Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection
The sine cosine algorithm (SCA) is a metaheuristic algorithm proposed in recent years that does not resort to nature-related metaphors but explores and exploits the search space with the help of two simple mathematical functions of sine and cosine. SCA has fewer parameters and a simple structure and...
- Autores:
-
Hu, Hanyu
Shan, Weifeng
Tang, Yixiang
Asghar Heidari, Ali
Chen, Huiling
Liu, Haijun
Wang, Maofa
Escorcia-Gutierrez, José
Mansour, Romany F
Chen, Jun
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10112
- Acceso en línea:
- https://hdl.handle.net/11323/10112
https://repositorio.cuc.edu.co/
- Palabra clave:
- Sine cosine algorithm
Feature selection
Global optimization
Metaheuristic algorithms
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_01c7eef396812d9d6c7b9794acea956a |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10112 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
title |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
spellingShingle |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection Sine cosine algorithm Feature selection Global optimization Metaheuristic algorithms |
title_short |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
title_full |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
title_fullStr |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
title_full_unstemmed |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
title_sort |
Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection |
dc.creator.fl_str_mv |
Hu, Hanyu Shan, Weifeng Tang, Yixiang Asghar Heidari, Ali Chen, Huiling Liu, Haijun Wang, Maofa Escorcia-Gutierrez, José Mansour, Romany F Chen, Jun |
dc.contributor.author.none.fl_str_mv |
Hu, Hanyu Shan, Weifeng Tang, Yixiang Asghar Heidari, Ali Chen, Huiling Liu, Haijun Wang, Maofa Escorcia-Gutierrez, José Mansour, Romany F Chen, Jun |
dc.subject.proposal.eng.fl_str_mv |
Sine cosine algorithm Feature selection Global optimization Metaheuristic algorithms |
topic |
Sine cosine algorithm Feature selection Global optimization Metaheuristic algorithms |
description |
The sine cosine algorithm (SCA) is a metaheuristic algorithm proposed in recent years that does not resort to nature-related metaphors but explores and exploits the search space with the help of two simple mathematical functions of sine and cosine. SCA has fewer parameters and a simple structure and is widely used in various fields. However, it tends to fall into local optimality because it does not have a well-balanced exploitation and exploration phase. Therefore, in this paper, a new, improved SCA algorithm (QCSCA) is proposed to improve the performance of the algorithm by introducing a quick move mechanism and a crisscross mechanism to SCA and adaptively improving one of the parameters. To verify the effectiveness of QCSCA, comparison experiments with some conventional metaheuristic algorithms, advanced metaheuristic algorithms, and SCA variants are conducted on IEEE CEC2017 and CEC2013. The experimental results show a significant improvement in the convergence speed and the ability to jump out of the local optimum of the QCSCA. The scalability of the algorithm is verified in the benchmark function. In addition, QCSCA is applied to 14 real-world datasets from the UCI machine learning database for selecting a subset of near-optimal features, and the experimental results show that QCSCA is still very competitive in feature selection (FS) compared to similar algorithms. Our experimental results and analysis show that QCSCA is an effective method for solving global optimization problems and FS problems. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-05-12T21:53:04Z |
dc.date.available.none.fl_str_mv |
2023-05-12T21:53:04Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Hanyu Hu, Weifeng Shan, Yixiang Tang, Ali Asghar Heidari, Huiling Chen, Haijun Liu, Maofa Wang, José Escorcia-Gutierrez, Romany F Mansour, Jun Chen, Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection, Journal of Computational Design and Engineering, Volume 9, Issue 6, December 2022, Pages 2524–2555, https://doi.org/10.1093/jcde/qwac119 |
dc.identifier.issn.spa.fl_str_mv |
2288-4300 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10112 |
dc.identifier.doi.none.fl_str_mv |
10.1093/jcde/qwac119 |
dc.identifier.eissn.spa.fl_str_mv |
2288-5048 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Hanyu Hu, Weifeng Shan, Yixiang Tang, Ali Asghar Heidari, Huiling Chen, Haijun Liu, Maofa Wang, José Escorcia-Gutierrez, Romany F Mansour, Jun Chen, Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection, Journal of Computational Design and Engineering, Volume 9, Issue 6, December 2022, Pages 2524–2555, https://doi.org/10.1093/jcde/qwac119 2288-4300 10.1093/jcde/qwac119 2288-5048 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10112 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Journal of Computational Design and Engineering |
dc.relation.references.spa.fl_str_mv |
Abd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved oppositionbased sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500. https://doi.org/10.1016/j.eswa .2017.07.043. Abdelaziz, A. Y., & Fathy, A. (2017). A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Engineering Science and Technology, an International Journal, 20(2), 391–402. https://doi.org/10.1016/j.jestch.2017.02.004. Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A.W. (2021a). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019).IEEE Access, 9, 26766–26791.https: //doi.org/10.1109/ACCESS.2021.3056407. Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021b). A novel binary gaining–sharing knowledge-based optimization algorithm for feature selection. Neural Computing and Applications, 33(11), 5989–6008. https://doi.org/10.1007/s005 21-020-05375-8. Ahmadianfar, I., Asghar Heidari, A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/https://doi.org/10.1016/j.es wa.2021.115079. Ahmadianfar, I., Asghar Heidari, A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/https://doi.org/10.1016/j.eswa .2022.116516. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/ j.compstruc.2016.03.001. Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel sine-cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343. https://doi.org/10.1016/j.ijepes.2018.01.024. Awad, N. H., Ali, M. Z., Liang, J. J., Quv, B. Y., & Suganthan, P. N. (2016). Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained realparameter numerical optimization. Technical report. Nanyang Technological University. http://www.ntu.edu.sg/home/epnsugan/. Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection. In International Conference on Computational Science and Its Applications(pp. 71–86). https://doi.org/10.1007/978-3-319-62392- 4_6. Cai, J., Luo, J., Wang, S., & Yang, S. (2018a). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79. https://doi.org/10.1016/j.neucom.2017.11.077. Cai, Z., Gu, J., Wen, C., Zhao, D., Huang, C., Huang, H., & Chen, H. (2018b). An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Computational and Mathematical Methods in Medicine, 2018, 2396952. https://doi.org/10.1155/2018/2396952. Cao, B., Zhao, J., Lv, Z., & Yang, P. (2020). Diversified personalized recommendation optimization based on mobile data. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2133–2139. https: //doi.org/10.1109/TITS.2020.3040909. Cao, B., Li, M., Liu, X., Zhao, J., Cao, W., & Lv, Z. (2021a). Many-objective deployment optimization for a drone-assisted camera network. IEEE Transactions on Network Science and Engineering, 8(4), 2756– 2764. https://doi.org/10.1109/TNSE.2021.3057915. Cao, B., Sun, Z., Zhang, J., & Gu, Y. (2021b). Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3832–3840. https://doi.org/10.1109/TITS.2020.3048844. Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., & Yang, P. (2021c). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3841–3849. https://doi.org/10.1109/TITS.2021.3059455. Cao, X., Sun, X., Xu, Z., Zeng, B., & Guan, X. (2022). Hydrogen-based networked microgrids planning through two-stage stochastic programming with mixed-integer conic recourse. IEEE Transactions on Automation Science and Engineering, 19, 3672–3685. https: //doi.org/10.1109/TASE.2021.3130179. Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https:// doi.org/10.1016/j.compeleceng.2013.11.024. Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I., & Faris, H. (2020). Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing and Applications, 32(16), 12201–12220. https://do i.org/10.1007/s00521-019-04368-6. Chen, H. L., Yang, B., Wang, S. J., Wang, G., Liu, D. Y., Li, H. Z., & Liu, W. B. (2014). Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy. Applied Mathematics and Computation, 239, 180–197. https://doi.org/10.101 6/j.amc.2014.04.039. Chen, H., Jiao, S., Heidari, A. A., Wang, M., Chen, X., & Zhao, X. (2019). An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Conversion and Management, 195, 927–942. https://doi.org/10.1016/j.enconm an.2019.05.057. Chen, H., Heidari, A. A., Zhao, X., Zhang, L., & Chen, H. (2020a). Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies. Expert Systems with Applications, 144, 113113. https://doi.org/10.1016/j.eswa.2019.113113. Chen, H., Wang, M., & Zhao, X. (2020b). A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 369, 124872. https://doi.org/10.1016/j.amc.2019.124872. Chen, C., Wang, X., Yu, H., Zhao, N., Wang, M., & Chen, H. (2020c). An enhanced comprehensive learning particle swarm optimizer with the elite-based dominance scheme. Complexity, 2020, 4968063. https://doi.org/10.1155/2020/4968063. Chen, H., Xiong, Y., Li, S., Song, Z., Hu, Z., & Liu, F. (2022). Multisensor data driven with PARAFAC-IPSO-PNN for identification of mechanical nonstationary multi-fault mode. Machines, 10(2), 155. https://doi.org/10.3390/machines10020155. Dara, S., & Banka, H. (2014). A binary PSO feature selection algorithm for gene expression data. In Proceedings of the 2014 International Conference on Advances in Communication and Computing Technologies(pp. 1–6). https://doi.org/10.1109/EIC.2015.7230734. Deng, W., Xu, J., Song, Y., & Zhao, H. (2020). An effective improved co-evolution ant colony optimisation algorithm with multistrategies and its application. International Journal of Bio-Inspired Computation, 16(3), 158–170. https://doi.org/10.1504/IJBIC.2020.1 11267. Deng, W., Xu, J., Zhao, H., & Song, Y. (2022). A novel gate resource allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 23, 1737–1745. https: //doi.org/10.1109/TITS.2020.3025796. Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., Chen, H., & Zhao, H. (2022). An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 585, 441–453. https://doi.org/https://doi.org/10.1016/j.ins.2021.1 1.052. Díaz, P., Pérez-Cisneros, M., Cuevas, E., Avalos, O., Gálvez, J., Hinojosa, S., & Zaldivar, D. (2018). An improved crow search algorithm applied to energy problems. Energies, 11(3), 571. https://doi.org/10.3 390/en11030571. Dong, J., Cong, Y., Sun, G., Fang, Z., & Ding, Z. (2021). Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3128560. Dong, R., Chen, H., Heidari, A. A., Turabieh, H., Mafarja, M., & Wang, S. (2021). Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. KnowledgeBased Systems, 233, 107529. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107529. Ewees, A. A., Abd Elaziz, M., Al-Qaness, M. A., Khalil, H. A., & Kim, S. (2020). Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation. IEEE Access, 8, 26304–26315. https://doi.org/10.1109/ACCESS.202 0.2971249. Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Ala’M, A. Z., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge Based Systems, 154, 43–67. https://doi.org/10.1016/j.knosys.2018.05.009. Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Transactions On Fuzzy Systems, 28(12), 3265–3275. https://doi.org/10.1109/TFUZZ.2020.3003506. Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang, L., & Feng, X. (2022a). Deep feature-based text clustering and its explanation. IEEE Transactions on Knowledge and Data Engineering, 34, 3669–3680. https://doi.org/10.1109/TKDE.2020.3028943. Guan, Q., Chen, Y., Wei, Z., Heidari, A. A., Hu, H., Yang, X. H., & Chen, F. (2022b). Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Computers in Biology and Medicine, 145, 105444. https://doi.org/https://doi.or g/10.1016/j.compbiomed.2022.105444. Gupta, S., & Deep, K. (2019a). A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications, 119, 210–230. https://doi.org/10.1016/j.eswa.2018.10.050. Gupta, S., & Deep, K. (2019b). Improved sine cosine algorithm with crossover scheme for global optimization. Knowledge-Based Systems, 165, 374–406. https://doi.org/https://doi.org/10.1016/j.knos ys.2018.12.008. Gupta, S., Deep, K., & Engelbrecht, A. P. (2020). A memory guided sine cosine algorithm for global optimization. Engineering Applications of Artificial Intelligence, 93, 103718. https://doi.org/10.1016/j.enga ppai.2020.103718. Hall, M. A. (1999). Correlation-based feature selection for machine learning. Ph.D. Thesis, The University of Waikato. https://hdl.handle.net/1 0289/15043. Han, X., Han, Y., Chen, Q., Li, J., Sang, H., Liu, Y., & Nojima, Y. (2021). Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm. Complex System Modeling and Simulation, 1(3), 198–217. https://doi.org/ 10.23919/CSMS.2021.0018. Hassan, B. A. (2021). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33(12), 7011–7030. https://doi.org/10.1007/s00521-020-05474-6. He, Z., Yen, G. G., & Yi, Z. (2018). Robust multiobjective optimization via evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 23(2), 316–330. https://doi.org/10.1109/TEVC.2018.2859 638. He, Z., Yen, G. G., & Lv, J. (2019). Evolutionary multiobjective optimization with robustness enhancement. IEEE Transactions on Evolutionary Computation, 24(3), 494–507. https://doi.org/10.1109/TEVC.201 9.2933444. He, Z., Yen, G. G., & Ding, J. (2020). Knee-based decision making and visualization in many-objective optimization. IEEE Transactions on Evolutionary Computation, 25(2), 292–306. https://doi.org/10.1109/ TEVC.2020.3027620. Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems-the International Journal of Escience, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.0 28. Heidari, A. A., Aljarah, I., Faris, H., Chen, H., Luo, J., & Mirjalili, S. (2020). An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Computing and Applications, 32, 5185–5211. https://doi.org/10.1007/s00521-019-04015-0. Hu, Z., Wang, J., Zhang, C., Luo, Z., Luo, X., Xiao, L., & Shi, J. (2022). Uncertainty modeling for multicenter autism spectrum disorder classification using Takagi–Sugeno–Kang fuzzy systems. IEEE Transactions on Cognitive and Developmental Systems, 14(2), 730–739. https://doi.org/10.1109/TCDS.2021.3073368. Hua, Y., Liu, Q., Hao, K., & Jin, Y. (2021). A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA Journal of Automatica Sinica, 8(2), 303–318. https://doi.org/10.1109/JAS.2021.1003817. Huang, H., Heidari, A. A., Xu, Y., Wang, M., Liang, G., Chen, H., & Cai, X. (2020). Rationalized sine cosine optimization with efficient searching patterns. IEEE Access, 8, 61471–61490. https://doi.org/10 .1109/ACCESS.2020.2983451. Hussien, A. G., Heidari, A. A., Ye, X., Liang, G., Chen, H., & Pan, Z. (2022). Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method. Engineering with Computers. https://doi.org/10.1007/s00366-021-01542-0. Islam, M. R., Ali, S. M., Fathollahi-Fard, A. M., & Kabir, G. (2021). A novel particle swarm optimization-based grey model for the prediction of warehouse performance. Journal of Computational Design and Engineering, 8(2), 705–727. https://doi.org/10.1093/jcde/qwab009. Issa, M., Hassanien, A. E., Oliva, D., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Systems with Applications, 99, 56–70. https://doi.org/ 10.1016/j.eswa.2018.01.019. Ji, Y., Tu, J., Zhou, H., Gui, W., Liang, G., Chen, H., & Wang, M. (2020). An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity, 2020, 6084917. https:// doi.org/10.1155/2020/6084917. Kale, G. A., & Yüzgeç, U. (2022). Advanced strategies on update mechanism of sine cosine optimization algorithm for feature selection in classification problems. Engineering Applications of Artificial Intelligence, 107, 104506. https://doi.org/10.1016/j.engappai.2021.10 4506. Kaveh, A., & Mahdavi, V. R. (2019). Multi-objective colliding bodies optimization algorithm for design of trusses. Journal of Computational Design and Engineering, 6(1), 49–59. https://doi.org/10.1016/j. jcde.2018.04.001. Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference(pp. 372– 378). https://doi.org/10.1109/SAI.2014.6918213. Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992(pp. 249–256). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-247-2.50037-1. Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Single sensor-based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization. IEEE Transactions on Energy Conversion, 32(3), 983–992. https: //doi.org/10.1109/TEC.2017.2669518. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017a). Grass: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG), 36(4), 1–14. https://doi.org/10 .1145/3072959.3073637. Li, J., Chen, C., Chen, H., & Tong, C. (2017b). Towards context-aware social recommendation via individual trust. Knowledge-Based Systems, 127, 58–66. https://doi.org/https://doi.org/10.1016/j.knosys .2017.02.032. Li, J., & Lin, J. (2020). A probability distribution detection based hybrid ensemble QoS prediction approach. Information Sciences, 519, 289– 305. https://doi.org/https://doi.org/10.1016/j.ins.2020.01.046. Li, J., Zheng, X. L., Chen, S. T., Song, W. W., & Chen, D. R. (2014). An efficient and reliable approach for quality-of-service-aware service composition. Information Sciences, 269, 238–254. https://doi.org/ht tps://doi.org/10.1016/j.ins.2013.12.015. Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., & Tian, X. (2017). An enhanced grey wolf optimization based feature selec tion wrapped kernel extreme learning machine for medical diagnosis. Computational and Mathematical Methods in Medicine, 2017, 9512741. https://doi.org/10.1155/2017/9512741. Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10 .1016/j.future.2020.03.055. Li, S., Liu, C. H., Lin, Q., Wen, Q., Su, L., Huang, G., & Ding, Z. (2020). Deep residual correction network for partial domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7), 2329–2344. https://doi.org/10.1109/TPAMI.2020.2964173. Liang, J., Qu, B., Suganthan, P. N., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281– 295. Liang, H., Liu, Y., Shen, Y., Li, F., & Man, Y. (2018). A hybrid bat algorithm for economic dispatch with random wind power. IEEE Transactions on Power Systems, 33(5), 5052–5061. https://doi.org/10 .1109/TPWRS.2018.2812711. Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., & Li, C. (2022). Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering with Computers, 38, 1223–1239. https://doi. org/10.1007/s00366-020-01083-y. Lin, A., Wu, Q., Heidari, A. A., Xu, Y., Chen, H., Geng, W., & Li, C. (2019). Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. IEEE Access, 7, 67235–67248. https://doi.org/10.1109/ACCESS .2019.2918026. Liu, G., Jia, W., Wang, M., Heidari, A. A., Chen, H., Luo, Y., & Li, C. (2020). Predicting cervical hyperextension injury: A covariance guided sine cosine support vector machine. IEEE Access, 8, 46895–46908. https://doi.org/10.1109/ACCESS.2020.2978102. Liu, X., Zhao, J., Li, J., Cao, B., & Lv, Z. (2022). Federated neural architecture search for medical data security.IEEE Transactions on Industrial Informatics, 18(8), 5628–5636. https://doi.org/10.1109/TII.2022.314 4016. Long, W., Wu, T., Liang, X., & Xu, S. (2019). Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126. https://do i.org/10.1016/j.eswa.2018.11.032. Mafarja, M., Heidari, A. A., Habib, M., Faris, H., Thaher, T., & Aljarah, I. (2020). Augmented whale feature selection for IoT attacks: Structure, analysis and applications. Future Generation Computer Systems, 112, 18–40. https://doi.org/10.1016/j.future.202 0.05.020. Mahdad, B., & Srairi, K. (2018). A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electrical Engineering, 100(2), 913–933. https://doi.org/10.100 7/s00202-017-0539-x. Meng, A.-b., Chen, Y.-c., Yin, H., & Chen, S.-z. (2014). Crisscross optimization algorithm and its application. Knowledge-Based Systems, 67, 218–229. https://doi.org/10.1016/j.knosys.2014.05.004. Meng, A., Zeng, C., Wang, P., Chen, D., Zhou, T., Zheng, X., & Yin, H. (2021). A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy, 225, 120211. https://doi.org/10.1016/j.energy.2021.120211. Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https: //doi.org/10.1016/j.knosys.2015.12.022. Mirjalili, S., Dong, J. S., & Lewis, A. (2019). Nature-inspired optimizers: Theories, literature reviews and applications(Vol. 811). Springer. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j. advengsoft.2016.01.008. Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.101 6/j.advengsoft.2013.12.007. Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gainingsharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501–1529. https: //doi.org/10.1007/s13042-019-01053-x. Mohammadi, F., & Abdi, H. (2018). A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Applied Soft Computing, 71, 51–65. https://doi.org/10.1016/j.asoc.2018.06.0 40. Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537. https://doi.org/10.1016/j.future.2021.10.003. Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043. https://doi.or g/10.1016/j.asoc.2017.09.039. Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.https://doi.org/10.1007/s11721 -007-0002-0. Qi, A., Zhao, D., Yu, F., Heidari, A. A., Chen, H., & Xiao, L. (2022). Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization. Journal of Computational Design and Engineering, 9(2), 519–563. https://doi.org/10.1093/jcde/qwac014. Qiao, S., Yu, H., Heidari, A. A., El-Saleh, A. A., Cai, Z., Xu, X., & Chen, H. (2022). Individual disturbance and neighborhood mutation search enhanced whale optimization: Performance design for engineering problems. Journal of Computational Design and Engineering, 9, 1817–1851. https://doi.org/10.1093/jcde/qwac081. Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., & Fortino, G. (2022). Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 80, 241–265. https:// doi.org/10.1016/j.inffus.2021.11.006. Shahabi, F., Pourahangarian, F., & Beheshti, H. (2019). A multilevel image thresholding approach based on crow search algorithm and Otsu method. Journal of Decisions and Operations Research, 4(1), 33– 41. https://doi.org/10.22105/dmor.2019.88580. Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728. https://doi.org/10 .1016/j.knosys.2020.106728. Shan, W., Hu, H., Cai, Z., Chen, H., Liu, H., Wang, M., & Teng, Y. (2022a). Multi-strategies boosted mutative crow search algorithm for global tasks: Cases of continuous and discrete optimization. Journal of Bionic Engineering, 19, 1830–1849. https://doi.org/10.100 7/s42235-022-00228-7. Shan, W., Qiao, Z., Heidari, A. A., Gui, W., Chen, H., Teng, Y., & Lv, T. (2022b). An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis. Computers in Biology and Medicine, 146, 105563. https://doi.org/10.1016/j.compbi omed.2022.105563. Song, J., Chen, C., Heidari, A. A., Liu, J., Yu, H., & Chen, H. (2022). Performance optimization of annealing salp swarm algorithm: Frameworks and applications for engineering design. Journal of Computational Design and Engineering, 9(2), 633–669. https://doi.org/10.1 093/jcde/qwac021. Tang, D. (2019). Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 81, 105499. https://doi.org/ 10.1016/j.asoc.2019.105499. Taradeh, M., Mafarja, M., Heidari, A. A., Faris, H., Aljarah, I., Mirjalili, S., & Fujita, H. (2019). An evolutionary gravitational search-based feature selection. Information Sciences, 497, 219–239. https://doi.or g/10.1016/j.ins.2019.05.038. Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710. https: //doi.org/10.1007/s42235-021-0050-y. Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. J. K. B. S. (2018a). A content-based recommender system for computer science publications. Knowledge-Based Systems, 157, 1–9. https://doi.org/10.1 016/j.knosys.2018.05.001. Wang, J., Yang, W., Du, P., & Niu, T. (2018b). A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management, 163, 134–150. https://doi.org/10.1016/j.enconman.2018.02.012. Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., & Liu, G. (2020). A structural evolution-based anomaly detection method for generalized evolving social networks. The Computer Journal, 65(5), 1189–1199. https://doi.org/10.1093/comjnl/bxaa168. Wang, G., Gui, W., Liang, G., Zhao, X., Wang, M., Mafarja, M., & Ma, X. (2021). Spiral motion enhanced elite whale optimizer for global tasks. Complexity, 2021, 8130378. https://doi.org/10.1155/2021/8 130378. Wang, G. G., Gao, D., & Pedrycz, W. (2022). Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Transactions on Industrial Informatics, 18, 8519–8528. https://doi.org/10.1109/TII.2022.3165636. Wang, S. H., & Zhang, Y. D. (2020). DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(2s), 1–19. https://doi.org/10.1145/3341095. Wang, Y., Wang, H., Zhou, B., & Fu, H. (2021). Multi-dimensional prediction method based on Bi-LSTMC for ship roll. Ocean Engineering, 242, 110106. https://doi.org/10.1016/j.oceaneng.2021.110106. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893. Wu, Z., Wang, R., Li, Q., Lian, X., & Xu, G. (2020a). A location privacypreserving system based on query range cover-up for locationbased services. IEEE Transactions on Vehicular Technology, 69, 5244– 5254. https://doi.org/10.1109/TVT.2020.2981633. Wu, Z., Li, R., Xie, J., Zhou, Z., Guo, J., & Xu, X. (2020b). A user sensitive subject protection approach for book search service. Journal of the Association for Information Science and Technology, 71(2), 183–195. ht tps://doi.org/10.1002/asi.24227. Wu, Z., Shen, S., Lian, X., Su, X., & Chen, E. (2020c). A dummy-based user privacy protection approach for text information retrieval. Knowledge-Based Systems, 195, 105679. https://doi.org/10.1016/j. knosys.2020.105679. Wu, Z., Li, G., Shen, S., Cui, Z., Lian, X., & Xu, G. (2021a). Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web, 24(1), 25–49. https://doi.org/10.1007/s11280-020-00830-x. Wu, Z., Shen, S., Zhou, H., Li, H., Lu, C., & Zou, D. (2021b). An effective approach for the protection of user commodity viewing privacy in e-commerce website.Knowledge-Based Systems, 220, 106952.https: //doi.org/10.1016/j.knosys.2021.106952. Wu, X., Zheng, W., Xia, X., & Lo, D. (2022). Data quality matters: A case study on data label correctness for security bug report prediction. IEEE Transactions on Software Engineering, 48, 2541–2556. https://do i.org/10.1109/TSE.2021.3063727. Xia, J., Yang, D., Zhou, H., Chen, Y., Zhang, H., Liu, T., & Pan, Z. (2022). Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Computers in Biology and Medicine, 141, 105137. https://doi.org/10.1016/j.compbiomed .2021.105137. Xiao, Y., Zuo, X., Huang, J., Konak, A., & Xu, Y. (2020). The continuous pollution routing problem. Applied Mathematics and Computation, 387, 125072. https://doi.org/10.1016/j.amc.2020.125072. Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 151, 111567. https: //doi.org/10.1016/j.rser.2021.111567. Xiong, G., Yuan, X., Mohamed, A. W., Chen, J., & Zhang, J. (2022). Improved binary gaining–sharing knowledge-based algorithm with mutation for fault section location in distribution networks. Journal of Computational Design and Engineering, 9(2), 393–405. https: //doi.org/10.1093/jcde/qwac007. Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.202 1.114864. Yang, Z., Chen, H., Zhang, J., & Chang, Y. (2022). Context-aware attentive multi-level feature fusion for named entity recognition. IEEE Transactions on Neural Networks and Learning Systems. https: //doi.org/10.1109/TNNLS.2022.3178522. Ye, X., Liu, W., Li, H., Wang, M., Chi, C., Liang, G., & Huang, H. (2021). Modified whale optimization algorithm for solar cell and PV module parameter identification. Complexity, 2021, 8878686. https: //doi.org/10.1155/2021/8878686. Yu, H., Yuan, K., Li, W., Zhao, N., Chen, W., Huang, C., & Wang, M. (2021). Improved butterfly optimizer-configured extreme learning machine for fault diagnosis. Complexity, 2021, 6315010. https://do i.org/10.1155/2021/6315010. Yu, H., Qiao, S., Heidari, A. A., El-Saleh, A. A., Bi, C.,Mafarja,M., & Chen, H. (2022a). Laplace crossover and random replacement strategy boosted Harris hawks optimization: Performance optimization and analysis. Journal of Computational Design and Engineering, 9, 1879–1916. https://doi.org/10.1093/jcde/qwac085. Yu, H., Qiao, S., Heidari, A. A., Bi, C., & Chen, H. (2022b). Individual disturbance and attraction repulsion strategy enhanced seagull optimization for engineering design. Mathematics, 10(2), 276. http s://doi.org/10.3390/math10020276. Yu, H., Cheng, X., Chen, C., Heidari, A. A., Liu, J., Cai, Z., & Chen, H. (2022c). Apple leaf disease recognition method with improved residual network. Multimedia Tools and Applications, 81, 7759–7782. https://doi.org/10.1007/s11042-022-11915-2. Yu, H., Song, J., Chen, C., Heidari, A. A., Liu, J., Chen, H., & Mafarja, M. (2022d). Image segmentation of leaf spot diseases on maize using multi-stage Cauchy-enabled grey wolf algorithm. Engineering Applications of Artificial Intelligence, 109, 104653. https://doi.org/https: //doi.org/10.1016/j.engappai.2021.104653. Yu, S., Chen, Z., Heidari, A. A., Zhou, W., Chen, H., & Xiao, L. (2022). Parameter identification of photovoltaic models using a sine cosine differential gradient based optimizer. IET Renewable Power Generation 16, 1535–1561. https://doi.org/10.1049/rpg2.12451. Zhang, M., Chen, Y., & Lin, J. (2021). A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment. IEEE Internet of Things Journal, 8(13), 10830– 10842. https://doi.org/10.1109/JIOT.2021.3051060. Zhang, X. Q., Hu, W. M., Xie, N. H., Bao, H. J., & Maybank, S. (2015). A robust tracking system for low frame rate video. International Journal of Computer Vision, 115(3), 279–304. https://doi.org/10.100 7/s11263-015-0819-8. Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q., & Gorriz, J. M. (2020). Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. Information Fusion, 64, 149–187. https://doi.org/10.1016/j.inffus.2 020.07.006. Zhang, Y., Liu, F., Fang, Z., Yuan, B., Zhang, G., & Lu, J. (2021). Learning from a complementary-label source domain: theory and algorithms. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3086093. Zhao, W., Shi, T., Wang, L., Cao, Q., & Zhang, H. (2021). An adaptive hybrid atom search optimization with particle swarm optimization and its application to optimal no-load PID design of hydro-turbine governor. Journal of Computational Design and Engineering, 8(5), 1204–1233. https://doi.org/10.1093/jcde/qwa b041. Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Chen, H., & Muhammad, K. (2022). Opposition-based ant colony optimization with all-dimension neighborhood search for engineering design. Journal of Computational Design and Engineering, 9(3), 1007–1044. https: //doi.org/10.1093/jcde/qwac038. Zhong, L., Fang, Z., Liu, F., Yuan, B., Zhang, G., & Lu, J. (2021). Bridging the theoretical bound and deep algorithms for open set domain adaptation. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3119965. Zhou, W., Liu, J., Lei, J., Yu, L., & Hwang, J. N. (2021a). GMNet: Graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation. IEEE Transactions on Image Processing, 30, 7790–7802. https://doi.org/10.1109/TIP.2021.3109518. Zhou, W., Wang, P., Heidari, A. A., Wang, M., Zhao, X., & Chen, H. (2021b). Multi-core sine cosine optimization: Methods and inclusive analysis. Expert Systems with Applications, 164, 113974. https: //doi.org/10.1016/j.eswa.2020.113974. Zhou, X., Gui, W., Heidari, A. A., Cai, Z., Elmannai, H., Hamdi, M., & Chen, H. (2022). Advanced orthogonal learning and Gaussian barebone hunger games for engineering design. Journal of Computational Design and Engineering, 9(5), 1699–1736. https://doi.org/10 .1093/jcde/qwac075. Zhu, W., Ma, C., Zhao, X., Wang, M., Heidari, A. A., Chen, H., & Li, C. (2020). Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access, 8, 61107–61123. https://doi.org/10.1109/AC CESS.2020.2981968. Zou, Q., Li, A., He, X., & Wang, X. (2018). Optimal operation of cascade hydropower stations based on chaos cultural sine cosine algorithm. IOP Conference Series: Materials Science and Engineering, 366(1), 012005. https://doi.org/10.1088/1757-899X/366/1/012005. |
dc.relation.citationendpage.spa.fl_str_mv |
2555 |
dc.relation.citationstartpage.spa.fl_str_mv |
2524 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
9 |
dc.rights.eng.fl_str_mv |
Copyright © 2023 Society for Computational Design and Engineering |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) Copyright © 2023 Society for Computational Design and Engineering https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
32 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Oxford University Press |
dc.publisher.place.spa.fl_str_mv |
United Kingdom |
dc.source.spa.fl_str_mv |
https://academic.oup.com/jcde/article/9/6/2524/6795289 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0f5b0e41-473d-494d-90bd-46f0251241b4/download https://repositorio.cuc.edu.co/bitstreams/73afdc8d-9e4f-4ba3-af0d-2360c15ec6cf/download https://repositorio.cuc.edu.co/bitstreams/8795e557-38a6-4c83-b8dd-ffda3d76d7eb/download https://repositorio.cuc.edu.co/bitstreams/fd3687f7-73d2-4639-a755-ef92794080f6/download |
bitstream.checksum.fl_str_mv |
15cdfa90f683ad83b09933ce86c1eaa5 2f9959eaf5b71fae44bbf9ec84150c7a df76e3c2eda0082d2e919e661d79a056 9fd23c95b9cea2df69dc75eec1ab6563 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166898200608768 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)Copyright © 2023 Society for Computational Design and Engineeringhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hu, HanyuShan, WeifengTang, YixiangAsghar Heidari, AliChen, HuilingLiu, HaijunWang, MaofaEscorcia-Gutierrez, JoséMansour, Romany FChen, Jun2023-05-12T21:53:04Z2023-05-12T21:53:04Z2022Hanyu Hu, Weifeng Shan, Yixiang Tang, Ali Asghar Heidari, Huiling Chen, Haijun Liu, Maofa Wang, José Escorcia-Gutierrez, Romany F Mansour, Jun Chen, Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection, Journal of Computational Design and Engineering, Volume 9, Issue 6, December 2022, Pages 2524–2555, https://doi.org/10.1093/jcde/qwac1192288-4300https://hdl.handle.net/11323/1011210.1093/jcde/qwac1192288-5048Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The sine cosine algorithm (SCA) is a metaheuristic algorithm proposed in recent years that does not resort to nature-related metaphors but explores and exploits the search space with the help of two simple mathematical functions of sine and cosine. SCA has fewer parameters and a simple structure and is widely used in various fields. However, it tends to fall into local optimality because it does not have a well-balanced exploitation and exploration phase. Therefore, in this paper, a new, improved SCA algorithm (QCSCA) is proposed to improve the performance of the algorithm by introducing a quick move mechanism and a crisscross mechanism to SCA and adaptively improving one of the parameters. To verify the effectiveness of QCSCA, comparison experiments with some conventional metaheuristic algorithms, advanced metaheuristic algorithms, and SCA variants are conducted on IEEE CEC2017 and CEC2013. The experimental results show a significant improvement in the convergence speed and the ability to jump out of the local optimum of the QCSCA. The scalability of the algorithm is verified in the benchmark function. In addition, QCSCA is applied to 14 real-world datasets from the UCI machine learning database for selecting a subset of near-optimal features, and the experimental results show that QCSCA is still very competitive in feature selection (FS) compared to similar algorithms. Our experimental results and analysis show that QCSCA is an effective method for solving global optimization problems and FS problems.32 páginasapplication/pdfengOxford University PressUnited Kingdomhttps://academic.oup.com/jcde/article/9/6/2524/6795289Horizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selectionArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Journal of Computational Design and EngineeringAbd Elaziz, M., Oliva, D., & Xiong, S. (2017). An improved oppositionbased sine cosine algorithm for global optimization. Expert Systems with Applications, 90, 484–500. https://doi.org/10.1016/j.eswa .2017.07.043.Abdelaziz, A. Y., & Fathy, A. (2017). A novel approach based on crow search algorithm for optimal selection of conductor size in radial distribution networks. Engineering Science and Technology, an International Journal, 20(2), 391–402. https://doi.org/10.1016/j.jestch.2017.02.004.Agrawal, P., Abutarboush, H. F., Ganesh, T., & Mohamed, A.W. (2021a). Metaheuristic algorithms on feature selection: A survey of one decade of research (2009–2019).IEEE Access, 9, 26766–26791.https: //doi.org/10.1109/ACCESS.2021.3056407.Agrawal, P., Ganesh, T., & Mohamed, A. W. (2021b). A novel binary gaining–sharing knowledge-based optimization algorithm for feature selection. Neural Computing and Applications, 33(11), 5989–6008. https://doi.org/10.1007/s005 21-020-05375-8.Ahmadianfar, I., Asghar Heidari, A., Gandomi, A. H., Chu, X., & Chen, H. (2021). RUN beyond the metaphor: An efficient optimization algorithm based on Runge Kutta method. Expert Systems with Applications, 181, 115079. https://doi.org/https://doi.org/10.1016/j.es wa.2021.115079.Ahmadianfar, I., Asghar Heidari, A., Noshadian, S., Chen, H., & Gandomi, A. H. (2022). INFO: An efficient optimization algorithm based on weighted mean of vectors. Expert Systems with Applications, 195, 116516. https://doi.org/https://doi.org/10.1016/j.eswa .2022.116516.Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Computers & Structures, 169, 1–12. https://doi.org/10.1016/ j.compstruc.2016.03.001.Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel sine-cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331–343. https://doi.org/10.1016/j.ijepes.2018.01.024.Awad, N. H., Ali, M. Z., Liang, J. J., Quv, B. Y., & Suganthan, P. N. (2016). Problem definitions and evaluation criteria for the CEC 2017 special session and competition on single objective bound constrained realparameter numerical optimization. Technical report. Nanyang Technological University. http://www.ntu.edu.sg/home/epnsugan/.Bureerat, S., & Pholdee, N. (2017). Adaptive sine cosine algorithm integrated with differential evolution for structural damage detection. In International Conference on Computational Science and Its Applications(pp. 71–86). https://doi.org/10.1007/978-3-319-62392- 4_6.Cai, J., Luo, J., Wang, S., & Yang, S. (2018a). Feature selection in machine learning: A new perspective. Neurocomputing, 300, 70–79. https://doi.org/10.1016/j.neucom.2017.11.077.Cai, Z., Gu, J., Wen, C., Zhao, D., Huang, C., Huang, H., & Chen, H. (2018b). An intelligent Parkinson’s disease diagnostic system based on a chaotic bacterial foraging optimization enhanced fuzzy KNN approach. Computational and Mathematical Methods in Medicine, 2018, 2396952. https://doi.org/10.1155/2018/2396952.Cao, B., Zhao, J., Lv, Z., & Yang, P. (2020). Diversified personalized recommendation optimization based on mobile data. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2133–2139. https: //doi.org/10.1109/TITS.2020.3040909.Cao, B., Li, M., Liu, X., Zhao, J., Cao, W., & Lv, Z. (2021a). Many-objective deployment optimization for a drone-assisted camera network. IEEE Transactions on Network Science and Engineering, 8(4), 2756– 2764. https://doi.org/10.1109/TNSE.2021.3057915.Cao, B., Sun, Z., Zhang, J., & Gu, Y. (2021b). Resource allocation in 5G IoV architecture based on SDN and fog-cloud computing. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3832–3840. https://doi.org/10.1109/TITS.2020.3048844.Cao, B., Fan, S., Zhao, J., Tian, S., Zheng, Z., Yan, Y., & Yang, P. (2021c). Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems, 22(6), 3841–3849. https://doi.org/10.1109/TITS.2021.3059455.Cao, X., Sun, X., Xu, Z., Zeng, B., & Guan, X. (2022). Hydrogen-based networked microgrids planning through two-stage stochastic programming with mixed-integer conic recourse. IEEE Transactions on Automation Science and Engineering, 19, 3672–3685. https: //doi.org/10.1109/TASE.2021.3130179.Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16–28. https:// doi.org/10.1016/j.compeleceng.2013.11.024.Chantar, H., Mafarja, M., Alsawalqah, H., Heidari, A. A., Aljarah, I., & Faris, H. (2020). Feature selection using binary grey wolf optimizer with elite-based crossover for Arabic text classification. Neural Computing and Applications, 32(16), 12201–12220. https://do i.org/10.1007/s00521-019-04368-6.Chen, H. L., Yang, B., Wang, S. J., Wang, G., Liu, D. Y., Li, H. Z., & Liu, W. B. (2014). Towards an optimal support vector machine classifier using a parallel particle swarm optimization strategy. Applied Mathematics and Computation, 239, 180–197. https://doi.org/10.101 6/j.amc.2014.04.039.Chen, H., Jiao, S., Heidari, A. A., Wang, M., Chen, X., & Zhao, X. (2019). An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Conversion and Management, 195, 927–942. https://doi.org/10.1016/j.enconm an.2019.05.057.Chen, H., Heidari, A. A., Zhao, X., Zhang, L., & Chen, H. (2020a). Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies. Expert Systems with Applications, 144, 113113. https://doi.org/10.1016/j.eswa.2019.113113.Chen, H., Wang, M., & Zhao, X. (2020b). A multi-strategy enhanced sine cosine algorithm for global optimization and constrained practical engineering problems. Applied Mathematics and Computation, 369, 124872. https://doi.org/10.1016/j.amc.2019.124872.Chen, C., Wang, X., Yu, H., Zhao, N., Wang, M., & Chen, H. (2020c). An enhanced comprehensive learning particle swarm optimizer with the elite-based dominance scheme. Complexity, 2020, 4968063. https://doi.org/10.1155/2020/4968063.Chen, H., Xiong, Y., Li, S., Song, Z., Hu, Z., & Liu, F. (2022). Multisensor data driven with PARAFAC-IPSO-PNN for identification of mechanical nonstationary multi-fault mode. Machines, 10(2), 155. https://doi.org/10.3390/machines10020155.Dara, S., & Banka, H. (2014). A binary PSO feature selection algorithm for gene expression data. In Proceedings of the 2014 International Conference on Advances in Communication and Computing Technologies(pp. 1–6). https://doi.org/10.1109/EIC.2015.7230734.Deng, W., Xu, J., Song, Y., & Zhao, H. (2020). An effective improved co-evolution ant colony optimisation algorithm with multistrategies and its application. International Journal of Bio-Inspired Computation, 16(3), 158–170. https://doi.org/10.1504/IJBIC.2020.1 11267.Deng, W., Xu, J., Zhao, H., & Song, Y. (2022). A novel gate resource allocation method using improved PSO-based QEA. IEEE Transactions on Intelligent Transportation Systems, 23, 1737–1745. https: //doi.org/10.1109/TITS.2020.3025796.Deng, W., Zhang, X., Zhou, Y., Liu, Y., Zhou, X., Chen, H., & Zhao, H. (2022). An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems. Information Sciences, 585, 441–453. https://doi.org/https://doi.org/10.1016/j.ins.2021.1 1.052.Díaz, P., Pérez-Cisneros, M., Cuevas, E., Avalos, O., Gálvez, J., Hinojosa, S., & Zaldivar, D. (2018). An improved crow search algorithm applied to energy problems. Energies, 11(3), 571. https://doi.org/10.3 390/en11030571.Dong, J., Cong, Y., Sun, G., Fang, Z., & Ding, Z. (2021). Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–1. https://doi.org/10.1109/TPAMI.2021.3128560.Dong, R., Chen, H., Heidari, A. A., Turabieh, H., Mafarja, M., & Wang, S. (2021). Boosted kernel search: Framework, analysis and case studies on the economic emission dispatch problem. KnowledgeBased Systems, 233, 107529. https://doi.org/https://doi.org/10.1016/j.knosys.2021.107529.Ewees, A. A., Abd Elaziz, M., Al-Qaness, M. A., Khalil, H. A., & Kim, S. (2020). Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation. IEEE Access, 8, 26304–26315. https://doi.org/10.1109/ACCESS.202 0.2971249.Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., Ala’M, A. Z., Mirjalili, S., & Fujita, H. (2018). An efficient binary salp swarm algorithm with crossover scheme for feature selection problems. Knowledge Based Systems, 154, 43–67. https://doi.org/10.1016/j.knosys.2018.05.009.Gao, D., Wang, G. G., & Pedrycz, W. (2020). Solving fuzzy job-shop scheduling problem using DE algorithm improved by a selection mechanism. IEEE Transactions On Fuzzy Systems, 28(12), 3265–3275. https://doi.org/10.1109/TFUZZ.2020.3003506.Guan, R., Zhang, H., Liang, Y., Giunchiglia, F., Huang, L., & Feng, X. (2022a). Deep feature-based text clustering and its explanation. IEEE Transactions on Knowledge and Data Engineering, 34, 3669–3680. https://doi.org/10.1109/TKDE.2020.3028943.Guan, Q., Chen, Y., Wei, Z., Heidari, A. A., Hu, H., Yang, X. H., & Chen, F. (2022b). Medical image augmentation for lesion detection using a texture-constrained multichannel progressive GAN. Computers in Biology and Medicine, 145, 105444. https://doi.org/https://doi.or g/10.1016/j.compbiomed.2022.105444.Gupta, S., & Deep, K. (2019a). A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications, 119, 210–230. https://doi.org/10.1016/j.eswa.2018.10.050.Gupta, S., & Deep, K. (2019b). Improved sine cosine algorithm with crossover scheme for global optimization. Knowledge-Based Systems, 165, 374–406. https://doi.org/https://doi.org/10.1016/j.knos ys.2018.12.008.Gupta, S., Deep, K., & Engelbrecht, A. P. (2020). A memory guided sine cosine algorithm for global optimization. Engineering Applications of Artificial Intelligence, 93, 103718. https://doi.org/10.1016/j.enga ppai.2020.103718.Hall, M. A. (1999). Correlation-based feature selection for machine learning. Ph.D. Thesis, The University of Waikato. https://hdl.handle.net/1 0289/15043.Han, X., Han, Y., Chen, Q., Li, J., Sang, H., Liu, Y., & Nojima, Y. (2021). Distributed flow shop scheduling with sequence-dependent setup times using an improved iterated greedy algorithm. Complex System Modeling and Simulation, 1(3), 198–217. https://doi.org/ 10.23919/CSMS.2021.0018.Hassan, B. A. (2021). CSCF: A chaotic sine cosine firefly algorithm for practical application problems. Neural Computing and Applications, 33(12), 7011–7030. https://doi.org/10.1007/s00521-020-05474-6.He, Z., Yen, G. G., & Yi, Z. (2018). Robust multiobjective optimization via evolutionary algorithms. IEEE Transactions on Evolutionary Computation, 23(2), 316–330. https://doi.org/10.1109/TEVC.2018.2859 638.He, Z., Yen, G. G., & Lv, J. (2019). Evolutionary multiobjective optimization with robustness enhancement. IEEE Transactions on Evolutionary Computation, 24(3), 494–507. https://doi.org/10.1109/TEVC.201 9.2933444.He, Z., Yen, G. G., & Ding, J. (2020). Knee-based decision making and visualization in many-objective optimization. IEEE Transactions on Evolutionary Computation, 25(2), 292–306. https://doi.org/10.1109/ TEVC.2020.3027620.Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems-the International Journal of Escience, 97, 849–872. https://doi.org/10.1016/j.future.2019.02.0 28.Heidari, A. A., Aljarah, I., Faris, H., Chen, H., Luo, J., & Mirjalili, S. (2020). An enhanced associative learning-based exploratory whale optimizer for global optimization. Neural Computing and Applications, 32, 5185–5211. https://doi.org/10.1007/s00521-019-04015-0.Hu, Z., Wang, J., Zhang, C., Luo, Z., Luo, X., Xiao, L., & Shi, J. (2022). Uncertainty modeling for multicenter autism spectrum disorder classification using Takagi–Sugeno–Kang fuzzy systems. IEEE Transactions on Cognitive and Developmental Systems, 14(2), 730–739. https://doi.org/10.1109/TCDS.2021.3073368.Hua, Y., Liu, Q., Hao, K., & Jin, Y. (2021). A survey of evolutionary algorithms for multi-objective optimization problems with irregular Pareto fronts. IEEE/CAA Journal of Automatica Sinica, 8(2), 303–318. https://doi.org/10.1109/JAS.2021.1003817.Huang, H., Heidari, A. A., Xu, Y., Wang, M., Liang, G., Chen, H., & Cai, X. (2020). Rationalized sine cosine optimization with efficient searching patterns. IEEE Access, 8, 61471–61490. https://doi.org/10 .1109/ACCESS.2020.2983451.Hussien, A. G., Heidari, A. A., Ye, X., Liang, G., Chen, H., & Pan, Z. (2022). Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method. Engineering with Computers. https://doi.org/10.1007/s00366-021-01542-0.Islam, M. R., Ali, S. M., Fathollahi-Fard, A. M., & Kabir, G. (2021). A novel particle swarm optimization-based grey model for the prediction of warehouse performance. Journal of Computational Design and Engineering, 8(2), 705–727. https://doi.org/10.1093/jcde/qwab009.Issa, M., Hassanien, A. E., Oliva, D., Helmi, A., Ziedan, I., & Alzohairy, A. (2018). ASCA-PSO: Adaptive sine cosine optimization algorithm integrated with particle swarm for pairwise local sequence alignment. Expert Systems with Applications, 99, 56–70. https://doi.org/ 10.1016/j.eswa.2018.01.019.Ji, Y., Tu, J., Zhou, H., Gui, W., Liang, G., Chen, H., & Wang, M. (2020). An adaptive chaotic sine cosine algorithm for constrained and unconstrained optimization. Complexity, 2020, 6084917. https:// doi.org/10.1155/2020/6084917.Kale, G. A., & Yüzgeç, U. (2022). Advanced strategies on update mechanism of sine cosine optimization algorithm for feature selection in classification problems. Engineering Applications of Artificial Intelligence, 107, 104506. https://doi.org/10.1016/j.engappai.2021.10 4506.Kaveh, A., & Mahdavi, V. R. (2019). Multi-objective colliding bodies optimization algorithm for design of trusses. Journal of Computational Design and Engineering, 6(1), 49–59. https://doi.org/10.1016/j. jcde.2018.04.001.Khalid, S., Khalil, T., & Nasreen, S. (2014). A survey of feature selection and feature extraction techniques in machine learning. In Proceedings of the 2014 Science and Information Conference(pp. 372– 378). https://doi.org/10.1109/SAI.2014.6918213.Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In Machine learning proceedings 1992(pp. 249–256). Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-247-2.50037-1.Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Single sensor-based MPPT of partially shaded PV system for battery charging by using Cauchy and Gaussian sine cosine optimization. IEEE Transactions on Energy Conversion, 32(3), 983–992. https: //doi.org/10.1109/TEC.2017.2669518.Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., & Guibas, L. (2017a). Grass: Generative recursive autoencoders for shape structures. ACM Transactions on Graphics (TOG), 36(4), 1–14. https://doi.org/10 .1145/3072959.3073637.Li, J., Chen, C., Chen, H., & Tong, C. (2017b). Towards context-aware social recommendation via individual trust. Knowledge-Based Systems, 127, 58–66. https://doi.org/https://doi.org/10.1016/j.knosys .2017.02.032.Li, J., & Lin, J. (2020). A probability distribution detection based hybrid ensemble QoS prediction approach. Information Sciences, 519, 289– 305. https://doi.org/https://doi.org/10.1016/j.ins.2020.01.046.Li, J., Zheng, X. L., Chen, S. T., Song, W. W., & Chen, D. R. (2014). An efficient and reliable approach for quality-of-service-aware service composition. Information Sciences, 269, 238–254. https://doi.org/ht tps://doi.org/10.1016/j.ins.2013.12.015.Li, Q., Chen, H., Huang, H., Zhao, X., Cai, Z., Tong, C., & Tian, X. (2017). An enhanced grey wolf optimization based feature selec tion wrapped kernel extreme learning machine for medical diagnosis. Computational and Mathematical Methods in Medicine, 2017, 9512741. https://doi.org/10.1155/2017/9512741.Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization. Future Generation Computer Systems, 111, 300–323. https://doi.org/10 .1016/j.future.2020.03.055.Li, S., Liu, C. H., Lin, Q., Wen, Q., Su, L., Huang, G., & Ding, Z. (2020). Deep residual correction network for partial domain adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(7), 2329–2344. https://doi.org/10.1109/TPAMI.2020.2964173.Liang, J., Qu, B., Suganthan, P. N., & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212(34), 281– 295.Liang, H., Liu, Y., Shen, Y., Li, F., & Man, Y. (2018). A hybrid bat algorithm for economic dispatch with random wind power. IEEE Transactions on Power Systems, 33(5), 5052–5061. https://doi.org/10 .1109/TPWRS.2018.2812711.Liang, X., Cai, Z., Wang, M., Zhao, X., Chen, H., & Li, C. (2022). Chaotic oppositional sine–cosine method for solving global optimization problems. Engineering with Computers, 38, 1223–1239. https://doi. org/10.1007/s00366-020-01083-y.Lin, A., Wu, Q., Heidari, A. A., Xu, Y., Chen, H., Geng, W., & Li, C. (2019). Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-nearest neighbor classifier. IEEE Access, 7, 67235–67248. https://doi.org/10.1109/ACCESS .2019.2918026.Liu, G., Jia, W., Wang, M., Heidari, A. A., Chen, H., Luo, Y., & Li, C. (2020). Predicting cervical hyperextension injury: A covariance guided sine cosine support vector machine. IEEE Access, 8, 46895–46908. https://doi.org/10.1109/ACCESS.2020.2978102.Liu, X., Zhao, J., Li, J., Cao, B., & Lv, Z. (2022). Federated neural architecture search for medical data security.IEEE Transactions on Industrial Informatics, 18(8), 5628–5636. https://doi.org/10.1109/TII.2022.314 4016.Long, W., Wu, T., Liang, X., & Xu, S. (2019). Solving high-dimensional global optimization problems using an improved sine cosine algorithm. Expert Systems with Applications, 123, 108–126. https://do i.org/10.1016/j.eswa.2018.11.032.Mafarja, M., Heidari, A. A., Habib, M., Faris, H., Thaher, T., & Aljarah, I. (2020). Augmented whale feature selection for IoT attacks: Structure, analysis and applications. Future Generation Computer Systems, 112, 18–40. https://doi.org/10.1016/j.future.202 0.05.020.Mahdad, B., & Srairi, K. (2018). A new interactive sine cosine algorithm for loading margin stability improvement under contingency. Electrical Engineering, 100(2), 913–933. https://doi.org/10.100 7/s00202-017-0539-x.Meng, A.-b., Chen, Y.-c., Yin, H., & Chen, S.-z. (2014). Crisscross optimization algorithm and its application. Knowledge-Based Systems, 67, 218–229. https://doi.org/10.1016/j.knosys.2014.05.004.Meng, A., Zeng, C., Wang, P., Chen, D., Zhou, T., Zheng, X., & Yin, H. (2021). A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem. Energy, 225, 120211. https://doi.org/10.1016/j.energy.2021.120211.Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120–133. https: //doi.org/10.1016/j.knosys.2015.12.022.Mirjalili, S., Dong, J. S., & Lewis, A. (2019). Nature-inspired optimizers: Theories, literature reviews and applications(Vol. 811). Springer.Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51–67. https://doi.org/10.1016/j. advengsoft.2016.01.008.Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in Engineering Software, 69, 46–61. https://doi.org/10.101 6/j.advengsoft.2013.12.007.Mohamed, A. W., Hadi, A. A., & Mohamed, A. K. (2020). Gainingsharing knowledge based algorithm for solving optimization problems: A novel nature-inspired algorithm. International Journal of Machine Learning and Cybernetics, 11(7), 1501–1529. https: //doi.org/10.1007/s13042-019-01053-x.Mohammadi, F., & Abdi, H. (2018). A modified crow search algorithm (MCSA) for solving economic load dispatch problem. Applied Soft Computing, 71, 51–65. https://doi.org/10.1016/j.asoc.2018.06.0 40.Mou, J., Duan, P., Gao, L., Liu, X., & Li, J. (2022). An effective hybrid collaborative algorithm for energy-efficient distributed permutation flow-shop inverse scheduling. Future Generation Computer Systems, 128, 521–537. https://doi.org/10.1016/j.future.2021.10.003.Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019–1043. https://doi.or g/10.1016/j.asoc.2017.09.039.Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm Intelligence, 1(1), 33–57.https://doi.org/10.1007/s11721 -007-0002-0.Qi, A., Zhao, D., Yu, F., Heidari, A. A., Chen, H., & Xiao, L. (2022). Directional mutation and crossover for immature performance of whale algorithm with application to engineering optimization. Journal of Computational Design and Engineering, 9(2), 519–563. https://doi.org/10.1093/jcde/qwac014.Qiao, S., Yu, H., Heidari, A. A., El-Saleh, A. A., Cai, Z., Xu, X., & Chen, H. (2022). Individual disturbance and neighborhood mutation search enhanced whale optimization: Performance design for engineering problems. Journal of Computational Design and Engineering, 9, 1817–1851. https://doi.org/10.1093/jcde/qwac081.Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., & Fortino, G. (2022). Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 80, 241–265. https:// doi.org/10.1016/j.inffus.2021.11.006.Shahabi, F., Pourahangarian, F., & Beheshti, H. (2019). A multilevel image thresholding approach based on crow search algorithm and Otsu method. Journal of Decisions and Operations Research, 4(1), 33– 41. https://doi.org/10.22105/dmor.2019.88580.Shan, W., Qiao, Z., Heidari, A. A., Chen, H., Turabieh, H., & Teng, Y. (2021). Double adaptive weights for stabilization of moth flame optimizer: Balance analysis, engineering cases, and medical diagnosis. Knowledge-Based Systems, 214, 106728. https://doi.org/10 .1016/j.knosys.2020.106728.Shan, W., Hu, H., Cai, Z., Chen, H., Liu, H., Wang, M., & Teng, Y. (2022a). Multi-strategies boosted mutative crow search algorithm for global tasks: Cases of continuous and discrete optimization. Journal of Bionic Engineering, 19, 1830–1849. https://doi.org/10.100 7/s42235-022-00228-7.Shan, W., Qiao, Z., Heidari, A. A., Gui, W., Chen, H., Teng, Y., & Lv, T. (2022b). An efficient rotational direction heap-based optimization with orthogonal structure for medical diagnosis. Computers in Biology and Medicine, 146, 105563. https://doi.org/10.1016/j.compbi omed.2022.105563.Song, J., Chen, C., Heidari, A. A., Liu, J., Yu, H., & Chen, H. (2022). Performance optimization of annealing salp swarm algorithm: Frameworks and applications for engineering design. Journal of Computational Design and Engineering, 9(2), 633–669. https://doi.org/10.1 093/jcde/qwac021.Tang, D. (2019). Spherical evolution for solving continuous optimization problems. Applied Soft Computing, 81, 105499. https://doi.org/ 10.1016/j.asoc.2019.105499.Taradeh, M., Mafarja, M., Heidari, A. A., Faris, H., Aljarah, I., Mirjalili, S., & Fujita, H. (2019). An evolutionary gravitational search-based feature selection. Information Sciences, 497, 219–239. https://doi.or g/10.1016/j.ins.2019.05.038.Tu, J., Chen, H., Wang, M., & Gandomi, A. H. (2021). The colony predation algorithm. Journal of Bionic Engineering, 18(3), 674–710. https: //doi.org/10.1007/s42235-021-0050-y.Wang, D., Liang, Y., Xu, D., Feng, X., & Guan, R. J. K. B. S. (2018a). A content-based recommender system for computer science publications. Knowledge-Based Systems, 157, 1–9. https://doi.org/10.1 016/j.knosys.2018.05.001.Wang, J., Yang, W., Du, P., & Niu, T. (2018b). A novel hybrid forecasting system of wind speed based on a newly developed multi-objective sine cosine algorithm. Energy Conversion and Management, 163, 134–150. https://doi.org/10.1016/j.enconman.2018.02.012.Wang, H., Gao, Q., Li, H., Wang, H., Yan, L., & Liu, G. (2020). A structural evolution-based anomaly detection method for generalized evolving social networks. The Computer Journal, 65(5), 1189–1199. https://doi.org/10.1093/comjnl/bxaa168.Wang, G., Gui, W., Liang, G., Zhao, X., Wang, M., Mafarja, M., & Ma, X. (2021). Spiral motion enhanced elite whale optimizer for global tasks. Complexity, 2021, 8130378. https://doi.org/10.1155/2021/8 130378.Wang, G. G., Gao, D., & Pedrycz, W. (2022). Solving multi-objective fuzzy job-shop scheduling problem by a hybrid adaptive differential evolution algorithm. IEEE Transactions on Industrial Informatics, 18, 8519–8528. https://doi.org/10.1109/TII.2022.3165636.Wang, S. H., & Zhang, Y. D. (2020). DenseNet-201-based deep neural network with composite learning factor and precomputation for multiple sclerosis classification. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 16(2s), 1–19. https://doi.org/10.1145/3341095.Wang, Y., Wang, H., Zhou, B., & Fu, H. (2021). Multi-dimensional prediction method based on Bi-LSTMC for ship roll. Ocean Engineering, 242, 110106. https://doi.org/10.1016/j.oceaneng.2021.110106.Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. https://doi.org/10.1109/4235.585893.Wu, Z., Wang, R., Li, Q., Lian, X., & Xu, G. (2020a). A location privacypreserving system based on query range cover-up for locationbased services. IEEE Transactions on Vehicular Technology, 69, 5244– 5254. https://doi.org/10.1109/TVT.2020.2981633.Wu, Z., Li, R., Xie, J., Zhou, Z., Guo, J., & Xu, X. (2020b). A user sensitive subject protection approach for book search service. Journal of the Association for Information Science and Technology, 71(2), 183–195. ht tps://doi.org/10.1002/asi.24227.Wu, Z., Shen, S., Lian, X., Su, X., & Chen, E. (2020c). A dummy-based user privacy protection approach for text information retrieval. Knowledge-Based Systems, 195, 105679. https://doi.org/10.1016/j. knosys.2020.105679.Wu, Z., Li, G., Shen, S., Cui, Z., Lian, X., & Xu, G. (2021a). Constructing dummy query sequences to protect location privacy and query privacy in location-based services. World Wide Web, 24(1), 25–49. https://doi.org/10.1007/s11280-020-00830-x.Wu, Z., Shen, S., Zhou, H., Li, H., Lu, C., & Zou, D. (2021b). An effective approach for the protection of user commodity viewing privacy in e-commerce website.Knowledge-Based Systems, 220, 106952.https: //doi.org/10.1016/j.knosys.2021.106952.Wu, X., Zheng, W., Xia, X., & Lo, D. (2022). Data quality matters: A case study on data label correctness for security bug report prediction. IEEE Transactions on Software Engineering, 48, 2541–2556. https://do i.org/10.1109/TSE.2021.3063727.Xia, J., Yang, D., Zhou, H., Chen, Y., Zhang, H., Liu, T., & Pan, Z. (2022). Evolving kernel extreme learning machine for medical diagnosis via a disperse foraging sine cosine algorithm. Computers in Biology and Medicine, 141, 105137. https://doi.org/10.1016/j.compbiomed .2021.105137.Xiao, Y., Zuo, X., Huang, J., Konak, A., & Xu, Y. (2020). The continuous pollution routing problem. Applied Mathematics and Computation, 387, 125072. https://doi.org/10.1016/j.amc.2020.125072.Xiao, Y., Zhang, Y., Kaku, I., Kang, R., & Pan, X. (2021). Electric vehicle routing problem: A systematic review and a new comprehensive model with nonlinear energy recharging and consumption. Renewable and Sustainable Energy Reviews, 151, 111567. https: //doi.org/10.1016/j.rser.2021.111567.Xiong, G., Yuan, X., Mohamed, A. W., Chen, J., & Zhang, J. (2022). Improved binary gaining–sharing knowledge-based algorithm with mutation for fault section location in distribution networks. Journal of Computational Design and Engineering, 9(2), 393–405. https: //doi.org/10.1093/jcde/qwac007.Yang, Y., Chen, H., Heidari, A. A., & Gandomi, A. H. (2021). Hunger games search: Visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Systems with Applications, 177, 114864. https://doi.org/10.1016/j.eswa.202 1.114864.Yang, Z., Chen, H., Zhang, J., & Chang, Y. (2022). Context-aware attentive multi-level feature fusion for named entity recognition. IEEE Transactions on Neural Networks and Learning Systems. https: //doi.org/10.1109/TNNLS.2022.3178522.Ye, X., Liu, W., Li, H., Wang, M., Chi, C., Liang, G., & Huang, H. (2021). Modified whale optimization algorithm for solar cell and PV module parameter identification. Complexity, 2021, 8878686. https: //doi.org/10.1155/2021/8878686.Yu, H., Yuan, K., Li, W., Zhao, N., Chen, W., Huang, C., & Wang, M. (2021). Improved butterfly optimizer-configured extreme learning machine for fault diagnosis. Complexity, 2021, 6315010. https://do i.org/10.1155/2021/6315010.Yu, H., Qiao, S., Heidari, A. A., El-Saleh, A. A., Bi, C.,Mafarja,M., & Chen, H. (2022a). Laplace crossover and random replacement strategy boosted Harris hawks optimization: Performance optimization and analysis. Journal of Computational Design and Engineering, 9, 1879–1916. https://doi.org/10.1093/jcde/qwac085.Yu, H., Qiao, S., Heidari, A. A., Bi, C., & Chen, H. (2022b). Individual disturbance and attraction repulsion strategy enhanced seagull optimization for engineering design. Mathematics, 10(2), 276. http s://doi.org/10.3390/math10020276.Yu, H., Cheng, X., Chen, C., Heidari, A. A., Liu, J., Cai, Z., & Chen, H. (2022c). Apple leaf disease recognition method with improved residual network. Multimedia Tools and Applications, 81, 7759–7782. https://doi.org/10.1007/s11042-022-11915-2.Yu, H., Song, J., Chen, C., Heidari, A. A., Liu, J., Chen, H., & Mafarja, M. (2022d). Image segmentation of leaf spot diseases on maize using multi-stage Cauchy-enabled grey wolf algorithm. Engineering Applications of Artificial Intelligence, 109, 104653. https://doi.org/https: //doi.org/10.1016/j.engappai.2021.104653.Yu, S., Chen, Z., Heidari, A. A., Zhou, W., Chen, H., & Xiao, L. (2022). Parameter identification of photovoltaic models using a sine cosine differential gradient based optimizer. IET Renewable Power Generation 16, 1535–1561. https://doi.org/10.1049/rpg2.12451.Zhang, M., Chen, Y., & Lin, J. (2021). A privacy-preserving optimization of neighborhood-based recommendation for medical-aided diagnosis and treatment. IEEE Internet of Things Journal, 8(13), 10830– 10842. https://doi.org/10.1109/JIOT.2021.3051060.Zhang, X. Q., Hu, W. M., Xie, N. H., Bao, H. J., & Maybank, S. (2015). A robust tracking system for low frame rate video. International Journal of Computer Vision, 115(3), 279–304. https://doi.org/10.100 7/s11263-015-0819-8.Zhang, Y. D., Dong, Z., Wang, S. H., Yu, X., Yao, X., Zhou, Q., & Gorriz, J. M. (2020). Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation. Information Fusion, 64, 149–187. https://doi.org/10.1016/j.inffus.2 020.07.006.Zhang, Y., Liu, F., Fang, Z., Yuan, B., Zhang, G., & Lu, J. (2021). Learning from a complementary-label source domain: theory and algorithms. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3086093.Zhao, W., Shi, T., Wang, L., Cao, Q., & Zhang, H. (2021). An adaptive hybrid atom search optimization with particle swarm optimization and its application to optimal no-load PID design of hydro-turbine governor. Journal of Computational Design and Engineering, 8(5), 1204–1233. https://doi.org/10.1093/jcde/qwa b041.Zhao, D., Liu, L., Yu, F., Heidari, A. A., Wang, M., Chen, H., & Muhammad, K. (2022). Opposition-based ant colony optimization with all-dimension neighborhood search for engineering design. Journal of Computational Design and Engineering, 9(3), 1007–1044. https: //doi.org/10.1093/jcde/qwac038.Zhong, L., Fang, Z., Liu, F., Yuan, B., Zhang, G., & Lu, J. (2021). Bridging the theoretical bound and deep algorithms for open set domain adaptation. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2021.3119965.Zhou, W., Liu, J., Lei, J., Yu, L., & Hwang, J. N. (2021a). GMNet: Graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation. IEEE Transactions on Image Processing, 30, 7790–7802. https://doi.org/10.1109/TIP.2021.3109518.Zhou, W., Wang, P., Heidari, A. A., Wang, M., Zhao, X., & Chen, H. (2021b). Multi-core sine cosine optimization: Methods and inclusive analysis. Expert Systems with Applications, 164, 113974. https: //doi.org/10.1016/j.eswa.2020.113974.Zhou, X., Gui, W., Heidari, A. A., Cai, Z., Elmannai, H., Hamdi, M., & Chen, H. (2022). Advanced orthogonal learning and Gaussian barebone hunger games for engineering design. Journal of Computational Design and Engineering, 9(5), 1699–1736. https://doi.org/10 .1093/jcde/qwac075.Zhu, W., Ma, C., Zhao, X., Wang, M., Heidari, A. A., Chen, H., & Li, C. (2020). Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine. IEEE Access, 8, 61107–61123. https://doi.org/10.1109/AC CESS.2020.2981968.Zou, Q., Li, A., He, X., & Wang, X. (2018). Optimal operation of cascade hydropower stations based on chaos cultural sine cosine algorithm. IOP Conference Series: Materials Science and Engineering, 366(1), 012005. https://doi.org/10.1088/1757-899X/366/1/012005.2555252429Sine cosine algorithmFeature selectionGlobal optimizationMetaheuristic algorithmsPublicationORIGINALHorizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection.pdfHorizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection.pdfArtículoapplication/pdf3727312https://repositorio.cuc.edu.co/bitstreams/0f5b0e41-473d-494d-90bd-46f0251241b4/download15cdfa90f683ad83b09933ce86c1eaa5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/73afdc8d-9e4f-4ba3-af0d-2360c15ec6cf/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTHorizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection.pdf.txtHorizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection.pdf.txtExtracted texttext/plain146591https://repositorio.cuc.edu.co/bitstreams/8795e557-38a6-4c83-b8dd-ffda3d76d7eb/downloaddf76e3c2eda0082d2e919e661d79a056MD53THUMBNAILHorizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection.pdf.jpgHorizontal and vertical crossover of sine cosine algorithm with quick moves for optimization and feature selection.pdf.jpgGenerated Thumbnailimage/jpeg14570https://repositorio.cuc.edu.co/bitstreams/fd3687f7-73d2-4639-a755-ef92794080f6/download9fd23c95b9cea2df69dc75eec1ab6563MD5411323/10112oai:repositorio.cuc.edu.co:11323/101122024-09-17 14:23:35.011https://creativecommons.org/licenses/by/4.0/Copyright © 2023 Society for Computational Design and Engineeringopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |