Temporary variables for predicting electricity consumption through data mining

In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a...

Full description

Autores:
silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5947
Acceso en línea:
https://hdl.handle.net/11323/5947
https://repositorio.cuc.edu.co/
Palabra clave:
Electricity
Temporary Variables
Data mining
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_034040c80604bfdc45e7bf6bc44766c6
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5947
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Temporary variables for predicting electricity consumption through data mining
title Temporary variables for predicting electricity consumption through data mining
spellingShingle Temporary variables for predicting electricity consumption through data mining
Electricity
Temporary Variables
Data mining
title_short Temporary variables for predicting electricity consumption through data mining
title_full Temporary variables for predicting electricity consumption through data mining
title_fullStr Temporary variables for predicting electricity consumption through data mining
title_full_unstemmed Temporary variables for predicting electricity consumption through data mining
title_sort Temporary variables for predicting electricity consumption through data mining
dc.creator.fl_str_mv silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
dc.contributor.author.spa.fl_str_mv silva d, jesus g
Senior Naveda, Alexa
Hernández Palma, Hugo
Niebles Núñez, William
Niebles Nuñez, Leonardo David
dc.subject.spa.fl_str_mv Electricity
Temporary Variables
Data mining
topic Electricity
Temporary Variables
Data mining
description In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-30T13:38:21Z
dc.date.available.none.fl_str_mv 2020-01-30T13:38:21Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6596
1742-6588
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5947
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6596
1742-6588
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5947
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv 10.1088/1742-6596/1432/1/012033/pdf
dc.relation.references.spa.fl_str_mv [1] R. Sevlian and R. Rajagopal, “Short Term Electricity Load Forecasting on Varying Levels of Aggregation,” ArXivPrepr.ArXiv14040058, 2014.
[2] Z. Y. Wang, C. X. Guo, and Y. J. Cao, “A new method for short-term load forecasting integrating fuzzy-rough sets with artificial neural network,” in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 1–173.
[3] I. Drezga and S. Rahman, “Input variable selection for ANN-based short-term load forecasting,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238–1244, Nov. 1998.
[4] Y.-C. Guo, “An integrated PSO for parameter determination and feature selection of SVR and its application in STLF,” in 2009 International Conference on Machine Learning and Cybernetics, 2009, vol. 1, pp. 359–364.
[5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034
[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)
[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.
[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)
[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)
[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).
[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.
[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.
[13] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.
[14] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham.
[15] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11.
[16] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015
[17] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.
[18] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).
[19] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/
[20] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).
[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/8f7722f6-ac61-4715-96a4-f62450f7363f/download
https://repositorio.cuc.edu.co/bitstreams/6bbd5d55-0403-40da-9824-71e3c0f5eac0/download
https://repositorio.cuc.edu.co/bitstreams/f629900f-3d28-4f49-8c52-9008679be30a/download
https://repositorio.cuc.edu.co/bitstreams/47de9202-f08a-4971-b3bc-4b7350afe70c/download
https://repositorio.cuc.edu.co/bitstreams/8045dee7-d10d-481d-8d0f-be2045475f3b/download
https://repositorio.cuc.edu.co/bitstreams/37fbb750-a768-470f-96be-b664e67626a3/download
https://repositorio.cuc.edu.co/bitstreams/2bc217e1-d0a9-4160-ac51-1b1e2d264d14/download
https://repositorio.cuc.edu.co/bitstreams/de7f7d16-f3b7-4a09-833a-f1d61b36d107/download
https://repositorio.cuc.edu.co/bitstreams/483f06aa-409e-4b4d-b064-be1effc05b03/download
bitstream.checksum.fl_str_mv 944f9195b825bf4d2e634652706ab3e6
135e64529aa2e1f8ec6d341ae5b64e6f
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
b23f7babbb24836f507a7cb13e7777af
551aedb1b89e1383e19833c189a88a48
83acd55be6dce3dbb7a930638afff232
e49af74f4e11302b5826bf768111868e
60ee18aaa647bb7d98db4703f4a8ac02
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166836164755456
spelling silva d, jesus gSenior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamNiebles Nuñez, Leonardo David2020-01-30T13:38:21Z2020-01-30T13:38:21Z20201742-65961742-6588https://hdl.handle.net/11323/5947Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the new global and local scenario, the advent of intelligent distribution networks or Smart Grids allows real-time collection of data on the operating status of the electricity grid. Based on this availability of data, it is feasible and convenient to predict consumption in the short term, from a few hours to a week. The hypothesis of the study is that the method used to present time variables to a prediction system of electricity consumption affects the results.silva d, jesus g-will be generated-orcid-0000-0003-3555-9149-600Senior Naveda, AlexaHernández Palma, HugoNiebles Núñez, WilliamNiebles Nuñez, Leonardo David-will be generated-orcid-0000-0003-2970-2498-600engJournal of Physics: Conference Series10.1088/1742-6596/1432/1/012033/pdf[1] R. Sevlian and R. Rajagopal, “Short Term Electricity Load Forecasting on Varying Levels of Aggregation,” ArXivPrepr.ArXiv14040058, 2014.[2] Z. Y. Wang, C. X. Guo, and Y. J. Cao, “A new method for short-term load forecasting integrating fuzzy-rough sets with artificial neural network,” in Power Engineering Conference, 2005. IPEC 2005. The 7th International, 2005, pp. 1–173.[3] I. Drezga and S. Rahman, “Input variable selection for ANN-based short-term load forecasting,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1238–1244, Nov. 1998.[4] Y.-C. Guo, “An integrated PSO for parameter determination and feature selection of SVR and its application in STLF,” in 2009 International Conference on Machine Learning and Cybernetics, 2009, vol. 1, pp. 359–364.[5] Abdul Masud, M., Zhexue Huang, J., Wei, C., Wang, J., Khan, I., Zhong, M.: Inice: A New Approach for Identifying the Number of Clusters and Initial Cluster Centres. Inf. Sci. (2018). https://doi.org/10.1016/j.ins.2018.07.034[6] Martins, L.; Carvalho, R.; Victorino, C.; Holanda, M.: Early Prediction of College Attrition Using Data Mining. 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075-1078 (2017)[7] IHOBE. (1999). Guía de Indicadores Medioambientales para la Empresa. Berlin: Ministerio Federal para el Medio Ambiente, la Conservación de la Naturaleza y la Seguridad Nuclear.[8] Russell, S.; Norvig, P.: Artificial Intelligence A Modern Approach. Pearson Education 3rd Ed, pp. 705 (2010)[9] Makhabel, B.: Learning Data Mining with R. Packt Publishing 1st Ed, pp. 143 (2015)[10] Witten, I.; Frank, E.; Hall, M.; Pal, C.: Data Mining Practical Machine Learning Tools and Techniques. Elsevier 4th Ed, pp. 167-169 (2016).[11] Bucci, N., Luna, M., Viloria, A., García, J. H., Parody, A., Varela, N., & López, L. A. B. (2018, June). Factor analysis of the psychosocial risk assessment instrument. In International Conference on Data Mining and Big Data (pp. 149-158). Springer, Cham.[12] Gaitán-Angulo, M., Viloria, A., & Abril, J. E. S. (2018, June). Hierarchical Ascending Classification: An Application to Contraband Apprehensions in Colombia (2015–2016). In Data Mining and Big Data: Third International Conference, DMBD 2018, Shanghai, China, June 17– 22, 2018, Proceedings (Vol. 10943, p. 168). Springer.[13] Sanchez L., Vásquez C., Viloria A., Cmeza-estrada (2018) Conglomerates of Latin American Countries and Public Policies for the Sustainable Development of the Electric Power Generation Sector. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham.[14] Perez, R., Inga, E., Aguila, A., Vásquez, C., Lima, L., Viloria, A., & Henry, M. A. (2018, June). Fault diagnosis on electrical distribution systems based on fuzzy logic. In International Conference on Sensing and Imaging (pp. 174-185). Springer, Cham.[15] Perez, Ramón, Carmen Vásquez, and Amelec Viloria. "An intelligent strategy for faults location in distribution networks with distributed generation." Journal of Intelligent & Fuzzy Systems Preprint (2019): 1-11.[16] Chakraborty, S., Das, S.: Simultaneous variable weighting and determining the number of clusters—A weighted Gaussian algorithm means. Stat. Probab. Lett. 137, 148–156 (2018). https://doi.org/10.1016/j.spl.2018.01.015[17] Bishop, C. (1995). Extremely well-written, up-to-date. Requires a good mathematical background, but rewards careful reading, putting neural networks firmly into a statistical context. Neural Networks for Pattern Recognition.[18] Pretnar, A. The Mystery of Test & Score. Ljubljana: University of Ljubljana. Retrieved from: https://orange.biolab.si/blog/2019/1/28/the-mystery-of-test-and-score/ (2019).[19] Castellanos Domíngez, M. I., Quevedo Castro, C. M., Vega Ramírez, A., Grangel González, I., & Moreno Rodríguez, R. (2016). Sistema basado en ontología para el apoyo a la toma de decisiones en el proceso de gestión ambiental empresarial. Paper presented at the II International Workshop of Semantic Web, La Habana, Cuba. http://ceur-ws.org/Vol-1797/[20] Yasser, A. M., Clawson, K., & Bowerman, C.: Saving cultural heritage with digital make-believe: machine learning and digital techniques to the rescue. In Proceedings of the 31st British Computer Society Human Computer Interaction Conference (p. 97). BCS Learning & Development Ltd. (2017).[21] Khelifi, F. J., J. (2011). K-NN Regression to Improve Statistical Feature Extraction for Texture Retrieval. IEEE Transactions on Image Processing, 20, 293-298.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2ElectricityTemporary VariablesData miningTemporary variables for predicting electricity consumption through data miningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALTemporary Variables for Predicting Electricity Consumption.pdfTemporary Variables for Predicting Electricity Consumption.pdfapplication/pdf679263https://repositorio.cuc.edu.co/bitstreams/8f7722f6-ac61-4715-96a4-f62450f7363f/download944f9195b825bf4d2e634652706ab3e6MD51Temporary Variables for Predicting Electricity Consumption Through.pdfTemporary Variables for Predicting Electricity Consumption Through.pdfapplication/pdf1537446https://repositorio.cuc.edu.co/bitstreams/6bbd5d55-0403-40da-9824-71e3c0f5eac0/download135e64529aa2e1f8ec6d341ae5b64e6fMD56CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/f629900f-3d28-4f49-8c52-9008679be30a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/47de9202-f08a-4971-b3bc-4b7350afe70c/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILTemporary Variables for Predicting Electricity Consumption.pdf.jpgTemporary Variables for Predicting Electricity Consumption.pdf.jpgimage/jpeg1911https://repositorio.cuc.edu.co/bitstreams/8045dee7-d10d-481d-8d0f-be2045475f3b/downloadb23f7babbb24836f507a7cb13e7777afMD54Temporary Variables for Predicting Electricity Consumption.pdf.jpgTemporary Variables for Predicting Electricity Consumption.pdf.jpgimage/jpeg28449https://repositorio.cuc.edu.co/bitstreams/37fbb750-a768-470f-96be-b664e67626a3/download551aedb1b89e1383e19833c189a88a48MD55Temporary Variables for Predicting Electricity Consumption Through.pdf.jpgTemporary Variables for Predicting Electricity Consumption Through.pdf.jpgimage/jpeg34939https://repositorio.cuc.edu.co/bitstreams/2bc217e1-d0a9-4160-ac51-1b1e2d264d14/download83acd55be6dce3dbb7a930638afff232MD57THUMBNAILTEXTTemporary Variables for Predicting Electricity Consumption.pdf.txtTemporary Variables for Predicting Electricity Consumption.pdf.txttext/plain22283https://repositorio.cuc.edu.co/bitstreams/de7f7d16-f3b7-4a09-833a-f1d61b36d107/downloade49af74f4e11302b5826bf768111868eMD58Temporary Variables for Predicting Electricity Consumption Through.pdf.txtTemporary Variables for Predicting Electricity Consumption Through.pdf.txttext/plain24401https://repositorio.cuc.edu.co/bitstreams/483f06aa-409e-4b4d-b064-be1effc05b03/download60ee18aaa647bb7d98db4703f4a8ac02MD5911323/5947oai:repositorio.cuc.edu.co:11323/59472024-09-17 14:16:06.031http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=