Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol
The key objective of this study was to evaluate and compare, within the concept of integrated biorefining, the potential environmental gains of the life cycle, economic feasibility and energy balance of the production of bioenergetics from palm and sugarcane. In this context, the research model deve...
- Autores:
-
Ocampo Batlle, Eric Alberto
Escobar Palacio, José Carlos
Silva Lora, Electo Eduardo
Da Costa Bortoni, Edson
Horta Nogueira, Luiz Augusto
Carrillo Caballero, Gaylord Enrique
Vitoriano Julio, Alisson Aparecido
Cárdenas Escorcia, Yulineth
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8441
- Acceso en línea:
- https://hdl.handle.net/11323/8441
https://doi.org/10.1016/j.jclepro.2021.127638
https://repositorio.cuc.edu.co/
- Palabra clave:
- Integrated biofuel production
Biorefinery
Energy performance
Sustainability
Environmental impacts
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_03e67c001c45dec9b4694ff398c87b12 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8441 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
title |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
spellingShingle |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol Integrated biofuel production Biorefinery Energy performance Sustainability Environmental impacts |
title_short |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
title_full |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
title_fullStr |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
title_full_unstemmed |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
title_sort |
Energy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol |
dc.creator.fl_str_mv |
Ocampo Batlle, Eric Alberto Escobar Palacio, José Carlos Silva Lora, Electo Eduardo Da Costa Bortoni, Edson Horta Nogueira, Luiz Augusto Carrillo Caballero, Gaylord Enrique Vitoriano Julio, Alisson Aparecido Cárdenas Escorcia, Yulineth |
dc.contributor.author.spa.fl_str_mv |
Ocampo Batlle, Eric Alberto Escobar Palacio, José Carlos Silva Lora, Electo Eduardo Da Costa Bortoni, Edson Horta Nogueira, Luiz Augusto Carrillo Caballero, Gaylord Enrique Vitoriano Julio, Alisson Aparecido Cárdenas Escorcia, Yulineth |
dc.subject.eng.fl_str_mv |
Integrated biofuel production Biorefinery Energy performance Sustainability Environmental impacts |
topic |
Integrated biofuel production Biorefinery Energy performance Sustainability Environmental impacts |
description |
The key objective of this study was to evaluate and compare, within the concept of integrated biorefining, the potential environmental gains of the life cycle, economic feasibility and energy balance of the production of bioenergetics from palm and sugarcane. In this context, the research model developed in this work involved several assessment techniques; in terms of environmental assessment, the tool used was the Life Cycle Assessment (LCA) from the Well-To-Tank perspective, which is based on the LCA “cradle-to-gate” assignment method. The environmental assessment was performed using SimaPro v.8.0.3 software and the impacts were quantified using the IMPACT 2002+ method. On the other hand, energy performance evaluation was based on the 1st law indicators. Likewise, economic feasibility was based on the evaluation of the fixed capital investment index and the estimate of investment costs for the entire integrated system. Two different scenarios were proposed in order to compare and evaluate traditional systems with the integrated biorefinery. The first conversion scenario (baseline scenario) consisted of a traditional palm oil extraction plant in addition to an ethanol and sugar plant, concerning the use of fossil fuels in all stages of production. The second conversion scenario (improved scenario) explored the substitution of fossil energy sources as well as the energy recovery of residual biomass in more efficient energy conversion systems. The results indicated significant reductions of 29.5% and 29.1% in the global warming impact category when the baseline scenario was compared to the improved scenario. Additionally, the improved scenario achieved a reduction of 2.1 g CO2eq MJ−1 (ethanol) and 2.61 g CO2eq MJ−1 (biodiesel). On the other hand, the improved scenario presented better energy rates since it showed an increase of 3.82% in the global efficiency of the system and produced 106.32 kWh more per ton of processed raw material. Finally, when considering the Life Cycle Energy Efficiency, an increase of 83% was observed and in the case of the Renewability Factor showed an increase of 7.12 energy units. Integration is also economically feasible; however, it could be significantly improved through fiscal incentives founded on the reduction of fossil energy use, enhanced conversion yielding, and improvements in conversion technologies. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-29T21:43:18Z |
dc.date.available.none.fl_str_mv |
2021-06-29T21:43:18Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8441 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jclepro.2021.127638 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/8441 https://doi.org/10.1016/j.jclepro.2021.127638 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
H.B. Aditiya, T.M.I. Mahlia, W.T. Chong, H. Nur, A.H. Sebayang Second generation bioethanol production: a critical review Renew. Sustain. Energy Rev., 66 (2016), pp. 631-653, 10.1016/j.rser.2016.07.015 F.B. Ahmad, Z. Zhang, W.O.S. Doherty, I.M. O'Hara The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery Renew. Sustain. Energy Rev., 109 (2019), pp. 386-411, 10.1016/j.rser.2019.04.009 C.A. Alejos Altamirano, L. Yokoyama, J.L. de Medeiros, O. de Queiroz Fernandes Araújo Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment Appl. Energy, 184 (2016), pp. 1246-1263, 10.1016/j.apenergy.2016.05.017 I. Ambat, V. Srivastava, M. Sillanpää Recent advancement in biodiesel production methodologies using various feedstock: a review Renew. Sustain. Energy Rev., 90 (2018), pp. 356-369, 10.1016/j.rser.2018.03.069 ANP 77o Leilão de Biodiesel da ANP (2021) [WWW Document]. Agência Nac. Petróleo, Gás Nat. e Biocombustíveis. URL https://www.gov.br/anp/pt-br/assuntos/distribuicao-e-revenda/leiloes-biodiesel/leiloes-entregas-2021, Accessed 3rd Mar 2021 S.A. Archer, R.J. Murphy, R. Steinberger-Wilckens Methodological analysis of palm oil biodiesel life cycle studies Renew. Sustain. Energy Rev., 94 (2018), pp. 694-704, 10.1016/j.rser.2018.05.066 V. Aristizábal-Marulanda, J.C. Solarte-Toro, C.A. Cardona Alzate Economic and social assessment of biorefineries: the case of Coffee Cut-Stems (CCS) in Colombia Bioresour. Technol. Rep., 9 (2020), p. 100397, 10.1016/j.biteb.2020.100397 N.I.H.A. Aziz, M.M. Hanafiah, S.H. Gheewala A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia Biomass Bioenergy, 122 (2019), pp. 361-374, 10.1016/j.biombioe.2019.01.047 G. Beaudry, C. Macklin, E. Roknich, L. Sears, M. Wiener, S.H. Gheewala Greenhouse gas assessment of palm oil mill biorefinery in Thailand from a life cycle perspective Biomass Convers. Bioref., 8 (2018), pp. 43-58, 10.1007/s13399-016-0233-7 S. Bezergianni, L.P. Chrysikou Application of Life-Cycle Assessment in Biorefineries, Waste Biorefinery Elsevier B.V (2020), 10.1016/b978-0-12-818228-4.00017-4 P. Booneimsri, K. Kubaha, C. Chullabodhi Increasing power generation with enhanced cogeneration using waste energy in palm oil mills Energy Sci. Eng., 6 (2018), pp. 154-173, 10.1002/ese3.196 F. Brandão, G. Schoneveld The State of Oil Palm Development in the Brazilian Amazon: Trends, Value Chain Dynamics, and Business Models (No. 198) (2015), 10.17528/cifor/005861 Bogor J.M. Bressanin, B.C. Klein, M.F. Chagas, M.D.B. Watanabe, I.L. de M. Sampaio, A. Bonomi, E.R. de Morais, O. Cavalett Techno-economic and environmental assessment of biomass Gasification and fischer–tropsch synthesis integrated to sugarcane biorefineries Energies, 13 (2020), p. 4576, 10.3390/en13174576 M. Brito, J. Buecke Agropalma: Relatório de Sustentabilidade 2015 Agropalma, Belém (2015) A. Bušić, N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M.I. Šantek, D. Komes, S. Novak, B. Šantek Bioethanol production from renewable raw materials and its separation and purification: a review Food Technol. Biotechnol., 56 (2018), pp. 289-311, 10.17113/ftb.56.03.18.5546 CCEE Informação Do Leilão Dinânimo (2021) [WWW Document]. Câmara Comer. Energ. Elétrica. URL https://www.ccee.org.br/, Accessed 3rd Mar 2021 CEPEA Indicador mensal ethanol hidratado CEPEA/ESALQ combustível - estado de São paulo [WWW Document]. Cent. Estud. Avançados em Econ. Apl. URL http://cepea.esalq.usp.br/etanol/ (2021), Accessed 3rd Mar 2021 Chemical Engineering Magazine Current Economic Trends CEPCI (2019) [WWW Document]. URL https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/, Accessed 3rd Mar 2021 H. Chen Lignocellulose Biorefinery Engineering (first ed.) (2015) J. Chen, X. Bian, G. Rapp, J. Lang, A. Montoya, R. Trethowan, B. Bouyssiere, J.-F. Portha, J.-N. Jaubert, P. Pratt, L. Coniglio From ethyl biodiesel to biolubricants: options for an Indian mustard integrated biorefinery toward a green and circular economy Ind. Crop. Prod., 137 (2019), pp. 597-614, 10.1016/j.indcrop.2019.04.041 L.P. Chrysikou, S. Bezergianni, C. Kiparissides Environmental analysis of a lignocellulosic-based biorefinery producing bioethanol and high-added value chemicals Sustain. Energy Technol. Assess., 28 (2018), pp. 103-109, 10.1016/j.seta.2018.06.010 Conab Acompanhamento da Safra Brasileira da Cana-de-açúcar (2018) https://www.conab.gov.br/info-agro/safras/cana A. Corona, R. Parajuli, M. Ambye-Jensen, M.Z. Hauschild, M. Birkved Environmental screening of potential biomass for green biorefinery conversion J. Clean. Prod., 189 (2018), pp. 344-357, 10.1016/j.jclepro.2018.03.316 L.A.B. Cortez, F.E.B. Nigro, L.A.H. Nogueira, A.M. Nassar, H. Cantarella, M.A.F.D. Moraes, R.L.V. Leal, T.T. Franco, U.F. Schuchardt, R. Baldassin Junior Perspectives for sustainable aviation biofuels in Brazil Int. J. Aerosp. Eng., 1–12 (2015), 10.1155/2015/264898 D. Debnath, S.C. Babu Biofuels, Bioenergy and Food Security (first ed.), Elsevier (2019), 10.1016/C2015-0-00851-6 F. Demichelis, M. Laghezza, M. Chiappero, S. Fiore Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass J. Clean. Prod., 277 (2020), p. 124111, 10.1016/j.jclepro.2020.124111 M.O. de S. Dias, R. Maciel Filho, P.E. Mantelatto, O. Cavalett, C.E.V. Rossell, A. Bonomi, M.R.L.V. Leal Sugarcane processing for ethanol and sugar in Brazil Environ. Dev., 15 (2015), pp. 35-51, 10.1016/j.envdev.2015.03.004 EPE Análise de conjuntura dos biocombustíveis: ano 2019 (2019) [WWW Document]. Empres. Pesqui. Energética. URL https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/analise-de-conjuntura-dos-biocombustiveis-2019, Accessed 3rd Mar 2021 S. Farzad, M.A. Mandegari, M. Guo, K.F. Haigh, N. Shah, J.F. Görgens Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol. Biofuels, 10 (2017), p. 87, 10.1186/s13068-017-0761-9 U.R. Fritsche, R. Diaz-Chavez, C. de la Rúa, B. Gabriel, A. Perrin Sustainability of bioenergy The Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy (2018), pp. 225-296, 10.1016/B978-0-12-813056-8.00006-6 J.C. Furtado Júnior, J.C.E. Palacio, R.C. Leme, E.E.S. Lora, J.E.L. da Costa, A.M.M. Reyes, O.A. del Olmo Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry Appl. Energy, 259 (2020), p. 113092, 10.1016/j.apenergy.2019.04.088 J.A. Garcia-Nunez, D.T. Rodriguez, C.A. Fontanilla, N.E. Ramirez, E.E. Silva Lora, C.S. Frear, C. Stockle, J. Amonette, M. Garcia-Perez Evaluation of alternatives for the evolution of palm oil mills into biorefineries Biomass Bioenergy, 95 (2016), pp. 310-329, 10.1016/j.biombioe.2016.05.020 S.N. Gebremariam, J.M. Marchetti Economics of biodiesel production: Review Energy Convers. Manag., 168 (2018), pp. 74-84, 10.1016/j.enconman.2018.05.002 Gikonyo Efficiency and Sustainability in Biofuel Production (first ed.), Apple Academic Press (2015), 10.1201/b18466 L.A. Hadidi, Q.M. Altamimi 3E (energy, economic, and environmental) analysis of waste management strategies Advances in Waste-To-Energy Technologies, CRC Press (2019), p. 13 Z.M. Harris, S. Milner, G. Taylor Biogenic carbon—capture and sequestration Greenhouse Gases Balances of Bioenergy Systems, Elsevier (2018), pp. 55-76, 10.1016/B978-0-08-101036-5.00005-7 M. Hingsamer, G. Jungmeier Biorefineries, the Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy Elsevier Inc (2018), 10.1016/B978-0-12-813056-8.00005-4 F. Hosseini-Fashami, A. Motevali, A. Nabavi-Pelesaraei, S.J. Hashemi, K. wing Chau Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production Renew. Sustain. Energy Rev., 116 (2019), p. 109411, 10.1016/j.rser.2019.109411 IEA Bioenergy Task 42 Bioref. Fut. BioEcon., 1–23 (2019) ISO 14040, 2006 Environmental management - Life Cycle Assessment - Principles and Framework (2006) O. Jolliet, M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, R. Rosenbaum Impact 2002+: a new life cycle impact assessment methodology Int. J. Life Cycle Assess., 8 (2003), pp. 324-330, 10.1007/BF02978505 A.A.V. Julio, E.A.O. Batlle, C.J.C. Rodriguez, J.C.E. Palacio Exergoeconomic and Environmental Analysis of a Palm Oil Biorefinery for the Production of Bio-Jet Fuel, vol. 27, Waste and Biomass Valorization Pag (2021), 10.1007/s12649-021-01404-2 A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K. wing Chau Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production Energy, 181 (2019), pp. 1298-1320, 10.1016/j.energy.2019.06.002 A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K. wing Chau Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production Sci. Total Environ., 664 (2019), pp. 1005-1019, 10.1016/j.scitotenv.2019.02.004 L.K. Kaushik, P. Muthukumar Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner Appl. Therm. Eng., 133 (2018), pp. 316-326, 10.1016/j.applthermaleng.2018.01.050 M. Khanali, A. Akram, J. Behzadi, F. Mostashari-Rad, Z. Saber, K. wing Chau, A. Nabavi-Pelesaraei Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm Appl. Energy, 284 (2021), p. 116342, 10.1016/j.apenergy.2020.116342 B. Khoshnevisan, M. Tabatabaei, P. Tsapekos, S. Rafiee, M. Aghbashlo, S. Lindeneg, I. Angelidaki Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid Renew. Sustain. Energy Rev., 117 (2020), p. 109493, 10.1016/j.rser.2019.109493 B.C. Klein, M.F. Chagas, T.L. Junqueira, M.C.A.F. Rezende, T. de F. Cardoso, O. Cavalett, A. Bonomi Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries Appl. Energy, 209 (2018), pp. 290-305, 10.1016/j.apenergy.2017.10.079 O.-M. Lai, C.-P. Tan, C.C. Akoh Palm Oil: Production, Processing, Characterization, and Uses (first ed.), Elsevier, New York (2012) LAPIG Atlas das Pastagens Brasileiras (2020) [WWW Document]. Laboratório Process. Imgens e Geoprocessamento. URL https://pastagem.org/atlas/map, Accessed 28th Jul 2020 M.R.L.V. Leal, M.V. Galdos, F.V. Scarpare, J.E.A. Seabra, A. Walter, C.O.F. Oliveira Sugarcane straw availability, quality, recovery and energy use: a literature review Biomass Bioenergy, 53 (2013), pp. 11-19, 10.1016/j.biombioe.2013.03.007 K.T. Lee, C. Ofori-Boateng Sustainability of Biofuel Production from Oil Palm Biomass (first ed.) (2013), 10.1007/978-981-4451-70-3 Malaysia S.G. Maham, A. Rahimi, D.L. Smith Environmental assessment of the essential oils produced from dragonhead (Dracocephalum moldavica L.) in conventional and organic farms with different irrigation rates J. Clean. Prod., 204 (2018), pp. 1070-1086, 10.1016/j.jclepro.2018.08.348 C.S. Mahath, K. Mophin Kani, B. Dubey Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram, India Resour. Conserv. Recycl., 141 (2019), pp. 40-53, 10.1016/j.resconrec.2018.09.023 C. Manochio, B. Andrade, R. Rodriguez, B. Moraes Ethanol from biomass: a comparative overview Renew. Sustain. Energy Rev., 80 (2017), pp. 743-755, 10.1016/j.rser.2017.05.063 M.H. Mat Yasin, R. Mamat, G. Najafi, O.M. Ali, A.F. Yusop, M.H. Ali Potentials of palm oil as new feedstock oil for a global alternative fuel: a review Renew. Sustain. Energy Rev., 79 (2017), pp. 1034-1049, 10.1016/j.rser.2017.05.186 T.M. Mata, A.A. Martins, S.K. Sikdar, C.A.V. Costa Sustainability considerations of biodiesel based on supply chain analysis Clean Technol. Environ. Policy, 13 (2011), pp. 655-671, 10.1007/s10098-010-0346-9 F. Mohammadi, A. Roedl, M.A. Abdoli, M. Amidpour, H. Vahidi Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry Renew. Energy, 145 (2020), pp. 1870-1882, 10.1016/j.renene.2019.06.023 H. Monteiro, B. Moura, M. Iten, T.M. Mata, A.A. Martins Life cycle energy and carbon emissions of ergosterol from mushroom residues Energy Rep., 6 (2020), pp. 333-339, 10.1016/j.egyr.2020.11.157 F. Mostashari-Rad, H. Ghasemi-Mobtaker, M. Taki, M. Ghahderijani, A. Kaab, K. wing Chau, A. Nabavi-Pelesaraei Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks J. Clean. Prod., 278 (2021), p. 123788, 10.1016/j.jclepro.2020.123788 M. Munasinghe, P. Jayasinghe, Y. Deraniyagala, V.J. Matlaba, J.F. dos Santos, M.C. Maneschy, J.A. Mota Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability Sustain. Prod. Consum., 17 (2019), pp. 161-175, 10.1016/j.spc.2018.10.001 A. Nabavi-Pelesaraei, R. Bayat, H. Hosseinzadeh-Bandbafha, H. Afrasyabi, K. wing Chau Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran J. Clean. Prod., 148 (2017), pp. 427-440, 10.1016/j.jclepro.2017.01.172 M. Nieder-Heitmann, K.F. Haigh, J.F. Görgens Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the South African sugar industry J. Clean. Prod., 239 (2019), 10.1016/j.jclepro.2019.118039 L.A.H. Nogueira, G.M. Souza, L.A.B. Cortez, C.H. de Brito Cruz Biofuels for transport Future Energy: Improved, Sustainable and Clean Options for Our Planet, Elsevier Ltd (2020), pp. 173-197, 10.1016/B978-0-08-102886-5.00009-8 I.M. O'Hara, S.G. Mundree Sugarcane-based biofuels and bioproducts Sugarcane-based Biofuels and Bioproducts (first ed.) (2016), 10.1002/9781118719862 New Jersey E.A. Ocampo Batlle, Y. Castillo Santiago, O.J. Venturini, J.C. Escobar Palacio, E.E. Silva Lora, D.M. Yepes Maya, A.R. Albis Arrieta Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries J. Clean. Prod., 250 (2020), p. 119544, 10.1016/j.jclepro.2019.119544 E.I. Ohimain, S.C. Izah A review of biogas production from palm oil mill effluents using different configurations of bioreactors Renew. Sustain. Energy Rev., 70 (2017), pp. 242-253, 10.1016/j.rser.2016.11.221 J.C.E. Palacio, E.A. Ocampo, M.L.G. Renó, A.M.M. Reyes, G.F. de Souza, O.A.A. del Olmo, E.E.S. Lora Exergy and environmental analysis of a polygeneration system of alcohol industry Waste Biomass Valoriz. (2018), p. 16, 10.1007/s12649-018-0509-1 L.G. Pereira, O. Cavalett, A. Bonomi, Y. Zhang, E. Warner, H.L. Chum Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat Renew. Sustain. Energy Rev., 110 (2019), pp. 1-12, 10.1016/j.rser.2019.04.043 L.G. Pereira, M.F. Chagas, M.O.S. Dias, O. Cavalett, A. Bonomi Life cycle assessment of butanol production in sugarcane biorefineries in Brazil J. Clean. Prod., 96 (2015), pp. 557-568, 10.1016/j.jclepro.2014.01.059 S. de S. Pereira, J.E.A. Seabra, L.A.H. Nogueira Feedstocks for biodiesel production: Brazilian and global perspectives Biofuels, 9 (2018), pp. 455-478, 10.1080/17597269.2017.1278931 A.G. Queiroz, L. França, M.X. Ponte The life cycle assessment of biodiesel from palm oil (“ dendê”) in the Amazon Biomass Bioenergy, 36 (2012), pp. 50-59, 10.1016/j.biombioe.2011.10.007 N.E. Ramirez-Contreras, D.A. Munar-Florez, J.A. Garcia-Nuñez, M. Mosquera-Montoya, A.P.C. Faaij The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives J. Clean. Prod., 258 (2020), p. 120757, 10.1016/j.jclepro.2020.120757 REN21 Renewables 2018: global status report (2018) 978-3-9818107-0-7 M.L.G. Renó, O.A. del Olmo, J.C.E. Palacio, E.E.S. Lora, O.J. Venturini Sugarcane biorefineries: case studies applied to the Brazilian sugar–alcohol industry Energy Convers. Manag., 86 (2014), pp. 981-991, 10.1016/j.enconman.2014.06.031 M.H. Rocha, R.S. Capaz, E.E.S. Lora, L.A.H. Nogueira, M.M.V. Leme, M.L.G. Renó, O.A. Del Olmo Life cycle assessment (LCA) for biofuels in Brazilian conditions: a meta-analysis Renew. Sustain. Energy Rev., 37 (2014), pp. 435-459, 10.1016/j.rser.2014.05.036 Z. Saber, M. Esmaeili, H. Pirdashti, A. Motevali, A. Nabavi-Pelesaraei Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production J. Clean. Prod., 263 (2020), p. 121529, 10.1016/j.jclepro.2020.121529 F.H. Salina, I.A. de Almeida, F.R. Bittencourt RenovaBio opportunities and biofuels outlook in Brazil Renewable Energy and Sustainable Buildings, Springer, Cham (2020), pp. 391-399, 10.1007/978-3-030-18488-9_30 F. Santos, A. Borém, C. Caldas Sugarcane: Agricultural Production, Bioenergy and Ethanol (first ed.), Elsevier. Academic Press, Brasilia (2015) A.P. Saravanan, A. Pugazhendhi, T. Mathimani A comprehensive assessment of biofuel policies in the BRICS nations: implementation, blending target and gaps Fuel, 272 (2020), p. 117635, 10.1016/j.fuel.2020.117635 S.R. Sharvini, Z.Z. Noor, C.S. Chong, L.C. Stringer, D. Glew Energy generation from palm oil mill effluent: a life cycle assessment of two biogas technologies Energy, 191 (2020), p. 116513, 10.1016/j.energy.2019.116513 W.L.G. da Silva, P.T. de Souza, G.G. Shimamoto, M. Tubino Separation of the Glycerol-biodiesel phases in an ethyl transesterification synthetic route using water J. Braz. Chem. Soc. (2015), 10.5935/0103-5053.20150147 A. Singh, D. Pant, S.I. Olsen Life Cycle Assessment of Renewable Energy Sources Springer London (2013), 10.1007/978-1-4471-5364-1 E.K. Sitepu, K. Heimann, C.L. Raston, W. Zhang Critical evaluation of process parameters for direct biodiesel production from diverse feedstock Renew. Sustain. Energy Rev., 123 (2020), p. 109762, 10.1016/j.rser.2020.109762 C.C. De Souza, J.P. Leandro, J. Francisco, D.M. Frainer, R.A. Castelão Cogeneration of electricity in sugar-alcohol plant : perspectives and viability Renew. Sustain. Energy Rev., 91 (2018), pp. 832-837, 10.1016/j.rser.2018.04.047 S.P. Souza, M.T. de Ávila, S. Pacca Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production Biomass Bioenergy, 44 (2012), pp. 70-79, 10.1016/j.biombioe.2012.04.018 J.G. Speight A Biorefinery, the Refinery of the Future (2020), 10.1016/b978-0-12-816994-0.00014-2 U. Suwanmanee, T. Bangjang, A. Kaewchada, A. Jaree Greenhouse gas emissions and energy assessment of modified diesohol using cashew nut shell liquid and biodiesel as additives Sustain. Prod. Consum., 24 (2020), pp. 232-253, 10.1016/j.spc.2020.06.009 Y.D. Tan, J.S. Lim, S.R. Wan Alwi Multi-objective optimal design for integrated palm oil mill complex with consideration of effluent elimination Energy, 202 (2020), 10.1016/j.energy.2020.117767 I. Tsiropoulos, A.P.C. Faaij, J.E.A. Seabra Life Cycle Assessment of Sugarcane Ethanol Production in India in Comparison to Brazil, Springer (2014), pp. 1049-1067, 10.1007/s11367-014-0714-5 U.S. EIA Capital Cost Estimates for Utility Scale Electricity Generating Plants (2016) U.S. Energy Information Administration International Energy Outlook 2018, Energy Information Administration - EIA (2018) Washintong, DC https://www.eia.gov/outlooks/archive/ieo18/ P. Vaskan, E.R. Pachón, E. Gnansounou Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil J. Clean. Prod., 172 (2018), pp. 3655-3668, 10.1016/j.jclepro.2017.07.218 M.C. Vásquez, A. Martínez, E.F. Castillo, E.E. Silva Holistic approach for sustainability enhancing of hydrotreated aviation biofuels, through life cycle assessment: a Brazilian case study J. Clean. Prod., 237 (2019), 10.1016/j.jclepro.2019.117796 O.J. Venturini, J.C.F. Júnior, J.C.E. Palacio, E.A.O. Batlle, M. Carvalho, E.E.S. Lora Indicators for sustainability assessment of biofuels: economic, environmental, social, and technological dimensions Biofuels for a More Sustainable Future, Elsevier (2020), pp. 73-113, 10.1016/B978-0-12-815581-3.00004-X P. Verma, M.P. Sharma, G. Dwivedi Impact of alcohol on biodiesel production and properties Renew. Sustain. Energy Rev., 56 (2016), pp. 319-333, 10.1016/j.rser.2015.11.048 S. Verma, A. Kuila Principles of sustainable biorefinery Biorefinery Production Technologies for Chemicals and Energy, Wiley (2020), pp. 1-13, 10.1002/9781119593065.ch1 M.A. Vieira da Silva, B. Lagnier Gil Ferreira, L.G. da Costa Marques, A. Lamare Soares Murta, M.A. Vasconcelos de Freitas Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes Fuel, 194 (2017), pp. 144-156, 10.1016/j.fuel.2016.12.084 J.-L. Wertz, O. Bédué Lignocellulosic Biorefineries (first ed.), CRC Press. EFPL Press (2013), 10.1201/b15443-4 M.F.M. Yusoff, X. Xu, Z. Guo Comparison of fatty acid methyl and ethyl Esters as biodiesel base stock: a review on processing and production requirements J. Am. Oil Chem. Soc., 91 (2014), pp. 525-531, 10.1007/s11746-014-2443-0 S.B. Živković, M.V. Veljkovi, I.B. Bankovi, I.M. Krsti, S. Konstantinovi, S.B. Ili, J.M. Avramovi, O.S. Stamenkovi Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use Renew. Sustain. Energy Rev., 79 (2017), pp. 222-247, 10.1016/j.rser.2017.05.048 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Journal of Cleaner Production |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S0959652621018564 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/32867275-73a6-490b-bc35-a81c0f13afef/download https://repositorio.cuc.edu.co/bitstreams/122da00b-e807-4780-acd2-f0aaffa9de6b/download https://repositorio.cuc.edu.co/bitstreams/00d8ab38-3392-47e7-a077-86a84542246f/download https://repositorio.cuc.edu.co/bitstreams/4c714fe8-2520-4c54-a5fa-d07283f72257/download https://repositorio.cuc.edu.co/bitstreams/93317818-d073-4219-b6b5-8cc5cff06502/download |
bitstream.checksum.fl_str_mv |
10817d98103560aa92b917f6a1e6442b 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 829344793a8ba9f5a383bd6a8277fdc6 4bb9103ef5d4cccdd563121f09c16cf6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760735628296192 |
spelling |
Ocampo Batlle, Eric AlbertoEscobar Palacio, José CarlosSilva Lora, Electo EduardoDa Costa Bortoni, EdsonHorta Nogueira, Luiz AugustoCarrillo Caballero, Gaylord EnriqueVitoriano Julio, Alisson AparecidoCárdenas Escorcia, Yulineth2021-06-29T21:43:18Z2021-06-29T21:43:18Z2021https://hdl.handle.net/11323/8441https://doi.org/10.1016/j.jclepro.2021.127638Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The key objective of this study was to evaluate and compare, within the concept of integrated biorefining, the potential environmental gains of the life cycle, economic feasibility and energy balance of the production of bioenergetics from palm and sugarcane. In this context, the research model developed in this work involved several assessment techniques; in terms of environmental assessment, the tool used was the Life Cycle Assessment (LCA) from the Well-To-Tank perspective, which is based on the LCA “cradle-to-gate” assignment method. The environmental assessment was performed using SimaPro v.8.0.3 software and the impacts were quantified using the IMPACT 2002+ method. On the other hand, energy performance evaluation was based on the 1st law indicators. Likewise, economic feasibility was based on the evaluation of the fixed capital investment index and the estimate of investment costs for the entire integrated system. Two different scenarios were proposed in order to compare and evaluate traditional systems with the integrated biorefinery. The first conversion scenario (baseline scenario) consisted of a traditional palm oil extraction plant in addition to an ethanol and sugar plant, concerning the use of fossil fuels in all stages of production. The second conversion scenario (improved scenario) explored the substitution of fossil energy sources as well as the energy recovery of residual biomass in more efficient energy conversion systems. The results indicated significant reductions of 29.5% and 29.1% in the global warming impact category when the baseline scenario was compared to the improved scenario. Additionally, the improved scenario achieved a reduction of 2.1 g CO2eq MJ−1 (ethanol) and 2.61 g CO2eq MJ−1 (biodiesel). On the other hand, the improved scenario presented better energy rates since it showed an increase of 3.82% in the global efficiency of the system and produced 106.32 kWh more per ton of processed raw material. Finally, when considering the Life Cycle Energy Efficiency, an increase of 83% was observed and in the case of the Renewability Factor showed an increase of 7.12 energy units. Integration is also economically feasible; however, it could be significantly improved through fiscal incentives founded on the reduction of fossil energy use, enhanced conversion yielding, and improvements in conversion technologies.Ocampo Batlle, Eric AlbertoEscobar Palacio, José CarlosSilva Lora, Electo EduardoDa Costa Bortoni, EdsonHorta Nogueira, Luiz AugustoCarrillo Caballero, Gaylord EnriqueVitoriano Julio, Alisson AparecidoCárdenas Escorcia, Yulinethapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Cleaner Productionhttps://www.sciencedirect.com/science/article/abs/pii/S0959652621018564Integrated biofuel productionBiorefineryEnergy performanceSustainabilityEnvironmental impactsEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanolArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionH.B. Aditiya, T.M.I. Mahlia, W.T. Chong, H. Nur, A.H. Sebayang Second generation bioethanol production: a critical review Renew. Sustain. Energy Rev., 66 (2016), pp. 631-653, 10.1016/j.rser.2016.07.015F.B. Ahmad, Z. Zhang, W.O.S. Doherty, I.M. O'Hara The outlook of the production of advanced fuels and chemicals from integrated oil palm biomass biorefinery Renew. Sustain. Energy Rev., 109 (2019), pp. 386-411, 10.1016/j.rser.2019.04.009C.A. Alejos Altamirano, L. Yokoyama, J.L. de Medeiros, O. de Queiroz Fernandes Araújo Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment Appl. Energy, 184 (2016), pp. 1246-1263, 10.1016/j.apenergy.2016.05.017I. Ambat, V. Srivastava, M. Sillanpää Recent advancement in biodiesel production methodologies using various feedstock: a review Renew. Sustain. Energy Rev., 90 (2018), pp. 356-369, 10.1016/j.rser.2018.03.069ANP 77o Leilão de Biodiesel da ANP (2021) [WWW Document]. Agência Nac. Petróleo, Gás Nat. e Biocombustíveis. URL https://www.gov.br/anp/pt-br/assuntos/distribuicao-e-revenda/leiloes-biodiesel/leiloes-entregas-2021, Accessed 3rd Mar 2021S.A. Archer, R.J. Murphy, R. Steinberger-Wilckens Methodological analysis of palm oil biodiesel life cycle studies Renew. Sustain. Energy Rev., 94 (2018), pp. 694-704, 10.1016/j.rser.2018.05.066V. Aristizábal-Marulanda, J.C. Solarte-Toro, C.A. Cardona Alzate Economic and social assessment of biorefineries: the case of Coffee Cut-Stems (CCS) in Colombia Bioresour. Technol. Rep., 9 (2020), p. 100397, 10.1016/j.biteb.2020.100397N.I.H.A. Aziz, M.M. Hanafiah, S.H. Gheewala A review on life cycle assessment of biogas production: challenges and future perspectives in Malaysia Biomass Bioenergy, 122 (2019), pp. 361-374, 10.1016/j.biombioe.2019.01.047G. Beaudry, C. Macklin, E. Roknich, L. Sears, M. Wiener, S.H. Gheewala Greenhouse gas assessment of palm oil mill biorefinery in Thailand from a life cycle perspective Biomass Convers. Bioref., 8 (2018), pp. 43-58, 10.1007/s13399-016-0233-7S. Bezergianni, L.P. Chrysikou Application of Life-Cycle Assessment in Biorefineries, Waste Biorefinery Elsevier B.V (2020), 10.1016/b978-0-12-818228-4.00017-4P. Booneimsri, K. Kubaha, C. Chullabodhi Increasing power generation with enhanced cogeneration using waste energy in palm oil mills Energy Sci. Eng., 6 (2018), pp. 154-173, 10.1002/ese3.196F. Brandão, G. Schoneveld The State of Oil Palm Development in the Brazilian Amazon: Trends, Value Chain Dynamics, and Business Models (No. 198) (2015), 10.17528/cifor/005861 BogorJ.M. Bressanin, B.C. Klein, M.F. Chagas, M.D.B. Watanabe, I.L. de M. Sampaio, A. Bonomi, E.R. de Morais, O. Cavalett Techno-economic and environmental assessment of biomass Gasification and fischer–tropsch synthesis integrated to sugarcane biorefineries Energies, 13 (2020), p. 4576, 10.3390/en13174576M. Brito, J. Buecke Agropalma: Relatório de Sustentabilidade 2015 Agropalma, Belém (2015)A. Bušić, N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M.I. Šantek, D. Komes, S. Novak, B. Šantek Bioethanol production from renewable raw materials and its separation and purification: a review Food Technol. Biotechnol., 56 (2018), pp. 289-311, 10.17113/ftb.56.03.18.5546CCEE Informação Do Leilão Dinânimo (2021) [WWW Document]. Câmara Comer. Energ. Elétrica. URL https://www.ccee.org.br/, Accessed 3rd Mar 2021CEPEA Indicador mensal ethanol hidratado CEPEA/ESALQ combustível - estado de São paulo [WWW Document]. Cent. Estud. Avançados em Econ. Apl. URL http://cepea.esalq.usp.br/etanol/ (2021), Accessed 3rd Mar 2021Chemical Engineering Magazine Current Economic Trends CEPCI (2019) [WWW Document]. URL https://www.chemengonline.com/2019-chemical-engineering-plant-cost-index-annual-average/, Accessed 3rd Mar 2021H. Chen Lignocellulose Biorefinery Engineering (first ed.) (2015)J. Chen, X. Bian, G. Rapp, J. Lang, A. Montoya, R. Trethowan, B. Bouyssiere, J.-F. Portha, J.-N. Jaubert, P. Pratt, L. Coniglio From ethyl biodiesel to biolubricants: options for an Indian mustard integrated biorefinery toward a green and circular economy Ind. Crop. Prod., 137 (2019), pp. 597-614, 10.1016/j.indcrop.2019.04.041L.P. Chrysikou, S. Bezergianni, C. Kiparissides Environmental analysis of a lignocellulosic-based biorefinery producing bioethanol and high-added value chemicals Sustain. Energy Technol. Assess., 28 (2018), pp. 103-109, 10.1016/j.seta.2018.06.010Conab Acompanhamento da Safra Brasileira da Cana-de-açúcar (2018) https://www.conab.gov.br/info-agro/safras/canaA. Corona, R. Parajuli, M. Ambye-Jensen, M.Z. Hauschild, M. Birkved Environmental screening of potential biomass for green biorefinery conversion J. Clean. Prod., 189 (2018), pp. 344-357, 10.1016/j.jclepro.2018.03.316L.A.B. Cortez, F.E.B. Nigro, L.A.H. Nogueira, A.M. Nassar, H. Cantarella, M.A.F.D. Moraes, R.L.V. Leal, T.T. Franco, U.F. Schuchardt, R. Baldassin Junior Perspectives for sustainable aviation biofuels in Brazil Int. J. Aerosp. Eng., 1–12 (2015), 10.1155/2015/264898D. Debnath, S.C. Babu Biofuels, Bioenergy and Food Security (first ed.), Elsevier (2019), 10.1016/C2015-0-00851-6F. Demichelis, M. Laghezza, M. Chiappero, S. Fiore Technical, economic and environmental assessement of bioethanol biorefinery from waste biomass J. Clean. Prod., 277 (2020), p. 124111, 10.1016/j.jclepro.2020.124111M.O. de S. Dias, R. Maciel Filho, P.E. Mantelatto, O. Cavalett, C.E.V. Rossell, A. Bonomi, M.R.L.V. Leal Sugarcane processing for ethanol and sugar in Brazil Environ. Dev., 15 (2015), pp. 35-51, 10.1016/j.envdev.2015.03.004EPE Análise de conjuntura dos biocombustíveis: ano 2019 (2019) [WWW Document]. Empres. Pesqui. Energética. URL https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/analise-de-conjuntura-dos-biocombustiveis-2019, Accessed 3rd Mar 2021S. Farzad, M.A. Mandegari, M. Guo, K.F. Haigh, N. Shah, J.F. Görgens Multi-product biorefineries from lignocelluloses: a pathway to revitalisation of the sugar industry? Biotechnol. Biofuels, 10 (2017), p. 87, 10.1186/s13068-017-0761-9U.R. Fritsche, R. Diaz-Chavez, C. de la Rúa, B. Gabriel, A. Perrin Sustainability of bioenergy The Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy (2018), pp. 225-296, 10.1016/B978-0-12-813056-8.00006-6J.C. Furtado Júnior, J.C.E. Palacio, R.C. Leme, E.E.S. Lora, J.E.L. da Costa, A.M.M. Reyes, O.A. del Olmo Biorefineries productive alternatives optimization in the brazilian sugar and alcohol industry Appl. Energy, 259 (2020), p. 113092, 10.1016/j.apenergy.2019.04.088J.A. Garcia-Nunez, D.T. Rodriguez, C.A. Fontanilla, N.E. Ramirez, E.E. Silva Lora, C.S. Frear, C. Stockle, J. Amonette, M. Garcia-Perez Evaluation of alternatives for the evolution of palm oil mills into biorefineries Biomass Bioenergy, 95 (2016), pp. 310-329, 10.1016/j.biombioe.2016.05.020S.N. Gebremariam, J.M. Marchetti Economics of biodiesel production: Review Energy Convers. Manag., 168 (2018), pp. 74-84, 10.1016/j.enconman.2018.05.002Gikonyo Efficiency and Sustainability in Biofuel Production (first ed.), Apple Academic Press (2015), 10.1201/b18466L.A. Hadidi, Q.M. Altamimi 3E (energy, economic, and environmental) analysis of waste management strategies Advances in Waste-To-Energy Technologies, CRC Press (2019), p. 13Z.M. Harris, S. Milner, G. Taylor Biogenic carbon—capture and sequestration Greenhouse Gases Balances of Bioenergy Systems, Elsevier (2018), pp. 55-76, 10.1016/B978-0-08-101036-5.00005-7M. Hingsamer, G. Jungmeier Biorefineries, the Role of Bioenergy in the Emerging Bioeconomy: Resources, Technologies, Sustainability and Policy Elsevier Inc (2018), 10.1016/B978-0-12-813056-8.00005-4F. Hosseini-Fashami, A. Motevali, A. Nabavi-Pelesaraei, S.J. Hashemi, K. wing Chau Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production Renew. Sustain. Energy Rev., 116 (2019), p. 109411, 10.1016/j.rser.2019.109411IEA Bioenergy Task 42 Bioref. Fut. BioEcon., 1–23 (2019)ISO 14040, 2006 Environmental management - Life Cycle Assessment - Principles and Framework (2006)O. Jolliet, M. Margni, R. Charles, S. Humbert, J. Payet, G. Rebitzer, R. Rosenbaum Impact 2002+: a new life cycle impact assessment methodology Int. J. Life Cycle Assess., 8 (2003), pp. 324-330, 10.1007/BF02978505A.A.V. Julio, E.A.O. Batlle, C.J.C. Rodriguez, J.C.E. Palacio Exergoeconomic and Environmental Analysis of a Palm Oil Biorefinery for the Production of Bio-Jet Fuel, vol. 27, Waste and Biomass Valorization Pag (2021), 10.1007/s12649-021-01404-2A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K. wing Chau Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production Energy, 181 (2019), pp. 1298-1320, 10.1016/j.energy.2019.06.002A. Kaab, M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, K. wing Chau Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production Sci. Total Environ., 664 (2019), pp. 1005-1019, 10.1016/j.scitotenv.2019.02.004L.K. Kaushik, P. Muthukumar Life cycle Assessment (LCA) and Techno-economic Assessment (TEA) of medium scale (5–10 kW) LPG cooking stove with two-layer porous radiant burner Appl. Therm. Eng., 133 (2018), pp. 316-326, 10.1016/j.applthermaleng.2018.01.050M. Khanali, A. Akram, J. Behzadi, F. Mostashari-Rad, Z. Saber, K. wing Chau, A. Nabavi-Pelesaraei Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm Appl. Energy, 284 (2021), p. 116342, 10.1016/j.apenergy.2020.116342B. Khoshnevisan, M. Tabatabaei, P. Tsapekos, S. Rafiee, M. Aghbashlo, S. Lindeneg, I. Angelidaki Environmental life cycle assessment of different biorefinery platforms valorizing municipal solid waste to bioenergy, microbial protein, lactic and succinic acid Renew. Sustain. Energy Rev., 117 (2020), p. 109493, 10.1016/j.rser.2019.109493B.C. Klein, M.F. Chagas, T.L. Junqueira, M.C.A.F. Rezende, T. de F. Cardoso, O. Cavalett, A. Bonomi Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries Appl. Energy, 209 (2018), pp. 290-305, 10.1016/j.apenergy.2017.10.079O.-M. Lai, C.-P. Tan, C.C. Akoh Palm Oil: Production, Processing, Characterization, and Uses (first ed.), Elsevier, New York (2012)LAPIG Atlas das Pastagens Brasileiras (2020) [WWW Document]. Laboratório Process. Imgens e Geoprocessamento. URL https://pastagem.org/atlas/map, Accessed 28th Jul 2020M.R.L.V. Leal, M.V. Galdos, F.V. Scarpare, J.E.A. Seabra, A. Walter, C.O.F. Oliveira Sugarcane straw availability, quality, recovery and energy use: a literature review Biomass Bioenergy, 53 (2013), pp. 11-19, 10.1016/j.biombioe.2013.03.007K.T. Lee, C. Ofori-Boateng Sustainability of Biofuel Production from Oil Palm Biomass (first ed.) (2013), 10.1007/978-981-4451-70-3 MalaysiaS.G. Maham, A. Rahimi, D.L. Smith Environmental assessment of the essential oils produced from dragonhead (Dracocephalum moldavica L.) in conventional and organic farms with different irrigation rates J. Clean. Prod., 204 (2018), pp. 1070-1086, 10.1016/j.jclepro.2018.08.348C.S. Mahath, K. Mophin Kani, B. Dubey Gate-to-gate environmental impacts of dairy processing products in Thiruvananthapuram, India Resour. Conserv. Recycl., 141 (2019), pp. 40-53, 10.1016/j.resconrec.2018.09.023C. Manochio, B. Andrade, R. Rodriguez, B. Moraes Ethanol from biomass: a comparative overview Renew. Sustain. Energy Rev., 80 (2017), pp. 743-755, 10.1016/j.rser.2017.05.063M.H. Mat Yasin, R. Mamat, G. Najafi, O.M. Ali, A.F. Yusop, M.H. Ali Potentials of palm oil as new feedstock oil for a global alternative fuel: a review Renew. Sustain. Energy Rev., 79 (2017), pp. 1034-1049, 10.1016/j.rser.2017.05.186T.M. Mata, A.A. Martins, S.K. Sikdar, C.A.V. Costa Sustainability considerations of biodiesel based on supply chain analysis Clean Technol. Environ. Policy, 13 (2011), pp. 655-671, 10.1007/s10098-010-0346-9F. Mohammadi, A. Roedl, M.A. Abdoli, M. Amidpour, H. Vahidi Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry Renew. Energy, 145 (2020), pp. 1870-1882, 10.1016/j.renene.2019.06.023H. Monteiro, B. Moura, M. Iten, T.M. Mata, A.A. Martins Life cycle energy and carbon emissions of ergosterol from mushroom residues Energy Rep., 6 (2020), pp. 333-339, 10.1016/j.egyr.2020.11.157F. Mostashari-Rad, H. Ghasemi-Mobtaker, M. Taki, M. Ghahderijani, A. Kaab, K. wing Chau, A. Nabavi-Pelesaraei Exergoenvironmental damages assessment of horticultural crops using ReCiPe2016 and cumulative exergy demand frameworks J. Clean. Prod., 278 (2021), p. 123788, 10.1016/j.jclepro.2020.123788M. Munasinghe, P. Jayasinghe, Y. Deraniyagala, V.J. Matlaba, J.F. dos Santos, M.C. Maneschy, J.A. Mota Value–Supply Chain Analysis (VSCA) of crude palm oil production in Brazil, focusing on economic, environmental and social sustainability Sustain. Prod. Consum., 17 (2019), pp. 161-175, 10.1016/j.spc.2018.10.001A. Nabavi-Pelesaraei, R. Bayat, H. Hosseinzadeh-Bandbafha, H. Afrasyabi, K. wing Chau Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - a case study in Tehran Metropolis of Iran J. Clean. Prod., 148 (2017), pp. 427-440, 10.1016/j.jclepro.2017.01.172M. Nieder-Heitmann, K.F. Haigh, J.F. Görgens Life cycle assessment and multi-criteria analysis of sugarcane biorefinery scenarios: finding a sustainable solution for the South African sugar industry J. Clean. Prod., 239 (2019), 10.1016/j.jclepro.2019.118039L.A.H. Nogueira, G.M. Souza, L.A.B. Cortez, C.H. de Brito Cruz Biofuels for transport Future Energy: Improved, Sustainable and Clean Options for Our Planet, Elsevier Ltd (2020), pp. 173-197, 10.1016/B978-0-08-102886-5.00009-8I.M. O'Hara, S.G. Mundree Sugarcane-based biofuels and bioproducts Sugarcane-based Biofuels and Bioproducts (first ed.) (2016), 10.1002/9781118719862 New JerseyE.A. Ocampo Batlle, Y. Castillo Santiago, O.J. Venturini, J.C. Escobar Palacio, E.E. Silva Lora, D.M. Yepes Maya, A.R. Albis Arrieta Thermodynamic and environmental assessment of different scenarios for the insertion of pyrolysis technology in palm oil biorefineries J. Clean. Prod., 250 (2020), p. 119544, 10.1016/j.jclepro.2019.119544E.I. Ohimain, S.C. Izah A review of biogas production from palm oil mill effluents using different configurations of bioreactors Renew. Sustain. Energy Rev., 70 (2017), pp. 242-253, 10.1016/j.rser.2016.11.221J.C.E. Palacio, E.A. Ocampo, M.L.G. Renó, A.M.M. Reyes, G.F. de Souza, O.A.A. del Olmo, E.E.S. Lora Exergy and environmental analysis of a polygeneration system of alcohol industry Waste Biomass Valoriz. (2018), p. 16, 10.1007/s12649-018-0509-1L.G. Pereira, O. Cavalett, A. Bonomi, Y. Zhang, E. Warner, H.L. Chum Comparison of biofuel life-cycle GHG emissions assessment tools: the case studies of ethanol produced from sugarcane, corn, and wheat Renew. Sustain. Energy Rev., 110 (2019), pp. 1-12, 10.1016/j.rser.2019.04.043L.G. Pereira, M.F. Chagas, M.O.S. Dias, O. Cavalett, A. Bonomi Life cycle assessment of butanol production in sugarcane biorefineries in Brazil J. Clean. Prod., 96 (2015), pp. 557-568, 10.1016/j.jclepro.2014.01.059S. de S. Pereira, J.E.A. Seabra, L.A.H. Nogueira Feedstocks for biodiesel production: Brazilian and global perspectives Biofuels, 9 (2018), pp. 455-478, 10.1080/17597269.2017.1278931A.G. Queiroz, L. França, M.X. Ponte The life cycle assessment of biodiesel from palm oil (“ dendê”) in the Amazon Biomass Bioenergy, 36 (2012), pp. 50-59, 10.1016/j.biombioe.2011.10.007N.E. Ramirez-Contreras, D.A. Munar-Florez, J.A. Garcia-Nuñez, M. Mosquera-Montoya, A.P.C. Faaij The GHG emissions and economic performance of the Colombian palm oil sector; current status and long-term perspectives J. Clean. Prod., 258 (2020), p. 120757, 10.1016/j.jclepro.2020.120757REN21 Renewables 2018: global status report (2018) 978-3-9818107-0-7M.L.G. Renó, O.A. del Olmo, J.C.E. Palacio, E.E.S. Lora, O.J. Venturini Sugarcane biorefineries: case studies applied to the Brazilian sugar–alcohol industry Energy Convers. Manag., 86 (2014), pp. 981-991, 10.1016/j.enconman.2014.06.031M.H. Rocha, R.S. Capaz, E.E.S. Lora, L.A.H. Nogueira, M.M.V. Leme, M.L.G. Renó, O.A. Del Olmo Life cycle assessment (LCA) for biofuels in Brazilian conditions: a meta-analysis Renew. Sustain. Energy Rev., 37 (2014), pp. 435-459, 10.1016/j.rser.2014.05.036Z. Saber, M. Esmaeili, H. Pirdashti, A. Motevali, A. Nabavi-Pelesaraei Exergoenvironmental-Life cycle cost analysis for conventional, low external input and organic systems of rice paddy production J. Clean. Prod., 263 (2020), p. 121529, 10.1016/j.jclepro.2020.121529F.H. Salina, I.A. de Almeida, F.R. Bittencourt RenovaBio opportunities and biofuels outlook in Brazil Renewable Energy and Sustainable Buildings, Springer, Cham (2020), pp. 391-399, 10.1007/978-3-030-18488-9_30F. Santos, A. Borém, C. Caldas Sugarcane: Agricultural Production, Bioenergy and Ethanol (first ed.), Elsevier. Academic Press, Brasilia (2015)A.P. Saravanan, A. Pugazhendhi, T. Mathimani A comprehensive assessment of biofuel policies in the BRICS nations: implementation, blending target and gaps Fuel, 272 (2020), p. 117635, 10.1016/j.fuel.2020.117635S.R. Sharvini, Z.Z. Noor, C.S. Chong, L.C. Stringer, D. Glew Energy generation from palm oil mill effluent: a life cycle assessment of two biogas technologies Energy, 191 (2020), p. 116513, 10.1016/j.energy.2019.116513W.L.G. da Silva, P.T. de Souza, G.G. Shimamoto, M. Tubino Separation of the Glycerol-biodiesel phases in an ethyl transesterification synthetic route using water J. Braz. Chem. Soc. (2015), 10.5935/0103-5053.20150147A. Singh, D. Pant, S.I. Olsen Life Cycle Assessment of Renewable Energy Sources Springer London (2013), 10.1007/978-1-4471-5364-1E.K. Sitepu, K. Heimann, C.L. Raston, W. Zhang Critical evaluation of process parameters for direct biodiesel production from diverse feedstock Renew. Sustain. Energy Rev., 123 (2020), p. 109762, 10.1016/j.rser.2020.109762C.C. De Souza, J.P. Leandro, J. Francisco, D.M. Frainer, R.A. Castelão Cogeneration of electricity in sugar-alcohol plant : perspectives and viability Renew. Sustain. Energy Rev., 91 (2018), pp. 832-837, 10.1016/j.rser.2018.04.047S.P. Souza, M.T. de Ávila, S. Pacca Life cycle assessment of sugarcane ethanol and palm oil biodiesel joint production Biomass Bioenergy, 44 (2012), pp. 70-79, 10.1016/j.biombioe.2012.04.018J.G. Speight A Biorefinery, the Refinery of the Future (2020), 10.1016/b978-0-12-816994-0.00014-2U. Suwanmanee, T. Bangjang, A. Kaewchada, A. Jaree Greenhouse gas emissions and energy assessment of modified diesohol using cashew nut shell liquid and biodiesel as additives Sustain. Prod. Consum., 24 (2020), pp. 232-253, 10.1016/j.spc.2020.06.009Y.D. Tan, J.S. Lim, S.R. Wan Alwi Multi-objective optimal design for integrated palm oil mill complex with consideration of effluent elimination Energy, 202 (2020), 10.1016/j.energy.2020.117767I. Tsiropoulos, A.P.C. Faaij, J.E.A. Seabra Life Cycle Assessment of Sugarcane Ethanol Production in India in Comparison to Brazil, Springer (2014), pp. 1049-1067, 10.1007/s11367-014-0714-5U.S. EIA Capital Cost Estimates for Utility Scale Electricity Generating Plants (2016)U.S. Energy Information Administration International Energy Outlook 2018, Energy Information Administration - EIA (2018) Washintong, DC https://www.eia.gov/outlooks/archive/ieo18/P. Vaskan, E.R. Pachón, E. Gnansounou Techno-economic and life-cycle assessments of biorefineries based on palm empty fruit bunches in Brazil J. Clean. Prod., 172 (2018), pp. 3655-3668, 10.1016/j.jclepro.2017.07.218M.C. Vásquez, A. Martínez, E.F. Castillo, E.E. Silva Holistic approach for sustainability enhancing of hydrotreated aviation biofuels, through life cycle assessment: a Brazilian case study J. Clean. Prod., 237 (2019), 10.1016/j.jclepro.2019.117796O.J. Venturini, J.C.F. Júnior, J.C.E. Palacio, E.A.O. Batlle, M. Carvalho, E.E.S. Lora Indicators for sustainability assessment of biofuels: economic, environmental, social, and technological dimensions Biofuels for a More Sustainable Future, Elsevier (2020), pp. 73-113, 10.1016/B978-0-12-815581-3.00004-XP. Verma, M.P. Sharma, G. Dwivedi Impact of alcohol on biodiesel production and properties Renew. Sustain. Energy Rev., 56 (2016), pp. 319-333, 10.1016/j.rser.2015.11.048S. Verma, A. Kuila Principles of sustainable biorefinery Biorefinery Production Technologies for Chemicals and Energy, Wiley (2020), pp. 1-13, 10.1002/9781119593065.ch1M.A. Vieira da Silva, B. Lagnier Gil Ferreira, L.G. da Costa Marques, A. Lamare Soares Murta, M.A. Vasconcelos de Freitas Comparative study of NOx emissions of biodiesel-diesel blends from soybean, palm and waste frying oils using methyl and ethyl transesterification routes Fuel, 194 (2017), pp. 144-156, 10.1016/j.fuel.2016.12.084J.-L. Wertz, O. Bédué Lignocellulosic Biorefineries (first ed.), CRC Press. EFPL Press (2013), 10.1201/b15443-4M.F.M. Yusoff, X. Xu, Z. Guo Comparison of fatty acid methyl and ethyl Esters as biodiesel base stock: a review on processing and production requirements J. Am. Oil Chem. Soc., 91 (2014), pp. 525-531, 10.1007/s11746-014-2443-0S.B. Živković, M.V. Veljkovi, I.B. Bankovi, I.M. Krsti, S. Konstantinovi, S.B. Ili, J.M. Avramovi, O.S. Stamenkovi Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use Renew. Sustain. Energy Rev., 79 (2017), pp. 222-247, 10.1016/j.rser.2017.05.048PublicationORIGINALEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol.pdfEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol.pdfapplication/pdf111991https://repositorio.cuc.edu.co/bitstreams/32867275-73a6-490b-bc35-a81c0f13afef/download10817d98103560aa92b917f6a1e6442bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/122da00b-e807-4780-acd2-f0aaffa9de6b/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/00d8ab38-3392-47e7-a077-86a84542246f/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol.pdf.jpgEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol.pdf.jpgimage/jpeg63984https://repositorio.cuc.edu.co/bitstreams/4c714fe8-2520-4c54-a5fa-d07283f72257/download829344793a8ba9f5a383bd6a8277fdc6MD54TEXTEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol.pdf.txtEnergy, economic, and environmental assessment of the integrated production of palm oil biodiesel and sugarcane ethanol.pdf.txttext/plain3039https://repositorio.cuc.edu.co/bitstreams/93317818-d073-4219-b6b5-8cc5cff06502/download4bb9103ef5d4cccdd563121f09c16cf6MD5511323/8441oai:repositorio.cuc.edu.co:11323/84412024-09-17 10:53:18.011http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |