Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate

Energy saving measures, in the design air conditioning systems, are crucial in the development of energy schemes with rational energy consumption. Traditionally, integrated buildings systems have been assessed individually to optimize the energy performance, however they have different parameters th...

Full description

Autores:
BALBIS MOREJON, MILEN
Silva-Ortega, J I
Castro-Peña, J
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6547
Acceso en línea:
https://hdl.handle.net/11323/6547
https://repositorio.cuc.edu.co/
Palabra clave:
Constant air volume
Variable refrigerant flow
Outdoor air system
Energy efficiency
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_02645484c9e9cb4830625e26c271ccb3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6547
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
title Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
spellingShingle Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
Constant air volume
Variable refrigerant flow
Outdoor air system
Energy efficiency
title_short Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
title_full Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
title_fullStr Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
title_full_unstemmed Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
title_sort Energy performance analysis between two air conditioning systems used in an educational Building in warm-climate
dc.creator.fl_str_mv BALBIS MOREJON, MILEN
Silva-Ortega, J I
Castro-Peña, J
dc.contributor.author.spa.fl_str_mv BALBIS MOREJON, MILEN
Silva-Ortega, J I
Castro-Peña, J
dc.subject.spa.fl_str_mv Constant air volume
Variable refrigerant flow
Outdoor air system
Energy efficiency
topic Constant air volume
Variable refrigerant flow
Outdoor air system
Energy efficiency
description Energy saving measures, in the design air conditioning systems, are crucial in the development of energy schemes with rational energy consumption. Traditionally, integrated buildings systems have been assessed individually to optimize the energy performance, however they have different parameters that affect energy performance that demands the use of detailed analysis using dynamic simulation. This paper is focused on compare an air conditioning system to be implemented in educational buildings in warm-climate, considering energy schemes provide for a constant air volume (CAV) flow system with a water chiller, while the other integrates a variable refrigerant flow (VRF) system. Adding in each case dedicated outdoor air System (DOAS) units. Energy consumption achieved by each AC system is obtained considering the configuration achieving energy savings of 40% of the annual electricity demand for cooling. Finally, the use of DOAS represents an increase of 20% of total electricity consumption.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-13T19:29:34Z
dc.date.available.none.fl_str_mv 2020-07-13T19:29:34Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1757-8981
1757-899X
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6547
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1757-899X/844/1/012031
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1757-8981
1757-899X
doi:10.1088/1757-899X/844/1/012031
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6547
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] EIA 2018 Monthly Energy Review U.S. Energy Whashington, DC
[2] Universidad Nacional, Fundación Bariloche Política Energética 2010 Análisis y Revisión de los Objetivos de Política Energética Colombiana de Largo Plazo y Actualización de sus Estrategias de Desarrollo Bogotá
[3] Grupo de Demanda Energética 2006 Caracterización Energética de los Sectores Residencial, Comercial y Terciario Bogotá D C
[4] UPME 2015 Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad Planeación Min Energética, Repub Colomb 2015:184.
[5] Pérez-lombard L, Ortiz J, Coronel JF, Maestre IR 2011 A review of HVAC systems requirements in building energy regulations. Energy Build 2011 vol. 43 pp. 255–68. doi:10.1016/j.enbuild.2010.10.025.
[6] Ministerio de Vivienda 2006 Código Técnico de la Edificación Partes I y II Madrid España
[7] Barros-Alvarez M, Balbis-Morejon M, Tovar-Ospino I, Castro-Peña J, de Leon-Siado L, SilvaOrtega J I, Rosales D 2017 Energy consumption comparison between air conditioning system Mini-Split and Variable Refrigerant Flow in an educational building Espacios vol. 38 no. 43 pp 19
[8] ASHRAE Sandards Committee 2006-2007 Energy Standard for Buildings Except Low-Rise Residential Buildings Atlanta ASHRAE
[9] Iwaro J, Mwasha A 2010 A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy vol. 38 pp. 7744–55. doi:10.1016/j.enpol.2010.08.027.
[10] Luo C, Moghtaderi B, Page A 2010 Modelling of wall heat transfer using modified conduction transfer function , finite volume and complex Fourier analysis methods. Energy Build vol 42 pp. 605–17. doi:10.1016/j.enbuild.2009.10.031.
[11] Li XQ, Chen Y, Spitler JD, Fisher D 2009 Applicability of calculation methods for conduction transfer function of building constructions. Int J Therm Sci vol 48 pp. 1441–51. doi:10.1016/j.ijthermalsci.2008.11.006.
[12] Kim H, Stumpf A, Kim W 2011 Automation in Construction Analysis of an Energy Efficient Building Design Through Data Mining Approach. Autom Constr vol. 20 pp. 37–43. doi:10.1016/j.autcon.2010.07.006.
[13] Madrigal J A, Cabello J J, Sagastume A, Balbis M. 2018 Evaluación de la Climatización en Locales Comerciales , Integrando Técnicas de Termografía , Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings , Integrating Thermography Techniques , Simulation and Modeling Información Tecnológica vol. 29 no. 4 pp. 179–188. doi: 10.4067/s0718-07642018000400179
[14] International Organization for Standardization ISO. ISO 6946:2007. Building components and building elements — Thermal resistance and thermal transmittance — Calculation method. Switzerland: 2007. doi:10.1109/IEEESTD.2010.5733835.
[15] Chan KT, Chow WK 1998 Energy impact of commercial-building envelopes in the sub-tropical climate. Appl Energy vol 60 pp. 21–39. doi:10.1016/S0306-2619(98)00021-X.
[16] Signor R 1999 Análize de Regressao do Consumo de Energía Eléctrica Frente a Variáveis Arquitetonicas para Edifícios Comerciais Climatizados em 14 Capitais Brasileiras. Universidade Federal de Santa Catarina
[17] Aynur TN, Hwang Y, Radermacher R 2009 Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy Build vol 41:1143– 50. doi:10.1016/j.enbuild.2009.05.011.
[18] Alvarez O, Sanjuan M, Bula A, Amaya F 2017 VAV System Operating in an Educational Building Under Tropical Conditions: Energy Analysis. ASME 2013. 7th Int. Conf. Energy Sustain. ES, Minneapolis, USA: ASME; 2017 pp. 1–8.
[19] Balbis-Morejon M, Tovar-Ospino I, Castro-Peña JJ, Cárdenas-Escorcia Y del C 2017 Energy assessment of the system pumping a climate control scheme with water coolers for an educational building using dynamic simulation. Espacios vol 38 pp19–32
[20] Hubbard RS 2011 Energy Impacts of Chilled-Water-Piping Configuration. HPAC Eng pp. 20–6
[21] Wang F, Lin H, Tu W, Wang Y, Huang Y 2015 Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building Procedia Eng vol 121 pp. 1812–1818. doi:10.1016/j.proeng.2015.09.161.
[22] Yu FW, Chan KT 2007 Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Build Environ vol 42 pp. 3816–3829. doi:10.1016/j.buildenv.2006.11.029.
[23] Mumma S 2001 Ceiling Panel Cooling Systems. ASHRAE vol. 2 pp. 28–32.
[24] Tian Z, Love JA 2009 Application of Radiant Cooling in Differente Climates: Assessment of Office Buildings Through Simulation. Elev. Int. IBPSA Conf., Glasgow, Scotland: Building Simulation pp. 2220–2227.
[25] Kwok SSK, Lee EWM 2011 A study of the importance of occupancy to building cooling load in prediction by intelligent approach. Energy Convers Manag vol 52 pp. 2555–2564. doi:10.1016/j.enconman.2011.02.002.
[26] Rahman MM, Rasul MG, Khan MMK 2010 Energy Conservation Measures in an Institutional Building in Sub-Tropical Climate in Australia. Appl Energy vol. 87 pp. 2994–3004. doi:10.1016/j.apenergy.2010.04.005.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv IOP Conference Series: Materials Science and Engineering
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4ef143d8-d27d-4655-b804-87dec3c8b23e/download
https://repositorio.cuc.edu.co/bitstreams/8b40a851-774e-49eb-9396-e5e7e8aded80/download
https://repositorio.cuc.edu.co/bitstreams/22ce7cc7-fbd6-40cd-90e7-561306cbc8c7/download
https://repositorio.cuc.edu.co/bitstreams/40b3b432-0ce9-4eaf-8b35-b7e6be7773e6/download
https://repositorio.cuc.edu.co/bitstreams/92e10402-435e-4857-8e73-5f013957efce/download
bitstream.checksum.fl_str_mv 0fa67a01a62746e98986311be75f7fa0
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
d26974a199e03cd5ac7e1b590611951b
b22c34719dd72a0ba70a85a739955620
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760772007591936
spelling BALBIS MOREJON, MILENSilva-Ortega, J ICastro-Peña, J2020-07-13T19:29:34Z2020-07-13T19:29:34Z20201757-89811757-899Xhttps://hdl.handle.net/11323/6547doi:10.1088/1757-899X/844/1/012031Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Energy saving measures, in the design air conditioning systems, are crucial in the development of energy schemes with rational energy consumption. Traditionally, integrated buildings systems have been assessed individually to optimize the energy performance, however they have different parameters that affect energy performance that demands the use of detailed analysis using dynamic simulation. This paper is focused on compare an air conditioning system to be implemented in educational buildings in warm-climate, considering energy schemes provide for a constant air volume (CAV) flow system with a water chiller, while the other integrates a variable refrigerant flow (VRF) system. Adding in each case dedicated outdoor air System (DOAS) units. Energy consumption achieved by each AC system is obtained considering the configuration achieving energy savings of 40% of the annual electricity demand for cooling. Finally, the use of DOAS represents an increase of 20% of total electricity consumption.BALBIS MOREJON, MILEN-will be generated-orcid-0000-0002-8053-6651-600Silva-Ortega, J ICastro-Peña, JengIOP Conference Series: Materials Science and EngineeringCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Constant air volumeVariable refrigerant flowOutdoor air systemEnergy efficiencyEnergy performance analysis between two air conditioning systems used in an educational Building in warm-climateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] EIA 2018 Monthly Energy Review U.S. Energy Whashington, DC[2] Universidad Nacional, Fundación Bariloche Política Energética 2010 Análisis y Revisión de los Objetivos de Política Energética Colombiana de Largo Plazo y Actualización de sus Estrategias de Desarrollo Bogotá[3] Grupo de Demanda Energética 2006 Caracterización Energética de los Sectores Residencial, Comercial y Terciario Bogotá D C[4] UPME 2015 Plan Energetico Nacional Colombia: Ideario Energético 2050. Unidad Planeación Min Energética, Repub Colomb 2015:184.[5] Pérez-lombard L, Ortiz J, Coronel JF, Maestre IR 2011 A review of HVAC systems requirements in building energy regulations. Energy Build 2011 vol. 43 pp. 255–68. doi:10.1016/j.enbuild.2010.10.025.[6] Ministerio de Vivienda 2006 Código Técnico de la Edificación Partes I y II Madrid España[7] Barros-Alvarez M, Balbis-Morejon M, Tovar-Ospino I, Castro-Peña J, de Leon-Siado L, SilvaOrtega J I, Rosales D 2017 Energy consumption comparison between air conditioning system Mini-Split and Variable Refrigerant Flow in an educational building Espacios vol. 38 no. 43 pp 19[8] ASHRAE Sandards Committee 2006-2007 Energy Standard for Buildings Except Low-Rise Residential Buildings Atlanta ASHRAE[9] Iwaro J, Mwasha A 2010 A review of building energy regulation and policy for energy conservation in developing countries. Energy Policy vol. 38 pp. 7744–55. doi:10.1016/j.enpol.2010.08.027.[10] Luo C, Moghtaderi B, Page A 2010 Modelling of wall heat transfer using modified conduction transfer function , finite volume and complex Fourier analysis methods. Energy Build vol 42 pp. 605–17. doi:10.1016/j.enbuild.2009.10.031.[11] Li XQ, Chen Y, Spitler JD, Fisher D 2009 Applicability of calculation methods for conduction transfer function of building constructions. Int J Therm Sci vol 48 pp. 1441–51. doi:10.1016/j.ijthermalsci.2008.11.006.[12] Kim H, Stumpf A, Kim W 2011 Automation in Construction Analysis of an Energy Efficient Building Design Through Data Mining Approach. Autom Constr vol. 20 pp. 37–43. doi:10.1016/j.autcon.2010.07.006.[13] Madrigal J A, Cabello J J, Sagastume A, Balbis M. 2018 Evaluación de la Climatización en Locales Comerciales , Integrando Técnicas de Termografía , Simulación y Modelado por Elementos Finitos Evaluation of Air Conditioning in Commercial Buildings , Integrating Thermography Techniques , Simulation and Modeling Información Tecnológica vol. 29 no. 4 pp. 179–188. doi: 10.4067/s0718-07642018000400179[14] International Organization for Standardization ISO. ISO 6946:2007. Building components and building elements — Thermal resistance and thermal transmittance — Calculation method. Switzerland: 2007. doi:10.1109/IEEESTD.2010.5733835.[15] Chan KT, Chow WK 1998 Energy impact of commercial-building envelopes in the sub-tropical climate. Appl Energy vol 60 pp. 21–39. doi:10.1016/S0306-2619(98)00021-X.[16] Signor R 1999 Análize de Regressao do Consumo de Energía Eléctrica Frente a Variáveis Arquitetonicas para Edifícios Comerciais Climatizados em 14 Capitais Brasileiras. Universidade Federal de Santa Catarina[17] Aynur TN, Hwang Y, Radermacher R 2009 Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy Build vol 41:1143– 50. doi:10.1016/j.enbuild.2009.05.011.[18] Alvarez O, Sanjuan M, Bula A, Amaya F 2017 VAV System Operating in an Educational Building Under Tropical Conditions: Energy Analysis. ASME 2013. 7th Int. Conf. Energy Sustain. ES, Minneapolis, USA: ASME; 2017 pp. 1–8.[19] Balbis-Morejon M, Tovar-Ospino I, Castro-Peña JJ, Cárdenas-Escorcia Y del C 2017 Energy assessment of the system pumping a climate control scheme with water coolers for an educational building using dynamic simulation. Espacios vol 38 pp19–32[20] Hubbard RS 2011 Energy Impacts of Chilled-Water-Piping Configuration. HPAC Eng pp. 20–6[21] Wang F, Lin H, Tu W, Wang Y, Huang Y 2015 Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building Procedia Eng vol 121 pp. 1812–1818. doi:10.1016/j.proeng.2015.09.161.[22] Yu FW, Chan KT 2007 Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Build Environ vol 42 pp. 3816–3829. doi:10.1016/j.buildenv.2006.11.029.[23] Mumma S 2001 Ceiling Panel Cooling Systems. ASHRAE vol. 2 pp. 28–32.[24] Tian Z, Love JA 2009 Application of Radiant Cooling in Differente Climates: Assessment of Office Buildings Through Simulation. Elev. Int. IBPSA Conf., Glasgow, Scotland: Building Simulation pp. 2220–2227.[25] Kwok SSK, Lee EWM 2011 A study of the importance of occupancy to building cooling load in prediction by intelligent approach. Energy Convers Manag vol 52 pp. 2555–2564. doi:10.1016/j.enconman.2011.02.002.[26] Rahman MM, Rasul MG, Khan MMK 2010 Energy Conservation Measures in an Institutional Building in Sub-Tropical Climate in Australia. Appl Energy vol. 87 pp. 2994–3004. doi:10.1016/j.apenergy.2010.04.005.PublicationORIGINALEnergy performance analysis between two air conditioning systems used.pdfEnergy performance analysis between two air conditioning systems used.pdfapplication/pdf568481https://repositorio.cuc.edu.co/bitstreams/4ef143d8-d27d-4655-b804-87dec3c8b23e/download0fa67a01a62746e98986311be75f7fa0MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/8b40a851-774e-49eb-9396-e5e7e8aded80/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/22ce7cc7-fbd6-40cd-90e7-561306cbc8c7/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEnergy performance analysis between two air conditioning systems used.pdf.jpgEnergy performance analysis between two air conditioning systems used.pdf.jpgimage/jpeg23538https://repositorio.cuc.edu.co/bitstreams/40b3b432-0ce9-4eaf-8b35-b7e6be7773e6/downloadd26974a199e03cd5ac7e1b590611951bMD54TEXTEnergy performance analysis between two air conditioning systems used.pdf.txtEnergy performance analysis between two air conditioning systems used.pdf.txttext/plain22489https://repositorio.cuc.edu.co/bitstreams/92e10402-435e-4857-8e73-5f013957efce/downloadb22c34719dd72a0ba70a85a739955620MD5511323/6547oai:repositorio.cuc.edu.co:11323/65472024-09-17 11:04:55.03http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==