Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes
Promotion of urban cycling has emerged as a strategy for improving mobility in cities, reducing the carbon footprint, decreasing pollution levels and consolidating sustainable lifestyles. A clear understanding of the key factors influencing the individual bicycle choosing is essential for developing...
- Autores:
-
Estrada Contreras, Sebastian de Jesús
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/265
- Acceso en línea:
- https://hdl.handle.net/11323/265
https://repositorio.cuc.edu.co/
- Palabra clave:
- variables latentes
transporte activo
bicicleta
percepciones
modelo integrado de elección
estimación secuencial
análisis factorial
modelo MIMIC
latent variables
Active transportation
Bicycle
Perceptions
Integrated choice and latent variable model
Sequential estimation
Factor analysis
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_03c061e24aa50f55468634f8a7795b20 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/265 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
title |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
spellingShingle |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes variables latentes transporte activo bicicleta percepciones modelo integrado de elección estimación secuencial análisis factorial modelo MIMIC latent variables Active transportation Bicycle Perceptions Integrated choice and latent variable model Sequential estimation Factor analysis |
title_short |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
title_full |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
title_fullStr |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
title_full_unstemmed |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
title_sort |
Evaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentes |
dc.creator.fl_str_mv |
Estrada Contreras, Sebastian de Jesús |
dc.contributor.advisor.spa.fl_str_mv |
Arévalo T, Andrea S. |
dc.contributor.author.spa.fl_str_mv |
Estrada Contreras, Sebastian de Jesús |
dc.subject.eng.fl_str_mv |
variables latentes transporte activo bicicleta percepciones modelo integrado de elección estimación secuencial análisis factorial modelo MIMIC |
topic |
variables latentes transporte activo bicicleta percepciones modelo integrado de elección estimación secuencial análisis factorial modelo MIMIC latent variables Active transportation Bicycle Perceptions Integrated choice and latent variable model Sequential estimation Factor analysis |
dc.subject.none.fl_str_mv |
latent variables Active transportation Bicycle Perceptions Integrated choice and latent variable model Sequential estimation Factor analysis |
description |
Promotion of urban cycling has emerged as a strategy for improving mobility in cities, reducing the carbon footprint, decreasing pollution levels and consolidating sustainable lifestyles. A clear understanding of the key factors influencing the individual bicycle choosing is essential for developing effectives policies towards encouraging the use of this mode of transportation. On the present work an integrated choice and latent variable model with sequential estimation approach was used to determine the factors that influence on choosing the bicycle as mode of transportation. Through a stated preference survey, applied in the city of Barranquilla, northern Colombia, individual information about socioeconomic data, attitudes, perceptions and preferences towards cycling, was captured. An exploratory and confirmatory factor analysis were conducted, and six latent variables were extracted (safety awareness, desire for commodity, desire for economy, environmental awareness, perception towards bicycling and willingness to use bicycle). Lately, a MIMIC model was used to estimate the structural equations of the latent variables. Overall, the results show that the factors influencing the choosing of the bicycle in Barranquilla are: sex, access to a bicycle, the slope, traffic level, temperature, the existence and type of infrastructure, perception towards bicycling, desire for economy and environmental awareness. Subsequently, results indicate that the non-segregated infrastructure, which is the one existent in the city, might not be very attractive to people. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-03T16:11:30Z |
dc.date.available.none.fl_str_mv |
2018-11-03T16:11:30Z |
dc.date.issued.none.fl_str_mv |
2018-04-05 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Pregrado |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/265 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/265 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aarts, M.-J., Mathijssen, J. J. P., van Oers, J. A. M., & Schuit, A. J. (2013). Associations Between Environmental Characteristics and Active Commuting to School Among Children: a Cross-sectional Study. International Journal of Behavioral Medicine, 20(4), 538-555. https://doi.org/10.1007/s12529-012-9271-0 Akar, G., & Clifton, K. (2009). Influence of Individual Perceptions and Bicycle Infrastructure on Decision to Bike. Transportation Research Record: Journal of the Transportation Research Board, 2140, 165-172. https://doi.org/10.3141/2140-18 Allaman, P. M., Tardiff, T. J., & Dunbar, F. C. (1982). NEW APPROACHES TO UNDERSTANDING TRAVEL BEHAVIOR (Vol. NCHRP Report, p. 142p). Presentado en Transportation Research Board, Washington, D.C., Estados Unidos. Recuperado a partir de https://trid.trb.org/view/186872 Apasnore, P., Ismail, K., & Kassim, A. (2017). Bicycle-vehicle interactions at mid-sections of mixed traffic streets: Examining passing distance and bicycle comfort perception. Accident Analysis & Prevention, 106, 141-148. https://doi.org/10.1016/j.aap.2017.05.003 Arbeláez-Arenas, O., Córdoba-Maquilón, J., & Sarmiento-Ordosgoitia, I. (2017). Infrastructure provision and its effect on bicycle mode choice. Presentado en Paper submitted for presentation at the 5th International Choice Modelling Conference, Cape Town, Sudáfrica. Recuperado a partir de http://www.icmconference.org.uk/index.php/icmc/ICMC2017/paper/viewFile/1379/422 Ashok, K., Dillon, W. R., & Yuan, S. (2002). Extending Discrete Choice Models to Incorporate Attitudinal and Other Latent Variables. Journal of Marketing Research, 39(1), 31-46. Barberan, A., de Abreu e Silva, J., & Monzon, A. (2017). Factors influencing bicycle use: a binary choice model with panel data. Transportation Research Procedia, 27, 253-260. https://doi.org/10.1016/j.trpro.2017.12.097 Barberan, A., & Monzon, A. (2016). How did Bicycle Share Increase in Vitoria-Gasteiz? Transportation Research Procedia, 18, 312-319. https://doi.org/10.1016/j.trpro.2016.12.042 Barnes, G., & Krizek, K. (2005). Estimating Bicycling Demand. Transportation Research Record: Journal of the Transportation Research Board, 1939, 45-51. https://doi.org/10.3141/1939-06 Batterman, S., Ganguly, R., Isakov, V., Burke, J., Arunachalam, S., Snyder, M., … Lewis, T. (2014). Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan. Transportation Research Record: Journal of the Transportation Research Board, 2452, 105-113. https://doi.org/10.3141/2452-13 Ben-Akiva, M., Mcfadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., … Munizaga, M. A. (2002). Hybrid Choice Models: Progress and Challenges. Marketing Letters, 13(3), 163- 175 https://doi.org/10.1023/A:1020254301302 Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T., & Polydoropoulou, A. (2002). Integration of Choice and Latent Variable Models. En In Perpetual Motion (pp. 431-470). Elsevier. https://doi.org/10.1016/B978-008044044-6/50022-X Bergantino, A. S., Bierlaire, M., Catalano, M., Migliore, M., & Amoroso, S. (2013). Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators. Transport Policy, 30, 77-91. https://doi.org/10.1016/j.tranpol.2013.08.002 Bhat, C. R., Dubey, S. K., & Nagel, K. (2015). Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice. Transportation Research Part B: Methodological, 78, 341-363. https://doi.org/10.1016/j.trb.2015.04.005 Banco Internacional de Desarrollo (BID). (2013). CÓMO IMPULSAR EL CICLISMO URBANO: Recomendaciones para las instituciones de América Latina y el Caribe. Recuperado a partir de https://www.iadb.org/es/project/RG-T2219 Bolduc, D., Boucher, N., & Alvarez-Daziano, R. (2008). Hybrid Choice Modeling of New Technologies for Car Choice in Canada. Transportation Research Record: Journal of the Transportation Research Board, 2082, 63-71. https://doi.org/10.3141/2082-08 Bollen, K. A. (1989). Structural Equations with Latent Variables: Bollen/Structural Equations with Latent Variables. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118619179 Bollen, K. A. (2002). Latent Variables in Psychology and the Social Sciences. Annual Review of Psychology, 53(1), 605-634. https://doi.org/10.1146/annurev.psych.53.100901.135239 Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305-314. https://doi.org/10.1037/0033-2909.110.2.305 Börjesson, M., & Eliasson, J. (2012). The value of time and external benefits in bicycle appraisal. Transportation Research Part A: Policy and Practice, 46(4), 673-683. https://doi.org/10.1016/j.tra.2012.01.006 Buehler, R. (2012). Determinants of bicycle commuting in the Washington, DC region: The role of bicycle parking, cyclist showers, and free car parking at work. Transportation Research Part D: Transport and Environment, 17(7), 525-531. https://doi.org/10.1016/j.trd.2012.06.003 Cai, L. (2012). Latent variable modeling. Shanghai Arch Psychiatry, 24(2), 118–120. https://doi.org/10.3969/j.issn.1002-0829.2012.02.010 Carvajal, J. H., & Ruiz P., G. L. (2006). INFORME DE VISITA REALIZADO AL SECTOR CAMPO ALEGRE Y OTROS SECTORES DE LAS LADERAS OCCIDENTALES DE BARRANQUlLlA DEPARTAMENTO DEL ATLANTICO. Bogotá D.C., Colombia: Ministerio de Minas y Energía. Recuperado a partir de http://www.barranquilla.gov.co/documentos/pot/anexos/Anexo%2017%20Informe%20INGEOMINAS%20(2006).pdf Chae, D., Jung, J., & Sohn, K. (2018). Facilitating an expectation-maximization (EM) algorithm to solve an integrated choice and latent variable (ICLV) model with fully correlated latent variables. Journal of Choice Modelling, 26, 64-79. https://doi.org/10.1016/j.jocm.2017.08.001 Chen, H.-Y. W., & Donmez, B. (2016). What drives technology-based distractions? A structural equation model on social-psychological factors of technology-based driver distraction engagement. Accident Analysis & Prevention, 91, 166-174. https://doi.org/10.1016/j.aap.2015.08.015 Chen, Y., Xin, F., Ye, Y., & Zhang, Y. (2018). Bike-Share System Users’ Satisfaction Assessment Based on a Structural Equation Model. Presentado en 17th COTA International Conference of Transportation Professionals, Shanghai, China. https://doi.org/10.1061/9780784480915.297 Crane, M., Rissel, C., Standen, C., Ellison, A., Ellison, R., Wen, L. M., & Greaves, S. (2017). Longitudinal evaluation of travel and health outcomes in relation to new bicycle infrastructure, Sydney, Australia. Journal of Transport & Health, 6, 386-395. https://doi.org/10.1016/j.jth.2017.07.002 Daley, M., Rissel, C., & Lloyd, B. (2007). All dressed up and nowhere to go? A qualitative research study of the barriers and enablers to cycling in inner Sydney. Road and Transport Research, 16(4), 42-52. Damant-Sirois, G., & El-Geneidy, A. M. (2015). Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada. Transportation Research Part A: Policy and Practice, 77, 113-125. https://doi.org/10.1016/j.tra.2015.03.028 Departamento Administrativo Nacional de Estadística (DANE). (2010). Proyeccion de población por municpio 2006 - 2025. Recuperado a partir de https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion Daziano, R. A., & Bolduc, D. (2011). Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transportmetrica, 1-33. https://doi.org/10.1080/18128602.2010.524173 Departamento Administrativo Nacional de Estadística (DANE). (2010). Proyeccion de población por municpio 2006 - 2025. Recuperado a partir de https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion Daziano, R. A., & Bolduc, D. (2011). Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transportmetrica, 1-33. https://doi.org/10.1080/18128602.2010.524173 Eash, R. (1999). Destination and Mode Choice Models for Nonmotorized Travel. Transportation Research Record: Journal of the Transportation Research Board, 1674, 1-8. https://doi.org/10.3141/1674-01 European Cyclist Federation (ECF). (2014). COMMUTING: WHO PAYS THE BILL? Overview of fiscal regimes for commuting in Europe and recommendations for establishing a level playing-field. Recuperado a partir de https://ecf.com/sites/ecf.com/files/141117-Commuting-Who-Pays-The-Bill_2.pdf Emond, C. R., & Handy, S. L. (2012). Factors associated with bicycling to high school: insights from Davis, CA. Journal of Transport Geography, 20(1), 71-79. https://doi.org/10.1016/j.jtrangeo.2011.07.008 Eriksson, L., & Forward, S. E. (2011). Is the intention to travel in a pro-environmental manner and the intention to use the car determined by different factors? Transportation Research Part D: Transport and Environment, 16(5), 372-376. https://doi.org/10.1016/j.trd.2011.02.003 Fernández Aráuz, A. (2015). Aplicación del análisis factorial confirmatorio a un modelo de medición del rendimiento académico en lectura. Revista de Ciencias Económicas, 33(2), 39. https://doi.org/10.15517/rce.v33i2.22216 Fernández-Heredia, Á., Monzón, A., & Jara-Díaz, S. (2014). Understanding cyclists’ perceptions, keys for a successful bicycle promotion. Transportation Research Part A: Policy and Practice, 63, 1-11. https://doi.org/10.1016/j.tra.2014.02.013 Flynn, B. S., Dana, G. S., Sears, J., & Aultman-Hall, L. (2012). Weather factor impacts on commuting to work by bicycle. Preventive Medicine, 54(2), 122-124. https://doi.org/10.1016/j.ypmed.2011.11.002 Frank, L., Bradley, M., Kavage, S., Chapman, J., & Lawton, T. K. (2007). Urban form, travel time, and cost relationships with tour complexity and mode choice. Transportation, 35(1), 37-54. https://doi.org/10.1007/s11116-007-9136-6 Fu, L., & Farber, S. (2017). Bicycling frequency: A study of preferences and travel behavior in Salt Lake City, Utah. Transportation Research Part A: Policy and Practice, 101, 30-50. https://doi.org/10.1016/j.tra.2017.05.004 Golob, T. F. (2003). Structural equation modeling for travel behavior research. Transportation Research Part B: Methodological, 37(1), 1-25. https://doi.org/10.1016/S0191-2615(01)00046-7 González Marrero, R. M., Martínez Budría, E., & Esquivel Ramos, A. (2012). Contraste de las preferencias declaradas con preferencias reveladas. El caso de los alumnos de la Universidad de La Laguna ante la implantación del tranvía. Metodología de Encuestas,14, 65-80. Great Schools Partnership. (2015). AGGREGATE DATA. Recuperado a partir de https://www.edglossary.org/aggregate-data/ Griffin, G. P., & Jiao, J. (2015). Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. Journal of Transport & Health, 2(2), 238-247. https://doi.org/10.1016/j.jth.2014.12.001 Habib, K. N., Mann, J., Mahmoud, M., & Weiss, A. (2014). Synopsis of bicycle demand in the City of Toronto: Investigating the effects of perception, consciousness and comfortability on the purpose of biking and bike ownership. Transportation Research Part A: Policy and Practice, 70, 67-80. https://doi.org/10.1016/j.tra.2014.09.012 Hagenauer, J., & Helbich, M. (2017). A comparative study of machine learning classifiers for modeling travel mode choice. Expert Systems with Applications, 78, 273-282. https://doi.org/10.1016/j.eswa.2017.01.057 Hamre, A., & Buehler, R. (2014). Commuter Mode Choice and Free Car Parking, Public Transportation Benefits, Showers/Lockers, and Bike Parking at Work: Evidence from the Washington, DC Region. Journal of Public Transportation, 17(2), 67-91. https://doi.org/10.5038/2375-0901.17.2.4 Handy, S. L., & Xing, Y. (2011). Factors Correlated with Bicycle Commuting: A Study in Six Small U.S. Cities. International Journal of Sustainable Transportation, 5(2), 91-110. https://doi.org/10.1080/15568310903514789 Hazen, B., Overstreet, R., & Wang, Y. (2015). Predicting Public Bicycle Adoption Using the Technology Acceptance Model. Sustainability, 7(12), 14558-14573. https://doi.org/10.3390/su71114558 Heesch, K. C., Giles-Corti, B., & Turrell, G. (2014). Cycling for transport and recreation: Associations with socio-economic position, environmental perceptions, and psychological disposition. Preventive Medicine, 63, 29-35. https://doi.org/10.1016/j.ypmed.2014.03.003 Heinen, E., Maat, K., & van Wee, B. (2013). The effect of work-related factors on the bicycle commute mode choice in the Netherlands. Transportation, 40(1), 23-43. https://doi.org/10.1007/s11116-012-9399-4 Heinen, E., Maat, K., & Wee, B. van. (2011). The role of attitudes toward characteristics of bicycle commuting on the choice to cycle to work over various distances. Transportation Research Part D: Transport and Environment, 16(2), 102-109. https://doi.org/10.1016/j.trd.2010.08.010 Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by Bicycle: An Overview of theLiterature. Transport Reviews, 30(1), 59-96. https://doi.org/10.1080/01441640903187001 Huang, L.-S., & Su, W.-R. (2018). Exploration on the Behavior Patterns of Public Bicycle Users in Kaohsiung City from the Perspective of Theory of Planned Behavior and Structural Equation Model. Preprints. https://doi.org/10.20944/preprints201802.0088.v Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2015). Promedios Precipitación y Temperatura media. Promedio de los años 1981-2010. Recuperado a partir de https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/PromediosPrecipitaci-n-y-Temperatura-media-Promed/nsxu-h2dh Instituto para Políticas de Transporte y Desarrollo (ITPD), & Interface for Cycling Experience (I-CE). (2011). Ciclo ciudades: Manual integral de movilidad ciclista para ciudades mexicanas (Tomo IV) (M. Pérez Herrera). Ciudad de México, México. Recuperado a partir de http://ciclociudades.mx/wp-content/uploads/2015/10/Manual-Tomo-IV.pdf Jin, J., & Kim, J. (2012). Strategies for the Improvement of Historic Sites Bike Tour Using Structural Equation Modeling. En T. Kim, C. Ramos, H. Kim, A. Kiumi, S. Mohammed, & D. Ślęzak (Eds.), Computer Applications for Software Engineering, Disaster Recovery, and Business Continuity (Vol. 340, pp. 280-286). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35267-6_36 Kamargianni, M., & Polydoropoulou, A. (2013). Hybrid Choice Model to Investigate Effects of Teenagers’ Attitudes Toward Walking and Cycling on Mode Choice Behavior. Transportation Research Record: Journal of the Transportation Research Board, 2382, 151-161. https://doi.org/10.3141/2382-17 Katz, R. J. (1997). Demand for bicycle use : a behavioural framework and empirical analysis for urban NSW (Doctoral dissertation). University of Sydney, Australia. Recuperado a partir de https://trove.nla.gov.au/work/23909316?q&versionId=28915044 Kim, J., Choi, K., Kim, S., & Fujii, S. (2017). How to promote sustainable public bike system from a psychological perspective? International Journal of Sustainable Transportation, 11(4), 272-281. https://doi.org/10.1080/15568318.2016.1252450 Lee, J.-Y., Chung, J.-H., & Son, B. (2008). Analysis of traffic accident size for Korean highwayusing structural equation models. Accident Analysis & Prevention, 40(6), 1955-1963. https://doi.org/10.1016/j.aap.2008.08.006 Li, Z., Wang, W., Liu, P., & Ragland, D. R. (2012). Physical environments influencing bicyclists’ perception of comfort on separated and on-street bicycle facilities. Transportation Research Part D: Transport and Environment, 17(3), 256-261. https://doi.org/10.1016/j.trd.2011.12.001 Li, Z., Wang, W., Yang, C., & Jiang, G. (2013). Exploring the causal relationship between bicycle choice and trip chain pattern. Transport Policy, 29, 170-177. https://doi.org/10.1016/j.tranpol.2013.06.001 Li, Z., Wang, W., Yang, C., & Ragland, D. R. (2013). Bicycle commuting market analysis using attitudinal market segmentation approach. Transportation Research Part A: Policy and Practice, 47, 56-68. https://doi.org/10.1016/j.tra.2012.10.017 Limtanakool, N., Dijst, M., & Schwanen, T. (2006). The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips. Journal of Transport Geography, 14(5), 327-341. https://doi.org/10.1016/j.jtrangeo.2005.06.004 Lyon, P. K. (1981). Time-dependent structural equations modelling of the relationships between attitudes and discrete choices behavior of transportation consumers (Dissertation). Northwestern University, Washington, D.C., Estados Unidos. Recuperado a partir de https://trid.trb.org/view/177237 Ma, L., & Dill, J. (2015). Associations between the objective and perceived built environment and bicycling for transportation. Journal of Transport & Health, 2(2), 248-255. https://doi.org/10.1016/j.jth.2015.03.002 Ma, L., Dill, J., & Mohr, C. (2014). The objective versus the perceived environment: what matters for bicycling? Transportation, 41(6), 1135-1152. https://doi.org/10.1007/s11116-014-9520-y Maldonado-Hinarejos, R., Sivakumar, A., & Polak, J. W. (2014). Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach. Transportation, 41(6), 1287-1304. https://doi.org/10.1007/s11116-014-9551-4 McFadden, D. (1986). The Choice Theory Approach to Market Research. Marketing Science, 5(4), 275-297. https://doi.org/10.1287/mksc.5.4.275 Menghini, G., Carrasco, N., Schüssler, N., & Axhausen, K. W. (2010). Route choice of cyclists in Zurich. Transportation Research Part A: Policy and Practice, 44(9), 754-765. https://doi.org/10.1016/j.tra.2010.07.008 Milakis, D., & van Wee, B. (2018). “For me it is always like half an hour”: Exploring the acceptable travel time concept in the US and European contexts. Transport Policy. https://doi.org/10.1016/j.tranpol.2018.02.001 Ministerio de Transporte. (2016). Guía de ciclo-infraestructura para ciudades colombianas (C.Pardo & A. Sanz). Bogotá D.C., Colombia. Recuperado a partir de http://www.despacio.org/wpcontent/uploads/2016/04/Guia-cicloinfraestructuraColombia-20160413 ISBN%20digital.pdf Mota, J., Gomes, H., Almeida, M., Ribeiro, J. C., Carvalho, J., & Santos, M. P. (2007). Active versus passive transportation to school–differences in screen time, socio-economic position and perceived environmental characteristics in adolescent girls. Annals of Human Biology, 34(3), 273-282. https://doi.org/10.1080/03014460701308615 Motoaki, Y., & Daziano, R. A. (2015). A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand. Transportation Research Part A: Policy and Practice, 75, 217-230. https://doi.org/10.1016/j.tra.2015.03.017 Moudon, A. V., Lee, C., Cheadle, A. D., Collier, C. W., Johnson, D., Schmid, T. L., & Weather, R. D. (2005). Cycling and the built environment, a US perspective. Transportation Research Part D: Transport and Environment, 10(3), 245-261. https://doi.org/10.1016/j.trd.2005.04.001 Mraihi, R., Harizi, R., Mraihi, T., & Bouzidi, M. T. (2015). Urban air pollution and urban daily mobility in large Tunisia׳s cities. Renewable and Sustainable Energy Reviews, 43, 315- 320. https://doi.org/10.1016/j.rser.2014.11.022 Muhs, C. D., & Clifton, K. J. (2014). Bicycling is different: Built environment relationships to non-work travel. Presentado en 93rd Annual Meeting of the Transportation Research Board, Washington DC, Estados Unidos. Municipalidad de Lima. (2017). Manual de Normas Técnicas para la Construcción de Ciclovías y Guía De Circulación de Bicicletas (P. Calderón, C. Pardo, J. J. Arrué). Lima, Perú. Recuperado a partir de http://www.despacio.org/wp-content/uploads/2017/04/ManualLima20170421.pdf Muñoz, B., Monzon, A., & Daziano, R. A. (2016). The Increasing Role of Latent Variables in Modelling Bicycle Mode Choice. Transport Reviews, 36(6), 737-771. https://doi.org/10.1080/01441647.2016.1162874 Muñoz, B., Monzon, A., & Lois, D. (2013). Cycling Habits and Other Psychological Variables Affecting Commuting by Bicycle in Madrid, Spain. Transportation Research Record: Journal of the Transportation Research Board, 2382, 1-9. https://doi.org/10.3141/2382- 01 Murphy, K. M., & Topel, R. H. (1985). Estimation and Inference in Two-Step Econometric Models. Journal of Business & Economic Statistics, 3(4), 370. https://doi.org/10.2307/1391724 Noland, R. B., & Kunreuther, H. (1995). Short-run and long-run policies for increasing bicycle transportation for daily commuter trips. Transport Policy, 2(1), 67-79. https://doi.org/10.1016/0967-070X(95)93248-W Oh, J. S., Kim, M. S., & Lee, C. H. (2014). A Study on Factors Affecting the Satisfaction of Public Bicycle System. Journal of the Korean Society of Road Engineers, 16(2), 107-118. https://doi.org/10.7855/IJHE.2014.16.2.107 Organización Mundial de la Salud (OMS). (2014). Burden of disease from Ambient Air Pollution for 2012. Recuperado a partir de http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf Ortúzar, J. de D. (2015). Modelos de demanda de transporte. Santigo de Chile, Chile: Alfaomega, Ediciones Universidad Católica de Chile. Ortúzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport: Ortúzar/Modelling Transport. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119993308 Outwater, M., Castleberry, S., Shiftan, Y., Ben-Akiva, M., Shuang Zhou, Y., & Kuppam, A. (2003). Attitudinal Market Segmentation Approach to Mode Choice and Ridership Forecasting: Structural Equation Modeling. Transportation Research Record: Journal of the Transportation Research Board, 1854, 32-42. https://doi.org/10.3141/1854-04 Parkin, J., Wardman, M., & Page, M. (2007). Estimation of the determinants of bicycle mode share for the journey to work using census data. Transportation, 35(1), 93-109. https://doi.org/10.1007/s11116-007-9137-5 Paulssen, M., Temme, D., Vij, A., & Walker, J. L. (2014). Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice. Transportation, 41(4), 873-888. https://doi.org/10.1007/s11116-013-9504-3 Piatkowski, D. P., & Marshall, W. E. (2015). Not all prospective bicyclists are created equal: The role of attitudes, socio-demographics, and the built environment in bicycle commuting. Travel Behaviour and Society, 2(3), 166-173. https://doi.org/10.1016/j.tbs.2015.02.001 Pinjari, A., Eluru, N., Bhat, C., Pendyala, R., & Spissu, E. (2008). Joint Model of Choice of Residential Neighborhood and Bicycle Ownership: Accounting for Self-Selection and Unobserved Heterogeneity. Transportation Research Record: Journal of the Transportation Research Board, 2082, 17-26. https://doi.org/10.3141/2082-03 Pucher, J., & Buehler, R. (2006). Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies. Transport Policy, 13(3), 265-279. https://doi.org/10.1016/j.tranpol.2005.11.001 Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase bicycling: An international review. Preventive Medicine, 50, S106-S125. https://doi.org/10.1016/j.ypmed.2009.07.028 Ranaiefar, F., & Rixey, R. A. (2016). Bike Sharing Ridership Forecast using Structural Equation Modeling. Presentado en TRB 2016 Annual Meeting, Washington, D.C., Estados Unidos. Recuperado a partir de https://nacto.org/wp-content/uploads/2016/02/2016_Ranaiefarand-Rixey_Bikesharing-Ridersehip-Forecast-Using-Structural-Equation-Modeling.pdf Raveau, S., Ortúzar, J., & Yáñez, M. F. (2010). Análisis de los Enfoques Secuencial y Simultáneo para la Estimación de Modelos Híbridos de Elección Discreta. INGENIERÍA DE TRANSPORTE, 14(1), 26-31. Rodrı́guez, D. A., & Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. Transportation Research Part D: Transport and Environment, 9(2), 151-173. https://doi.org/10.1016/j.trd.2003.11.001 Roorda, M. J., Passmore, D., & Miller, E. J. (2009). Including Minor Modes of Transport in a Tour-Based Mode Choice Model with Household Interactions. Journal of Transportation Engineering, 135(12), 935-945. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000072 Sadia, R., Bekhor, S., & Polus, A. (2017). Structural equations modelling of drivers’ speed selection using environmental, driver, and risk factors. Accident Analysis & Prevention. https://doi.org/10.1016/j.aap.2017.08.034 Sahlqvist, S. L., & Heesch, K. C. (2012). Characteristics of utility cyclists in Queensland, Australia: an examination of the associations between individual, social, and environmental factors and utility cycling. Journal of Physical Activity & Health, 9(6), 818-828. Schreiber, J. B. (2017). Update to core reporting practices in structural equation modeling. Research in Social and Administrative Pharmacy, 13(3), 634-643. https://doi.org/10.1016/j.sapharm.2016.06.006 Scott-Parker, B., Watson, B., King, M. J., & Hyde, M. K. (2013). A further exploration of sensation seeking propensity, reward sensitivity, depression, anxiety, and the risky behaviour of young novice drivers in a structural equation model. Accident Analysis & Prevention, 50, 465-471. https://doi.org/10.1016/j.aap.2012.05.027 Secretaría Distrital de Tránsito y Seguridad Vial (SDTSV). (2017a). Aforos vehiculares y peatonales Enero - Julio 2017. Recuperado a partir de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=article&id=11359:aforos-vehiculares-y-peatonales&catid=8:semaforizacion Secretaría Distrital de Tránsito y Seguridad Vial (SDTSV). (2017b). Boletín 006: Orientadores de Movilidad listos para seguir apoyando el Tránsito de la ciudad. Recuperado a partir de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=article&id=12553:2017-01-16-22-54-34&catid=36:boletines&Itemid=30 Secretaría Distrital de Tránsito y Seguridad Vial (SDTSV). (2018). Parque Automotor a Febrero 28 de 2018. Recuperado a partir de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=article&id=1686&Itemid=38 Sigurdardottir, S. B., Kaplan, S., Møller, M., & Teasdale, T. W. (2013). Understanding adolescents’ intentions to commute by car or bicycle as adults. Transportation Research Part D: Transport and Environment, 24, 1-9. https://doi.org/10.1016/j.trd.2013.04.00 Taylor, D., & Mahmassani, H. (1996). Analysis of Stated Preferences for Intermodal BicycleTransit Interfaces. Transportation Research Record: Journal of the Transportation Research Board, 1556, 86-95. https://doi.org/10.3141/1556-11 Teschke, K., Reynolds, C., Ries, F., Gouge, B., & Winters, M. (2012). Bicycling: Health Risk or Benefit? University of British Columbia Medical Journal, 3(2), 6-11. Thorhauge, M., Rich, J., & Cherchi, E. (2015). Departure time choice: Modelling individual preferences, intention and constraints (Doctoral dissertation). Technical University of Denmark, Transport, Denmark. Recuperado a partir de http://orbit.dtu.dk/files/116811052/Mikkel_Thorhauge_PhD_m_omslag.pdf Titze, S., Stronegger, W. J., Janschitz, S., & Oja, P. (2007). Environmental, social, and personal correlates of cycling for transportation in a student population. Journal of Physical Activity & Health, 4(1), 66-79. Titze, S., Stronegger, W. J., Janschitz, S., & Oja, P. (2008). Association of built-environment, social-environment and personal factors with bicycling as a mode of transportation among Austrian city dwellers. Preventive Medicine, 47(3), 252-259. https://doi.org/10.1016/j.ypmed.2008.02.019 Train, K. E., McFadden, D. L., & Goett, A. A. (1987). Consumer Attitudes and Voluntary Rate Schedules for Public Utilities. The Review of Economics and Statistics, 69(3), 383. https://doi.org/10.2307/1925525 van Wee, B., Rietveld, P., & Meurs, H. (2006). Is average daily travel time expenditure constant? In search of explanations for an increase in average travel time. Journal of Transport Geography, 14(2), 109-122. https://doi.org/10.1016/j.jtrangeo.2005.06.003 Verma, M., Rahul, T. M., Reddy, P. V., & Verma, A. (2016). The factors influencing bicycling in the Bangalore city. Transportation Research Part A: Policy and Practice, 89, 29-40. https://doi.org/10.1016/j.tra.2016.04.006 Vij, A., & Walker, J. L. (2016). How, when and why integrated choice and latent variable models are latently useful. Transportation Research Part B: Methodological, 90, 192- 217. https://doi.org/10.1016/j.trb.2016.04.021 Vredin Johansson, M., Heldt, T., & Johansson, P. (2005). Latent Variables in a Travel Mode Choice Model: Attitudinal and Behavioural Indicator Variables. Working Paper Series, 5,Uppsala University, Department of Economics. Walker, J. L. (2001, febrero). Extended Discrete Choice Models: Integrated Framework, Flexible Error Structures, and Latent Variables (Doctoral dissertation). Massachusetts Institute of Technology, Estados Unidos. Recuperado a partir de https://its.mit.edu/sites/default/files/documents/WalkerPhD.pdf Wardman, M., Tight, M., & Page, M. (2007). Factors influencing the propensity to cycle to work. Transportation Research Part A: Policy and Practice, 41(4), 339-350. https://doi.org/10.1016/j.tra.2006.09.011 Washington, S., Karlaftis, M. G., & Mannering, F. L. (2003). Statistical and econometricmethods for transportation data analysis. Boca Raton: Chapman & Hall/CRC. Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2010). Built environment influences on healthy transportation choices: bicycling versus driving. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 87(6), 969-993. https://doi.org/10.1007/s11524-010-9509-6 Winters, M., Davidson, G., Kao, D., & Teschke, K. (2011). Motivators and deterrents of bicycling: comparing influences on decisions to ride. Transportation, 38(1), 153-168. https://doi.org/10.1007/s11116-010-9284-y Yáñez, M. F., Raveau, |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.program.spa.fl_str_mv |
Ingeniería Civil |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/2596efaa-791e-4137-9f7e-cb9d3071bad5/download https://repositorio.cuc.edu.co/bitstreams/6f85de81-9e6d-4ba5-b6e9-76e903c88f25/download https://repositorio.cuc.edu.co/bitstreams/fe1c9ff5-da72-44cb-884c-a6bac61274bd/download https://repositorio.cuc.edu.co/bitstreams/a85a4b97-bf54-4c23-ba1b-fd5b2fc7b87c/download |
bitstream.checksum.fl_str_mv |
d6c7d3921a397d8958377be07d9c5260 8a4605be74aa9ea9d79846c1fba20a33 c5131d0a4c2ed4e6cada9964bf2e2d08 8b68d92c142b1627c95a18fc1aa82fa6 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760730960035840 |
spelling |
Arévalo T, Andrea S.Estrada Contreras, Sebastian de Jesús2018-11-03T16:11:30Z2018-11-03T16:11:30Z2018-04-05https://hdl.handle.net/11323/265Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Promotion of urban cycling has emerged as a strategy for improving mobility in cities, reducing the carbon footprint, decreasing pollution levels and consolidating sustainable lifestyles. A clear understanding of the key factors influencing the individual bicycle choosing is essential for developing effectives policies towards encouraging the use of this mode of transportation. On the present work an integrated choice and latent variable model with sequential estimation approach was used to determine the factors that influence on choosing the bicycle as mode of transportation. Through a stated preference survey, applied in the city of Barranquilla, northern Colombia, individual information about socioeconomic data, attitudes, perceptions and preferences towards cycling, was captured. An exploratory and confirmatory factor analysis were conducted, and six latent variables were extracted (safety awareness, desire for commodity, desire for economy, environmental awareness, perception towards bicycling and willingness to use bicycle). Lately, a MIMIC model was used to estimate the structural equations of the latent variables. Overall, the results show that the factors influencing the choosing of the bicycle in Barranquilla are: sex, access to a bicycle, the slope, traffic level, temperature, the existence and type of infrastructure, perception towards bicycling, desire for economy and environmental awareness. Subsequently, results indicate that the non-segregated infrastructure, which is the one existent in the city, might not be very attractive to people.La promoción de la bicicleta como modo de transporte urbano ha surgido como una estrategia para pacificar la movilidad en las ciudades, disminuir la huella de carbono, reducir los niveles de contaminación y afianzar los estilos de vida sostenible. Entender claramente los factores claves que influyen en la elección de la bicicleta es esencial para desarrollar políticas efectivas en pro de incentivar el uso de este modo de transporte. En el presente trabajo se usó un modelo integrado de elección y variables latentes con enfoque secuencial, con el fin de determinar los factores que influyen en la elección de la bicicleta. A través de una encuesta de preferencias declaradas aplicada en la ciudad de Barranquilla, al norte de Colombia, se obtuvo información socioeconómica, así como de las actitudes, percepciones y preferencias con respecto al uso de la bicicleta. Se realizó un análisis factorial y se extrajeron seis variables latentes (preocupación por la seguridad, deseo de comodidad, deseo por economía, conciencia ambiental, percepción de los viajes en bicicleta y disposición a manejar bicicleta). Posteriormente un modelo MIMIC fue usado para estimar las ecuaciones estructurales de las variables latentes. Los resultados indican que los factores que influyen en la elección son sexo, nivel de tráfico, disponibilidad de bicicleta, pendiente, temperatura, percepción de los viajes en bicicleta, deseo por economía, y que la infraestructura tipo ciclobanda, la cual es la existente en la ciudad, no es atractiva cuando el nivel de tráfico es alto, lo que indica que las medidas tomadas hasta ahora han resultado llamativas para los ciudadanos.Estrada Contreras, Sebastian de Jesús-2cd5a195-1bfb-4be2-86e1-0cfb9c47d468-0spaAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2variables latentestransporte activobicicletapercepcionesmodelo integrado de elecciónestimación secuencialanálisis factorialmodelo MIMIClatent variablesActive transportationBicyclePerceptionsIntegrated choice and latent variable modelSequential estimationFactor analysisEvaluación de los factores que influyen en la elección de la bicicleta como modo de transporte en barranquilla incluyendo variables latentesTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextinfo:eu-repo/semantics/bachelorThesishttp://purl.org/redcol/resource_type/TPinfo:eu-repo/semantics/acceptedVersionIngeniería CivilAarts, M.-J., Mathijssen, J. J. P., van Oers, J. A. M., & Schuit, A. J. (2013). Associations Between Environmental Characteristics and Active Commuting to School Among Children: a Cross-sectional Study. International Journal of Behavioral Medicine, 20(4), 538-555. https://doi.org/10.1007/s12529-012-9271-0 Akar, G., & Clifton, K. (2009). Influence of Individual Perceptions and Bicycle Infrastructure on Decision to Bike. Transportation Research Record: Journal of the Transportation Research Board, 2140, 165-172. https://doi.org/10.3141/2140-18 Allaman, P. M., Tardiff, T. J., & Dunbar, F. C. (1982). NEW APPROACHES TO UNDERSTANDING TRAVEL BEHAVIOR (Vol. NCHRP Report, p. 142p). Presentado en Transportation Research Board, Washington, D.C., Estados Unidos. Recuperado a partir de https://trid.trb.org/view/186872 Apasnore, P., Ismail, K., & Kassim, A. (2017). Bicycle-vehicle interactions at mid-sections of mixed traffic streets: Examining passing distance and bicycle comfort perception. Accident Analysis & Prevention, 106, 141-148. https://doi.org/10.1016/j.aap.2017.05.003 Arbeláez-Arenas, O., Córdoba-Maquilón, J., & Sarmiento-Ordosgoitia, I. (2017). Infrastructure provision and its effect on bicycle mode choice. Presentado en Paper submitted for presentation at the 5th International Choice Modelling Conference, Cape Town, Sudáfrica. Recuperado a partir de http://www.icmconference.org.uk/index.php/icmc/ICMC2017/paper/viewFile/1379/422 Ashok, K., Dillon, W. R., & Yuan, S. (2002). Extending Discrete Choice Models to Incorporate Attitudinal and Other Latent Variables. Journal of Marketing Research, 39(1), 31-46. Barberan, A., de Abreu e Silva, J., & Monzon, A. (2017). Factors influencing bicycle use: a binary choice model with panel data. Transportation Research Procedia, 27, 253-260. https://doi.org/10.1016/j.trpro.2017.12.097 Barberan, A., & Monzon, A. (2016). How did Bicycle Share Increase in Vitoria-Gasteiz? Transportation Research Procedia, 18, 312-319. https://doi.org/10.1016/j.trpro.2016.12.042 Barnes, G., & Krizek, K. (2005). Estimating Bicycling Demand. Transportation Research Record: Journal of the Transportation Research Board, 1939, 45-51. https://doi.org/10.3141/1939-06 Batterman, S., Ganguly, R., Isakov, V., Burke, J., Arunachalam, S., Snyder, M., … Lewis, T. (2014). Dispersion Modeling of Traffic-Related Air Pollutant Exposures and Health Effects Among Children with Asthma in Detroit, Michigan. Transportation Research Record: Journal of the Transportation Research Board, 2452, 105-113. https://doi.org/10.3141/2452-13 Ben-Akiva, M., Mcfadden, D., Train, K., Walker, J., Bhat, C., Bierlaire, M., … Munizaga, M. A. (2002). Hybrid Choice Models: Progress and Challenges. Marketing Letters, 13(3), 163- 175 https://doi.org/10.1023/A:1020254301302 Ben-Akiva, M., Walker, J., Bernardino, A. T., Gopinath, D. A., Morikawa, T., & Polydoropoulou, A. (2002). Integration of Choice and Latent Variable Models. En In Perpetual Motion (pp. 431-470). Elsevier. https://doi.org/10.1016/B978-008044044-6/50022-X Bergantino, A. S., Bierlaire, M., Catalano, M., Migliore, M., & Amoroso, S. (2013). Taste heterogeneity and latent preferences in the choice behaviour of freight transport operators. Transport Policy, 30, 77-91. https://doi.org/10.1016/j.tranpol.2013.08.002 Bhat, C. R., Dubey, S. K., & Nagel, K. (2015). Introducing non-normality of latent psychological constructs in choice modeling with an application to bicyclist route choice. Transportation Research Part B: Methodological, 78, 341-363. https://doi.org/10.1016/j.trb.2015.04.005 Banco Internacional de Desarrollo (BID). (2013). CÓMO IMPULSAR EL CICLISMO URBANO: Recomendaciones para las instituciones de América Latina y el Caribe. Recuperado a partir de https://www.iadb.org/es/project/RG-T2219 Bolduc, D., Boucher, N., & Alvarez-Daziano, R. (2008). Hybrid Choice Modeling of New Technologies for Car Choice in Canada. Transportation Research Record: Journal of the Transportation Research Board, 2082, 63-71. https://doi.org/10.3141/2082-08 Bollen, K. A. (1989). Structural Equations with Latent Variables: Bollen/Structural Equations with Latent Variables. Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781118619179 Bollen, K. A. (2002). Latent Variables in Psychology and the Social Sciences. Annual Review of Psychology, 53(1), 605-634. https://doi.org/10.1146/annurev.psych.53.100901.135239 Bollen, K., & Lennox, R. (1991). Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin, 110(2), 305-314. https://doi.org/10.1037/0033-2909.110.2.305 Börjesson, M., & Eliasson, J. (2012). The value of time and external benefits in bicycle appraisal. Transportation Research Part A: Policy and Practice, 46(4), 673-683. https://doi.org/10.1016/j.tra.2012.01.006 Buehler, R. (2012). Determinants of bicycle commuting in the Washington, DC region: The role of bicycle parking, cyclist showers, and free car parking at work. Transportation Research Part D: Transport and Environment, 17(7), 525-531. https://doi.org/10.1016/j.trd.2012.06.003 Cai, L. (2012). Latent variable modeling. Shanghai Arch Psychiatry, 24(2), 118–120. https://doi.org/10.3969/j.issn.1002-0829.2012.02.010 Carvajal, J. H., & Ruiz P., G. L. (2006). INFORME DE VISITA REALIZADO AL SECTOR CAMPO ALEGRE Y OTROS SECTORES DE LAS LADERAS OCCIDENTALES DE BARRANQUlLlA DEPARTAMENTO DEL ATLANTICO. Bogotá D.C., Colombia: Ministerio de Minas y Energía. Recuperado a partir de http://www.barranquilla.gov.co/documentos/pot/anexos/Anexo%2017%20Informe%20INGEOMINAS%20(2006).pdf Chae, D., Jung, J., & Sohn, K. (2018). Facilitating an expectation-maximization (EM) algorithm to solve an integrated choice and latent variable (ICLV) model with fully correlated latent variables. Journal of Choice Modelling, 26, 64-79. https://doi.org/10.1016/j.jocm.2017.08.001 Chen, H.-Y. W., & Donmez, B. (2016). What drives technology-based distractions? A structural equation model on social-psychological factors of technology-based driver distraction engagement. Accident Analysis & Prevention, 91, 166-174. https://doi.org/10.1016/j.aap.2015.08.015 Chen, Y., Xin, F., Ye, Y., & Zhang, Y. (2018). Bike-Share System Users’ Satisfaction Assessment Based on a Structural Equation Model. Presentado en 17th COTA International Conference of Transportation Professionals, Shanghai, China. https://doi.org/10.1061/9780784480915.297 Crane, M., Rissel, C., Standen, C., Ellison, A., Ellison, R., Wen, L. M., & Greaves, S. (2017). Longitudinal evaluation of travel and health outcomes in relation to new bicycle infrastructure, Sydney, Australia. Journal of Transport & Health, 6, 386-395. https://doi.org/10.1016/j.jth.2017.07.002 Daley, M., Rissel, C., & Lloyd, B. (2007). All dressed up and nowhere to go? A qualitative research study of the barriers and enablers to cycling in inner Sydney. Road and Transport Research, 16(4), 42-52. Damant-Sirois, G., & El-Geneidy, A. M. (2015). Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada. Transportation Research Part A: Policy and Practice, 77, 113-125. https://doi.org/10.1016/j.tra.2015.03.028 Departamento Administrativo Nacional de Estadística (DANE). (2010). Proyeccion de población por municpio 2006 - 2025. Recuperado a partir de https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion Daziano, R. A., & Bolduc, D. (2011). Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transportmetrica, 1-33. https://doi.org/10.1080/18128602.2010.524173 Departamento Administrativo Nacional de Estadística (DANE). (2010). Proyeccion de población por municpio 2006 - 2025. Recuperado a partir de https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-ypoblacion/proyecciones-de-poblacion Daziano, R. A., & Bolduc, D. (2011). Incorporating pro-environmental preferences towards green automobile technologies through a Bayesian hybrid choice model. Transportmetrica, 1-33. https://doi.org/10.1080/18128602.2010.524173 Eash, R. (1999). Destination and Mode Choice Models for Nonmotorized Travel. Transportation Research Record: Journal of the Transportation Research Board, 1674, 1-8. https://doi.org/10.3141/1674-01 European Cyclist Federation (ECF). (2014). COMMUTING: WHO PAYS THE BILL? Overview of fiscal regimes for commuting in Europe and recommendations for establishing a level playing-field. Recuperado a partir de https://ecf.com/sites/ecf.com/files/141117-Commuting-Who-Pays-The-Bill_2.pdf Emond, C. R., & Handy, S. L. (2012). Factors associated with bicycling to high school: insights from Davis, CA. Journal of Transport Geography, 20(1), 71-79. https://doi.org/10.1016/j.jtrangeo.2011.07.008 Eriksson, L., & Forward, S. E. (2011). Is the intention to travel in a pro-environmental manner and the intention to use the car determined by different factors? Transportation Research Part D: Transport and Environment, 16(5), 372-376. https://doi.org/10.1016/j.trd.2011.02.003 Fernández Aráuz, A. (2015). Aplicación del análisis factorial confirmatorio a un modelo de medición del rendimiento académico en lectura. Revista de Ciencias Económicas, 33(2), 39. https://doi.org/10.15517/rce.v33i2.22216 Fernández-Heredia, Á., Monzón, A., & Jara-Díaz, S. (2014). Understanding cyclists’ perceptions, keys for a successful bicycle promotion. Transportation Research Part A: Policy and Practice, 63, 1-11. https://doi.org/10.1016/j.tra.2014.02.013 Flynn, B. S., Dana, G. S., Sears, J., & Aultman-Hall, L. (2012). Weather factor impacts on commuting to work by bicycle. Preventive Medicine, 54(2), 122-124. https://doi.org/10.1016/j.ypmed.2011.11.002 Frank, L., Bradley, M., Kavage, S., Chapman, J., & Lawton, T. K. (2007). Urban form, travel time, and cost relationships with tour complexity and mode choice. Transportation, 35(1), 37-54. https://doi.org/10.1007/s11116-007-9136-6 Fu, L., & Farber, S. (2017). Bicycling frequency: A study of preferences and travel behavior in Salt Lake City, Utah. Transportation Research Part A: Policy and Practice, 101, 30-50. https://doi.org/10.1016/j.tra.2017.05.004 Golob, T. F. (2003). Structural equation modeling for travel behavior research. Transportation Research Part B: Methodological, 37(1), 1-25. https://doi.org/10.1016/S0191-2615(01)00046-7 González Marrero, R. M., Martínez Budría, E., & Esquivel Ramos, A. (2012). Contraste de las preferencias declaradas con preferencias reveladas. El caso de los alumnos de la Universidad de La Laguna ante la implantación del tranvía. Metodología de Encuestas,14, 65-80. Great Schools Partnership. (2015). AGGREGATE DATA. Recuperado a partir de https://www.edglossary.org/aggregate-data/ Griffin, G. P., & Jiao, J. (2015). Where does bicycling for health happen? Analysing volunteered geographic information through place and plexus. Journal of Transport & Health, 2(2), 238-247. https://doi.org/10.1016/j.jth.2014.12.001 Habib, K. N., Mann, J., Mahmoud, M., & Weiss, A. (2014). Synopsis of bicycle demand in the City of Toronto: Investigating the effects of perception, consciousness and comfortability on the purpose of biking and bike ownership. Transportation Research Part A: Policy and Practice, 70, 67-80. https://doi.org/10.1016/j.tra.2014.09.012 Hagenauer, J., & Helbich, M. (2017). A comparative study of machine learning classifiers for modeling travel mode choice. Expert Systems with Applications, 78, 273-282. https://doi.org/10.1016/j.eswa.2017.01.057 Hamre, A., & Buehler, R. (2014). Commuter Mode Choice and Free Car Parking, Public Transportation Benefits, Showers/Lockers, and Bike Parking at Work: Evidence from the Washington, DC Region. Journal of Public Transportation, 17(2), 67-91. https://doi.org/10.5038/2375-0901.17.2.4 Handy, S. L., & Xing, Y. (2011). Factors Correlated with Bicycle Commuting: A Study in Six Small U.S. Cities. International Journal of Sustainable Transportation, 5(2), 91-110. https://doi.org/10.1080/15568310903514789 Hazen, B., Overstreet, R., & Wang, Y. (2015). Predicting Public Bicycle Adoption Using the Technology Acceptance Model. Sustainability, 7(12), 14558-14573. https://doi.org/10.3390/su71114558 Heesch, K. C., Giles-Corti, B., & Turrell, G. (2014). Cycling for transport and recreation: Associations with socio-economic position, environmental perceptions, and psychological disposition. Preventive Medicine, 63, 29-35. https://doi.org/10.1016/j.ypmed.2014.03.003 Heinen, E., Maat, K., & van Wee, B. (2013). The effect of work-related factors on the bicycle commute mode choice in the Netherlands. Transportation, 40(1), 23-43. https://doi.org/10.1007/s11116-012-9399-4 Heinen, E., Maat, K., & Wee, B. van. (2011). The role of attitudes toward characteristics of bicycle commuting on the choice to cycle to work over various distances. Transportation Research Part D: Transport and Environment, 16(2), 102-109. https://doi.org/10.1016/j.trd.2010.08.010 Heinen, E., van Wee, B., & Maat, K. (2010). Commuting by Bicycle: An Overview of theLiterature. Transport Reviews, 30(1), 59-96. https://doi.org/10.1080/01441640903187001 Huang, L.-S., & Su, W.-R. (2018). Exploration on the Behavior Patterns of Public Bicycle Users in Kaohsiung City from the Perspective of Theory of Planned Behavior and Structural Equation Model. Preprints. https://doi.org/10.20944/preprints201802.0088.v Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). (2015). Promedios Precipitación y Temperatura media. Promedio de los años 1981-2010. Recuperado a partir de https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/PromediosPrecipitaci-n-y-Temperatura-media-Promed/nsxu-h2dh Instituto para Políticas de Transporte y Desarrollo (ITPD), & Interface for Cycling Experience (I-CE). (2011). Ciclo ciudades: Manual integral de movilidad ciclista para ciudades mexicanas (Tomo IV) (M. Pérez Herrera). Ciudad de México, México. Recuperado a partir de http://ciclociudades.mx/wp-content/uploads/2015/10/Manual-Tomo-IV.pdf Jin, J., & Kim, J. (2012). Strategies for the Improvement of Historic Sites Bike Tour Using Structural Equation Modeling. En T. Kim, C. Ramos, H. Kim, A. Kiumi, S. Mohammed, & D. Ślęzak (Eds.), Computer Applications for Software Engineering, Disaster Recovery, and Business Continuity (Vol. 340, pp. 280-286). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-35267-6_36 Kamargianni, M., & Polydoropoulou, A. (2013). Hybrid Choice Model to Investigate Effects of Teenagers’ Attitudes Toward Walking and Cycling on Mode Choice Behavior. Transportation Research Record: Journal of the Transportation Research Board, 2382, 151-161. https://doi.org/10.3141/2382-17 Katz, R. J. (1997). Demand for bicycle use : a behavioural framework and empirical analysis for urban NSW (Doctoral dissertation). University of Sydney, Australia. Recuperado a partir de https://trove.nla.gov.au/work/23909316?q&versionId=28915044 Kim, J., Choi, K., Kim, S., & Fujii, S. (2017). How to promote sustainable public bike system from a psychological perspective? International Journal of Sustainable Transportation, 11(4), 272-281. https://doi.org/10.1080/15568318.2016.1252450 Lee, J.-Y., Chung, J.-H., & Son, B. (2008). Analysis of traffic accident size for Korean highwayusing structural equation models. Accident Analysis & Prevention, 40(6), 1955-1963. https://doi.org/10.1016/j.aap.2008.08.006 Li, Z., Wang, W., Liu, P., & Ragland, D. R. (2012). Physical environments influencing bicyclists’ perception of comfort on separated and on-street bicycle facilities. Transportation Research Part D: Transport and Environment, 17(3), 256-261. https://doi.org/10.1016/j.trd.2011.12.001 Li, Z., Wang, W., Yang, C., & Jiang, G. (2013). Exploring the causal relationship between bicycle choice and trip chain pattern. Transport Policy, 29, 170-177. https://doi.org/10.1016/j.tranpol.2013.06.001 Li, Z., Wang, W., Yang, C., & Ragland, D. R. (2013). Bicycle commuting market analysis using attitudinal market segmentation approach. Transportation Research Part A: Policy and Practice, 47, 56-68. https://doi.org/10.1016/j.tra.2012.10.017 Limtanakool, N., Dijst, M., & Schwanen, T. (2006). The influence of socioeconomic characteristics, land use and travel time considerations on mode choice for medium- and longer-distance trips. Journal of Transport Geography, 14(5), 327-341. https://doi.org/10.1016/j.jtrangeo.2005.06.004 Lyon, P. K. (1981). Time-dependent structural equations modelling of the relationships between attitudes and discrete choices behavior of transportation consumers (Dissertation). Northwestern University, Washington, D.C., Estados Unidos. Recuperado a partir de https://trid.trb.org/view/177237 Ma, L., & Dill, J. (2015). Associations between the objective and perceived built environment and bicycling for transportation. Journal of Transport & Health, 2(2), 248-255. https://doi.org/10.1016/j.jth.2015.03.002 Ma, L., Dill, J., & Mohr, C. (2014). The objective versus the perceived environment: what matters for bicycling? Transportation, 41(6), 1135-1152. https://doi.org/10.1007/s11116-014-9520-y Maldonado-Hinarejos, R., Sivakumar, A., & Polak, J. W. (2014). Exploring the role of individual attitudes and perceptions in predicting the demand for cycling: a hybrid choice modelling approach. Transportation, 41(6), 1287-1304. https://doi.org/10.1007/s11116-014-9551-4 McFadden, D. (1986). The Choice Theory Approach to Market Research. Marketing Science, 5(4), 275-297. https://doi.org/10.1287/mksc.5.4.275 Menghini, G., Carrasco, N., Schüssler, N., & Axhausen, K. W. (2010). Route choice of cyclists in Zurich. Transportation Research Part A: Policy and Practice, 44(9), 754-765. https://doi.org/10.1016/j.tra.2010.07.008 Milakis, D., & van Wee, B. (2018). “For me it is always like half an hour”: Exploring the acceptable travel time concept in the US and European contexts. Transport Policy. https://doi.org/10.1016/j.tranpol.2018.02.001 Ministerio de Transporte. (2016). Guía de ciclo-infraestructura para ciudades colombianas (C.Pardo & A. Sanz). Bogotá D.C., Colombia. Recuperado a partir de http://www.despacio.org/wpcontent/uploads/2016/04/Guia-cicloinfraestructuraColombia-20160413 ISBN%20digital.pdf Mota, J., Gomes, H., Almeida, M., Ribeiro, J. C., Carvalho, J., & Santos, M. P. (2007). Active versus passive transportation to school–differences in screen time, socio-economic position and perceived environmental characteristics in adolescent girls. Annals of Human Biology, 34(3), 273-282. https://doi.org/10.1080/03014460701308615 Motoaki, Y., & Daziano, R. A. (2015). A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand. Transportation Research Part A: Policy and Practice, 75, 217-230. https://doi.org/10.1016/j.tra.2015.03.017 Moudon, A. V., Lee, C., Cheadle, A. D., Collier, C. W., Johnson, D., Schmid, T. L., & Weather, R. D. (2005). Cycling and the built environment, a US perspective. Transportation Research Part D: Transport and Environment, 10(3), 245-261. https://doi.org/10.1016/j.trd.2005.04.001 Mraihi, R., Harizi, R., Mraihi, T., & Bouzidi, M. T. (2015). Urban air pollution and urban daily mobility in large Tunisia׳s cities. Renewable and Sustainable Energy Reviews, 43, 315- 320. https://doi.org/10.1016/j.rser.2014.11.022 Muhs, C. D., & Clifton, K. J. (2014). Bicycling is different: Built environment relationships to non-work travel. Presentado en 93rd Annual Meeting of the Transportation Research Board, Washington DC, Estados Unidos. Municipalidad de Lima. (2017). Manual de Normas Técnicas para la Construcción de Ciclovías y Guía De Circulación de Bicicletas (P. Calderón, C. Pardo, J. J. Arrué). Lima, Perú. Recuperado a partir de http://www.despacio.org/wp-content/uploads/2017/04/ManualLima20170421.pdf Muñoz, B., Monzon, A., & Daziano, R. A. (2016). The Increasing Role of Latent Variables in Modelling Bicycle Mode Choice. Transport Reviews, 36(6), 737-771. https://doi.org/10.1080/01441647.2016.1162874 Muñoz, B., Monzon, A., & Lois, D. (2013). Cycling Habits and Other Psychological Variables Affecting Commuting by Bicycle in Madrid, Spain. Transportation Research Record: Journal of the Transportation Research Board, 2382, 1-9. https://doi.org/10.3141/2382- 01 Murphy, K. M., & Topel, R. H. (1985). Estimation and Inference in Two-Step Econometric Models. Journal of Business & Economic Statistics, 3(4), 370. https://doi.org/10.2307/1391724 Noland, R. B., & Kunreuther, H. (1995). Short-run and long-run policies for increasing bicycle transportation for daily commuter trips. Transport Policy, 2(1), 67-79. https://doi.org/10.1016/0967-070X(95)93248-W Oh, J. S., Kim, M. S., & Lee, C. H. (2014). A Study on Factors Affecting the Satisfaction of Public Bicycle System. Journal of the Korean Society of Road Engineers, 16(2), 107-118. https://doi.org/10.7855/IJHE.2014.16.2.107 Organización Mundial de la Salud (OMS). (2014). Burden of disease from Ambient Air Pollution for 2012. Recuperado a partir de http://www.who.int/phe/health_topics/outdoorair/databases/AAP_BoD_results_March2014.pdf Ortúzar, J. de D. (2015). Modelos de demanda de transporte. Santigo de Chile, Chile: Alfaomega, Ediciones Universidad Católica de Chile. Ortúzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport: Ortúzar/Modelling Transport. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119993308 Outwater, M., Castleberry, S., Shiftan, Y., Ben-Akiva, M., Shuang Zhou, Y., & Kuppam, A. (2003). Attitudinal Market Segmentation Approach to Mode Choice and Ridership Forecasting: Structural Equation Modeling. Transportation Research Record: Journal of the Transportation Research Board, 1854, 32-42. https://doi.org/10.3141/1854-04 Parkin, J., Wardman, M., & Page, M. (2007). Estimation of the determinants of bicycle mode share for the journey to work using census data. Transportation, 35(1), 93-109. https://doi.org/10.1007/s11116-007-9137-5 Paulssen, M., Temme, D., Vij, A., & Walker, J. L. (2014). Values, attitudes and travel behavior: a hierarchical latent variable mixed logit model of travel mode choice. Transportation, 41(4), 873-888. https://doi.org/10.1007/s11116-013-9504-3 Piatkowski, D. P., & Marshall, W. E. (2015). Not all prospective bicyclists are created equal: The role of attitudes, socio-demographics, and the built environment in bicycle commuting. Travel Behaviour and Society, 2(3), 166-173. https://doi.org/10.1016/j.tbs.2015.02.001 Pinjari, A., Eluru, N., Bhat, C., Pendyala, R., & Spissu, E. (2008). Joint Model of Choice of Residential Neighborhood and Bicycle Ownership: Accounting for Self-Selection and Unobserved Heterogeneity. Transportation Research Record: Journal of the Transportation Research Board, 2082, 17-26. https://doi.org/10.3141/2082-03 Pucher, J., & Buehler, R. (2006). Why Canadians cycle more than Americans: A comparative analysis of bicycling trends and policies. Transport Policy, 13(3), 265-279. https://doi.org/10.1016/j.tranpol.2005.11.001 Pucher, J., Dill, J., & Handy, S. (2010). Infrastructure, programs, and policies to increase bicycling: An international review. Preventive Medicine, 50, S106-S125. https://doi.org/10.1016/j.ypmed.2009.07.028 Ranaiefar, F., & Rixey, R. A. (2016). Bike Sharing Ridership Forecast using Structural Equation Modeling. Presentado en TRB 2016 Annual Meeting, Washington, D.C., Estados Unidos. Recuperado a partir de https://nacto.org/wp-content/uploads/2016/02/2016_Ranaiefarand-Rixey_Bikesharing-Ridersehip-Forecast-Using-Structural-Equation-Modeling.pdf Raveau, S., Ortúzar, J., & Yáñez, M. F. (2010). Análisis de los Enfoques Secuencial y Simultáneo para la Estimación de Modelos Híbridos de Elección Discreta. INGENIERÍA DE TRANSPORTE, 14(1), 26-31. Rodrı́guez, D. A., & Joo, J. (2004). The relationship between non-motorized mode choice and the local physical environment. Transportation Research Part D: Transport and Environment, 9(2), 151-173. https://doi.org/10.1016/j.trd.2003.11.001 Roorda, M. J., Passmore, D., & Miller, E. J. (2009). Including Minor Modes of Transport in a Tour-Based Mode Choice Model with Household Interactions. Journal of Transportation Engineering, 135(12), 935-945. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000072 Sadia, R., Bekhor, S., & Polus, A. (2017). Structural equations modelling of drivers’ speed selection using environmental, driver, and risk factors. Accident Analysis & Prevention. https://doi.org/10.1016/j.aap.2017.08.034 Sahlqvist, S. L., & Heesch, K. C. (2012). Characteristics of utility cyclists in Queensland, Australia: an examination of the associations between individual, social, and environmental factors and utility cycling. Journal of Physical Activity & Health, 9(6), 818-828. Schreiber, J. B. (2017). Update to core reporting practices in structural equation modeling. Research in Social and Administrative Pharmacy, 13(3), 634-643. https://doi.org/10.1016/j.sapharm.2016.06.006 Scott-Parker, B., Watson, B., King, M. J., & Hyde, M. K. (2013). A further exploration of sensation seeking propensity, reward sensitivity, depression, anxiety, and the risky behaviour of young novice drivers in a structural equation model. Accident Analysis & Prevention, 50, 465-471. https://doi.org/10.1016/j.aap.2012.05.027 Secretaría Distrital de Tránsito y Seguridad Vial (SDTSV). (2017a). Aforos vehiculares y peatonales Enero - Julio 2017. Recuperado a partir de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=article&id=11359:aforos-vehiculares-y-peatonales&catid=8:semaforizacion Secretaría Distrital de Tránsito y Seguridad Vial (SDTSV). (2017b). Boletín 006: Orientadores de Movilidad listos para seguir apoyando el Tránsito de la ciudad. Recuperado a partir de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=article&id=12553:2017-01-16-22-54-34&catid=36:boletines&Itemid=30 Secretaría Distrital de Tránsito y Seguridad Vial (SDTSV). (2018). Parque Automotor a Febrero 28 de 2018. Recuperado a partir de http://www.barranquilla.gov.co/transito/index.php?option=com_content&view=article&id=1686&Itemid=38 Sigurdardottir, S. B., Kaplan, S., Møller, M., & Teasdale, T. W. (2013). Understanding adolescents’ intentions to commute by car or bicycle as adults. Transportation Research Part D: Transport and Environment, 24, 1-9. https://doi.org/10.1016/j.trd.2013.04.00 Taylor, D., & Mahmassani, H. (1996). Analysis of Stated Preferences for Intermodal BicycleTransit Interfaces. Transportation Research Record: Journal of the Transportation Research Board, 1556, 86-95. https://doi.org/10.3141/1556-11 Teschke, K., Reynolds, C., Ries, F., Gouge, B., & Winters, M. (2012). Bicycling: Health Risk or Benefit? University of British Columbia Medical Journal, 3(2), 6-11. Thorhauge, M., Rich, J., & Cherchi, E. (2015). Departure time choice: Modelling individual preferences, intention and constraints (Doctoral dissertation). Technical University of Denmark, Transport, Denmark. Recuperado a partir de http://orbit.dtu.dk/files/116811052/Mikkel_Thorhauge_PhD_m_omslag.pdf Titze, S., Stronegger, W. J., Janschitz, S., & Oja, P. (2007). Environmental, social, and personal correlates of cycling for transportation in a student population. Journal of Physical Activity & Health, 4(1), 66-79. Titze, S., Stronegger, W. J., Janschitz, S., & Oja, P. (2008). Association of built-environment, social-environment and personal factors with bicycling as a mode of transportation among Austrian city dwellers. Preventive Medicine, 47(3), 252-259. https://doi.org/10.1016/j.ypmed.2008.02.019 Train, K. E., McFadden, D. L., & Goett, A. A. (1987). Consumer Attitudes and Voluntary Rate Schedules for Public Utilities. The Review of Economics and Statistics, 69(3), 383. https://doi.org/10.2307/1925525 van Wee, B., Rietveld, P., & Meurs, H. (2006). Is average daily travel time expenditure constant? In search of explanations for an increase in average travel time. Journal of Transport Geography, 14(2), 109-122. https://doi.org/10.1016/j.jtrangeo.2005.06.003 Verma, M., Rahul, T. M., Reddy, P. V., & Verma, A. (2016). The factors influencing bicycling in the Bangalore city. Transportation Research Part A: Policy and Practice, 89, 29-40. https://doi.org/10.1016/j.tra.2016.04.006 Vij, A., & Walker, J. L. (2016). How, when and why integrated choice and latent variable models are latently useful. Transportation Research Part B: Methodological, 90, 192- 217. https://doi.org/10.1016/j.trb.2016.04.021 Vredin Johansson, M., Heldt, T., & Johansson, P. (2005). Latent Variables in a Travel Mode Choice Model: Attitudinal and Behavioural Indicator Variables. Working Paper Series, 5,Uppsala University, Department of Economics. Walker, J. L. (2001, febrero). Extended Discrete Choice Models: Integrated Framework, Flexible Error Structures, and Latent Variables (Doctoral dissertation). Massachusetts Institute of Technology, Estados Unidos. Recuperado a partir de https://its.mit.edu/sites/default/files/documents/WalkerPhD.pdf Wardman, M., Tight, M., & Page, M. (2007). Factors influencing the propensity to cycle to work. Transportation Research Part A: Policy and Practice, 41(4), 339-350. https://doi.org/10.1016/j.tra.2006.09.011 Washington, S., Karlaftis, M. G., & Mannering, F. L. (2003). Statistical and econometricmethods for transportation data analysis. Boca Raton: Chapman & Hall/CRC. Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2010). Built environment influences on healthy transportation choices: bicycling versus driving. Journal of Urban Health: Bulletin of the New York Academy of Medicine, 87(6), 969-993. https://doi.org/10.1007/s11524-010-9509-6 Winters, M., Davidson, G., Kao, D., & Teschke, K. (2011). Motivators and deterrents of bicycling: comparing influences on decisions to ride. Transportation, 38(1), 153-168. https://doi.org/10.1007/s11116-010-9284-y Yáñez, M. F., Raveau, S., & Ortúzar, J. de D. (2010). Inclusion of latent variables in Mixed Logit models: Modelling and forecasting. Transportation Research Part A: Policy and Practice, 44(9), 744-753. https://doi.org/10.1016/j.tra.2010.07.007 Yu, M., Ye, M., Yang, C., Gong, L., Hu, Q., & Fan, W. D. (2015). Modeling the Switch Tendency for Cyclists and Non-cyclists by Using Market Segmentation Approach. Presentado en TRB 94th Annual Meeting, Washington, D.C., Estados Unidos. Recuperado a partir de https://trid.trb.org/view/1337711PublicationORIGINAL1048220252.pdf1048220252.pdfapplication/pdf2806556https://repositorio.cuc.edu.co/bitstreams/2596efaa-791e-4137-9f7e-cb9d3071bad5/downloadd6c7d3921a397d8958377be07d9c5260MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6f85de81-9e6d-4ba5-b6e9-76e903c88f25/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAIL1048220252.pdf.jpg1048220252.pdf.jpgimage/jpeg24876https://repositorio.cuc.edu.co/bitstreams/fe1c9ff5-da72-44cb-884c-a6bac61274bd/downloadc5131d0a4c2ed4e6cada9964bf2e2d08MD55TEXT1048220252.pdf.txt1048220252.pdf.txttext/plain212459https://repositorio.cuc.edu.co/bitstreams/a85a4b97-bf54-4c23-ba1b-fd5b2fc7b87c/download8b68d92c142b1627c95a18fc1aa82fa6MD5611323/265oai:repositorio.cuc.edu.co:11323/2652024-09-17 10:51:32.54open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |