauzi, A. G., Wan Nick, W. B., & Othman, K. (2013). Mooring analysis for very large offshore aquaculture ocean plantation floating structure. Ocean and Coastal Management, 80, 80–88. https://doi.org/10.1016/j.ocecoaman.2013.02.010. Tegou, L.-I., Polatidis, H., & Haralambopoulos, D. A. (2010). Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134–2147. https://doi.org/10.1016/J.JENVMAN.2010.05.010TELEGEOGRAPHY. (2022). Submarine Cable Map. http://www.submarinecablemap.com/Tercan, E., Tapkın, S., Latinopoulos, D., Dereli, M. A., Tsiropoulos, A., & Ak, M. F. (2020). A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean Sea. Environmental Monitoring and Assessment, 192(10). https://doi.org/10.1007/s10661-020-08603-9Thomas, Y. F., Nicolae Lerma, A., Durand, P., Posada Posada, B. O., García Valencia, C., & Andrade Amaya, C. A. (2011). Altura significativa del oleaje en la Cuenca Colombiana del Caribe, datos de altimetría radar. Boletín Científico CIOH, 29, 27–45. https://doi.org/10.26640/01200542.29.27_45UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA - UPME. (2020). PLAN ENERGÉTICO NACIONAL 2020- 2050.Vasileiou, M., Loukogeorgaki, E., & Vagiona, D. G. (2017a). GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73(January), 745–757. https://doi.org/10.1016/j.rser.2017.01.161Vasileiou, M., Loukogeorgaki, E., & Vagiona, D. G. (2017b). GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745–757. https://doi.org/10.1016/J.RSER.2017.01.161Vidal, C. (2010). FUNDAMENTOS DE CONTROL Y GESTIÓN DE INVENTARIOS. Programa Editorial Universidad del ValleVillacreses, G., Gaona, G., Martínez-Gómez, J., & Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275–286. https://doi.org/10.1016/J.RENENE.2017.03.041Vinhoza, A., & Schaeffer, R. (2021). Brazil’s offshore wind energy potential assessment based on a Spatial Multi-Criteria Decision Analysis. Renewable and Sustainable Energy Reviews, 146, 111185. https://doi.org/10.1016/J.RSER.2021.111185Viviescas, C., Lima, L., Diuana, F. A., Vasquez, E., Ludovique, C., Silva, G. N., Huback, V., Magalar, L., Szklo, A., Lucena, A. F. P., Schaeffer, R., & Paredes, J. R. (2019). Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources. Renewable and Sustainable Energy Reviews, 113, 109232. https://doi.org/10.1016/J.RSER.2019.06.039Wen Cheng, P. (2002). A Reliability Based Design Methodology for Extreme Response of Offshore Wind Turbine TremAc View project Robust Active Disturbance Rejection Control for Nonlinear Uncertain Systems View project. https://www.researchgate.net/publication/27348048Willsteed, E. A., Jude, S., Gill, A. B., & Birchenough, S. N. R. (2018). Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renewable and Sustainable Energy Reviews, 82, 2332–2345. https://doi.org/10.1016/J.RSER.2017.08.079Wu, B., Yip, T. L., Xie, L., & Wang, Y. (2018). A fuzzy-MADM based approach for site selection of offshore wind farm in busy waterways in China. Ocean Engineering, 168, 121–132. https://doi.org/10.1016/J.OCEANENG.2018.08.065Zahid, F., Tahir, A., Khan, H. U., & Naeem, M. A. (2021). Wind farms selection using geospatial technologies and energy generation capacity in Gwadar. Energy Reports, 7, 5857–5870. https://doi.org/10.1016/j.egyr.2021.08.165Zalhaf, A. S., Elboshy, B., Kotb, K. M., Han, Y., Almaliki, A. H., Aly, R. M. H., & Elkadeem, M. R. (2022). A high-resolution wind farms suitability mapping using gis and fuzzy ahp approach: A national-level case study in Sudan. Sustainability (Switzerland), 14(1), 1–21. https://doi.org/10.3390/su14010358Zheng, C. W., Li, C. Y., & Li, X. (2017). Recent Decadal Trend in the North Atlantic Wind Energy Resources. Advances in Meteorology, 2017. https://doi.org/10.1155/2017/7257492GISAHPFAHP y Offshore windFAHP and Offshore windPublicationORIGINALTÉCNICA MULTICRITERIO BASADA EN GIS-FAHP PARA.pdfTÉCNICA MULTICRITERIO BASADA EN GIS-FAHP PARA.pdfTesisapplication/pdf3887845https://repositorio.cuc.edu.co/bitstreams/4f1f0fab-9280-4472-9c29-12b21e6f5c3e/download5463c02a951f8afefa067f58571a6d27MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/3cce1d3f-a260-4665-ad70-1303885479f2/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTTÉCNICA MULTICRITERIO BASADA EN GIS-FAHP PARA.pdf.txtTÉCNICA MULTICRITERIO BASADA EN GIS-FAHP PARA.pdf.txtExtracted texttext/plain130960https://repositorio.cuc.edu.co/bitstreams/b27e804c-a74f-4199-9882-6e4116716f47/download85df7d004eb75f579d53d7996c990028MD53THUMBNAILTÉCNICA MULTICRITERIO BASADA EN GIS-FAHP PARA.pdf.jpgTÉCNICA MULTICRITERIO BASADA EN GIS-FAHP PARA.pdf.jpgGenerated Thumbnailimage/jpeg7265https://repositorio.cuc.edu.co/bitstreams/3fc23735-66fa-47e6-99ab-cbb71803c6e4/downloade455363ac68fec48a6e6588e7078eba1MD5411323/10362oai:repositorio.cuc.edu.co:11323/103622024-09-17 12:49:07.059https://creativecommons.org/licenses/by-nc-sa/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |