Temporary variables for predicting electricity consumption through data mining
In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a...
- Autores:
-
silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5947
- Acceso en línea:
- https://hdl.handle.net/11323/5947
https://repositorio.cuc.edu.co/
- Palabra clave:
- Electricity
Temporary Variables
Data mining
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_034040c80604bfdc45e7bf6bc44766c6 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5947 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Temporary variables for predicting electricity consumption through data mining |
title |
Temporary variables for predicting electricity consumption through data mining |
spellingShingle |
Temporary variables for predicting electricity consumption through data mining Electricity Temporary Variables Data mining |
title_short |
Temporary variables for predicting electricity consumption through data mining |
title_full |
Temporary variables for predicting electricity consumption through data mining |
title_fullStr |
Temporary variables for predicting electricity consumption through data mining |
title_full_unstemmed |
Temporary variables for predicting electricity consumption through data mining |
title_sort |
Temporary variables for predicting electricity consumption through data mining |
dc.creator.fl_str_mv |
silva d, jesus g Senior Naveda, Alexa Hernández Palma, Hugo Niebles Núñez, William Niebles Nuñez, Leonardo David |
dc.contributor.author.spa.fl_str_mv |
silva d, jesus g Senior Naveda, Alexa Hernández Palma, Hugo Niebles Núñez, William Niebles Nuñez, Leonardo David |
dc.subject.spa.fl_str_mv |
Electricity Temporary Variables Data mining |
topic |
Electricity Temporary Variables Data mining |
description |
In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-01-30T13:38:21Z |
dc.date.available.none.fl_str_mv |
2020-01-30T13:38:21Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1742-6596 1742-6588 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5947 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1742-6596 1742-6588 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5947 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
10.1088/1742-6596/1432/1/012033/pdf |
dc.relation.references.spa.fl_str_mv |
[1] R. Sevlian and R. Rajagopal, “Short Term Electricity Load Forecasting on Varying Levels of Aggregation,” ArXivPrepr.ArXiv14040058, 2014. [2] Z. Y. Wang, C. X. Guo, and Y. J. Cao, “A new method for short-term load forecasting integrating fuzzy-rough sets with artificial neural network,” in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 1–173. [3] I. Drezga and S. Rahman, “Input variable selection for ANN-based short-term load forecasting,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238–1244, Nov. 1998. [4] Y.-C. Guo, “An integrated PSO for parameter determination and feature selection of SVR and its application in STLF,” in 2009 International Conference on Machine Learning and Cybernetics, 2009, vol. 1, pp. 359–364. [5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034 [6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017) [7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear. [8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010) [9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015) [10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016). [11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham. [12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer. [13] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham. [14] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham. [15] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11. [16] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015 [17] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition. [18] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019). [19] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/ [20] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017). [21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Journal of Physics: Conference Series |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/8f7722f6-ac61-4715-96a4-f62450f7363f/download https://repositorio.cuc.edu.co/bitstreams/6bbd5d55-0403-40da-9824-71e3c0f5eac0/download https://repositorio.cuc.edu.co/bitstreams/f629900f-3d28-4f49-8c52-9008679be30a/download https://repositorio.cuc.edu.co/bitstreams/47de9202-f08a-4971-b3bc-4b7350afe70c/download https://repositorio.cuc.edu.co/bitstreams/8045dee7-d10d-481d-8d0f-be2045475f3b/download https://repositorio.cuc.edu.co/bitstreams/37fbb750-a768-470f-96be-b664e67626a3/download https://repositorio.cuc.edu.co/bitstreams/2bc217e1-d0a9-4160-ac51-1b1e2d264d14/download https://repositorio.cuc.edu.co/bitstreams/de7f7d16-f3b7-4a09-833a-f1d61b36d107/download https://repositorio.cuc.edu.co/bitstreams/483f06aa-409e-4b4d-b064-be1effc05b03/download |
bitstream.checksum.fl_str_mv |
944f9195b825bf4d2e634652706ab3e6 135e64529aa2e1f8ec6d341ae5b64e6f 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 b23f7babbb24836f507a7cb13e7777af 551aedb1b89e1383e19833c189a88a48 83acd55be6dce3dbb7a930638afff232 e49af74f4e11302b5826bf768111868e 60ee18aaa647bb7d98db4703f4a8ac02 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166836164755456 |
spelling |
silva d, jesus gSenior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamNiebles Nuñez, Leonardo David2020-01-30T13:38:21Z2020-01-30T13:38:21Z20201742-65961742-6588https://hdl.handle.net/11323/5947Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Senior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamNiebles Nuñez, Leonardo David-will be generated-orcid-0000-0003-2970-2498-600engJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012033/pdf[1] R. Sevlian and R. Rajagopal, “Short Term Electricity Load Forecasting on Varying Levels of Aggregation,” ArXivPrepr.ArXiv14040058, 2014.[2] Z. Y. Wang, C. X. Guo, and Y. J. Cao, “A new method for short-term load forecasting integrating fuzzy-rough sets with artificial neural network,” in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 1–173.[3] I. Drezga and S. Rahman, “Input variable selection for ANN-based short-term load forecasting,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238–1244, Nov. 1998.[4] Y.-C. Guo, “An integrated PSO for parameter determination and feature selection of SVR and its application in STLF,” in 2009 International Conference on Machine Learning and Cybernetics, 2009, vol. 1, pp. 359–364.[5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.[13] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.[14] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham.[15] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11.[16] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015[17] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.[18] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).[19] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/[20] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ElectricityTemporary VariablesData miningTemporary variables for predicting electricity consumption through data miningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALTemporary Variables for Predicting Electricity Consumption.pdfTemporary Variables for Predicting Electricity Consumption.pdfapplication/pdf679263https://repositorio.cuc.edu.co/bitstreams/8f7722f6-ac61-4715-96a4-f62450f7363f/download944f9195b825bf4d2e634652706ab3e6MD51Temporary Variables for Predicting Electricity Consumption Through.pdfTemporary Variables for Predicting Electricity Consumption Through.pdfapplication/pdf1537446https://repositorio.cuc.edu.co/bitstreams/6bbd5d55-0403-40da-9824-71e3c0f5eac0/download135e64529aa2e1f8ec6d341ae5b64e6fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f629900f-3d28-4f49-8c52-9008679be30a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/47de9202-f08a-4971-b3bc-4b7350afe70c/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILTemporary Variables for Predicting Electricity Consumption.pdf.jpgTemporary Variables for Predicting Electricity Consumption.pdf.jpgimage/jpeg1911https://repositorio.cuc.edu.co/bitstreams/8045dee7-d10d-481d-8d0f-be2045475f3b/downloadb23f7babbb24836f507a7cb13e7777afMD54Temporary Variables for Predicting Electricity Consumption.pdf.jpgTemporary Variables for Predicting Electricity Consumption.pdf.jpgimage/jpeg28449https://repositorio.cuc.edu.co/bitstreams/37fbb750-a768-470f-96be-b664e67626a3/download551aedb1b89e1383e19833c189a88a48MD55Temporary Variables for Predicting Electricity Consumption Through.pdf.jpgTemporary Variables for Predicting Electricity Consumption Through.pdf.jpgimage/jpeg34939https://repositorio.cuc.edu.co/bitstreams/2bc217e1-d0a9-4160-ac51-1b1e2d264d14/download83acd55be6dce3dbb7a930638afff232MD57THUMBNAILTEXTTemporary Variables for Predicting Electricity Consumption.pdf.txtTemporary Variables for Predicting Electricity Consumption.pdf.txttext/plain22283https://repositorio.cuc.edu.co/bitstreams/de7f7d16-f3b7-4a09-833a-f1d61b36d107/downloade49af74f4e11302b5826bf768111868eMD58Temporary Variables for Predicting Electricity Consumption Through.pdf.txtTemporary Variables for Predicting Electricity Consumption Through.pdf.txttext/plain24401https://repositorio.cuc.edu.co/bitstreams/483f06aa-409e-4b4d-b064-be1effc05b03/download60ee18aaa647bb7d98db4703f4a8ac02MD5911323/5947oai:repositorio.cuc.edu.co:11323/59472024-09-17 14:16:06.031http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |