Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources
The Goswami cycle is a cycle that combines an ammonia-water vapor absorption cycle and a Rankine cycle for cooling and mechanical power purposes by using thermal heat sources such as solar energy or geothermal steam. In this paper, a theoretical investigation was conducted to determine the performan...
- Autores:
-
Demirkaya, Gökmen
Padilla Vasquez, Ricardo
Fontalvo Lascano, Armando Enrique
Bula Silvera, Antonio José
Goswami, D. Yogi
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1197
- Acceso en línea:
- https://hdl.handle.net/11323/1197
https://doi.org/10.1115/1.4039376
https://repositorio.cuc.edu.co/
- Palabra clave:
- Ammonia-Water Mixture
Low-Temperature Cycle
Power And Cooling
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_02ecf97aba7115729cff2206e2923d67 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1197 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
title |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
spellingShingle |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources Ammonia-Water Mixture Low-Temperature Cycle Power And Cooling |
title_short |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
title_full |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
title_fullStr |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
title_full_unstemmed |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
title_sort |
Experimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat Sources |
dc.creator.fl_str_mv |
Demirkaya, Gökmen Padilla Vasquez, Ricardo Fontalvo Lascano, Armando Enrique Bula Silvera, Antonio José Goswami, D. Yogi |
dc.contributor.author.spa.fl_str_mv |
Demirkaya, Gökmen Padilla Vasquez, Ricardo Fontalvo Lascano, Armando Enrique Bula Silvera, Antonio José Goswami, D. Yogi |
dc.subject.eng.fl_str_mv |
Ammonia-Water Mixture Low-Temperature Cycle Power And Cooling |
topic |
Ammonia-Water Mixture Low-Temperature Cycle Power And Cooling |
description |
The Goswami cycle is a cycle that combines an ammonia-water vapor absorption cycle and a Rankine cycle for cooling and mechanical power purposes by using thermal heat sources such as solar energy or geothermal steam. In this paper, a theoretical investigation was conducted to determine the performance outputs of the cycle, namely, net mechanical power, cooling, effective first law efficiency and exergy efficiency, for a boiler and an absorber temperature of 85 °C and 35 °C, respectively, and different boiler pressures and ammonia-water concentrations. In addition, an experimental investigation was carried out to verify the predicted trends of theoretical analysis and evaluate the performance of a modified scroll expander. The theoretical analysis showed that maximum effective first law and exergy efficiencies were 7.2% and 45%, respectively. The experimental tests showed that the scroll expander reached a 30-40% of efficiency when boiler temperature was 85 °C and rectifier temperature was 55 °C. Finally, it was obtained that superheated inlet conditions improved the efficiency of the modified expander. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-16T22:31:46Z |
dc.date.available.none.fl_str_mv |
2018-11-16T22:31:46Z |
dc.date.issued.none.fl_str_mv |
2018-07 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
01996231 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1197 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1115/1.4039376 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
01996231 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1197 https://doi.org/10.1115/1.4039376 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Journal Of Solar Energy Engineering, Transactions of the ASME |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6e4558fd-54dc-46a9-8675-7a5d45df3612/download https://repositorio.cuc.edu.co/bitstreams/250b69e7-08f6-4588-9cda-1ba7ff10aeb6/download https://repositorio.cuc.edu.co/bitstreams/a3627eae-f08a-49df-b7c8-5ebc2b16c42d/download https://repositorio.cuc.edu.co/bitstreams/1b84f87a-d03b-4b21-b892-91ba1f7c27d2/download |
bitstream.checksum.fl_str_mv |
9baa2f97542147f2a3caa14900436d43 8a4605be74aa9ea9d79846c1fba20a33 ec957ba62bae9e4b5fabaad28e91a73c f295f664caca2a71f459064cd746cecd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760769136590848 |
spelling |
Demirkaya, GökmenPadilla Vasquez, RicardoFontalvo Lascano, Armando EnriqueBula Silvera, Antonio JoséGoswami, D. Yogi2018-11-16T22:31:46Z2018-11-16T22:31:46Z2018-0701996231https://hdl.handle.net/11323/1197https://doi.org/10.1115/1.4039376Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Goswami cycle is a cycle that combines an ammonia-water vapor absorption cycle and a Rankine cycle for cooling and mechanical power purposes by using thermal heat sources such as solar energy or geothermal steam. In this paper, a theoretical investigation was conducted to determine the performance outputs of the cycle, namely, net mechanical power, cooling, effective first law efficiency and exergy efficiency, for a boiler and an absorber temperature of 85 °C and 35 °C, respectively, and different boiler pressures and ammonia-water concentrations. In addition, an experimental investigation was carried out to verify the predicted trends of theoretical analysis and evaluate the performance of a modified scroll expander. The theoretical analysis showed that maximum effective first law and exergy efficiencies were 7.2% and 45%, respectively. The experimental tests showed that the scroll expander reached a 30-40% of efficiency when boiler temperature was 85 °C and rectifier temperature was 55 °C. Finally, it was obtained that superheated inlet conditions improved the efficiency of the modified expander.Demirkaya, Gökmen-34995816-baf0-4930-b451-6e94cfd764fd-0Padilla Vasquez, Ricardo-d4127236-8537-4690-9a74-6e9183cd8ef6-0Fontalvo Lascano, Armando Enrique-71be8473-b34a-4a34-b6cc-ecaa01735bbb-0Bula Silvera, Antonio José-ebe49ea7-6aeb-44d3-a498-d38a1dd393fd-0Goswami, D. Yogi-2afb3614-25b2-424c-931b-7ec24ef98653-0engJournal Of Solar Energy Engineering, Transactions of the ASMEAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ammonia-Water MixtureLow-Temperature CyclePower And CoolingExperimental And Theoretical Analysis Of The Goswami Cycle Operating At Low Temperature Heat SourcesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALExperimental And Theoretical Analysis.pdfExperimental And Theoretical Analysis.pdfapplication/pdf181598https://repositorio.cuc.edu.co/bitstreams/6e4558fd-54dc-46a9-8675-7a5d45df3612/download9baa2f97542147f2a3caa14900436d43MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/250b69e7-08f6-4588-9cda-1ba7ff10aeb6/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILExperimental And Theoretical Analysis.pdf.jpgExperimental And Theoretical Analysis.pdf.jpgimage/jpeg40797https://repositorio.cuc.edu.co/bitstreams/a3627eae-f08a-49df-b7c8-5ebc2b16c42d/downloadec957ba62bae9e4b5fabaad28e91a73cMD54TEXTExperimental And Theoretical Analysis.pdf.txtExperimental And Theoretical Analysis.pdf.txttext/plain1471https://repositorio.cuc.edu.co/bitstreams/1b84f87a-d03b-4b21-b892-91ba1f7c27d2/downloadf295f664caca2a71f459064cd746cecdMD5511323/1197oai:repositorio.cuc.edu.co:11323/11972024-09-17 11:03:49.315open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |