Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido
Introducción— Los sistemas de recuperación de imágenes basada en contenido permiten a los usuarios, por medio de una imagen de referencia, recuperar aquellas similares a su consulta. En la concepción de dichos sistemas para la Web, deben ser considerados aspectos relacionados al alto volumen de imág...
- Autores:
-
Roa-Martínez, Sandra Milena
Ruiz Velasco, Andrés Felipe
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12299
- Palabra clave:
- CBIR architecture
microservices
feature extraction
Google Cloud
image retrieval
arquitectura CBIR
microservicios
extracción de características
Google Cloud
recuperación de imágenes
- Rights
- openAccess
- License
- INGE CUC - 2020
id |
RCUC2_01195f4a03c8c91a6005d71a0c520b5d |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12299 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
dc.title.translated.eng.fl_str_mv |
Microservices architecture for feature extraction in content-based image retrieval systems |
title |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
spellingShingle |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido CBIR architecture microservices feature extraction Google Cloud image retrieval arquitectura CBIR microservicios extracción de características Google Cloud recuperación de imágenes |
title_short |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
title_full |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
title_fullStr |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
title_full_unstemmed |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
title_sort |
Arquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenido |
dc.creator.fl_str_mv |
Roa-Martínez, Sandra Milena Ruiz Velasco, Andrés Felipe |
dc.contributor.author.spa.fl_str_mv |
Roa-Martínez, Sandra Milena Ruiz Velasco, Andrés Felipe |
dc.subject.eng.fl_str_mv |
CBIR architecture microservices feature extraction Google Cloud image retrieval |
topic |
CBIR architecture microservices feature extraction Google Cloud image retrieval arquitectura CBIR microservicios extracción de características Google Cloud recuperación de imágenes |
dc.subject.spa.fl_str_mv |
arquitectura CBIR microservicios extracción de características Google Cloud recuperación de imágenes |
description |
Introducción— Los sistemas de recuperación de imágenes basada en contenido permiten a los usuarios, por medio de una imagen de referencia, recuperar aquellas similares a su consulta. En la concepción de dichos sistemas para la Web, deben ser considerados aspectos relacionados al alto volumen de imágenes digitales existentes, que generan problemas durante su procesamiento en tiempo real, específicamente en la extracción de sus características visuales, objeto de esta investigación. Objetivos— Contribuir en la mitigación de los problemas de escalabilidad, elasticidad, disponibilidad y confiabilidad presentada por el módulo de extracción de sus características visuales de un sistema de recuperación de imágenes basada en contenido. Metodología— Se realizó la definición, diseño e implementación de una propuesta de arquitectura basada en microservicios y posteriormente la ejecución de pruebas mediante experimentos basados en simulación para la evaluación de dicha propuesta, presentando el respectivo análisis y discusión de los resultados entregados por el tablero de indicadores de la consola de Google Cloud. Resultados— Una arquitectura basada en microservicios donde cada algoritmo/técnica de extracción de características de una imagen digital fue implementada como un microservicio bajo la infraestructura de Google Cloud. Conclusiones— Esta propuesta arquitectural soportada en microservicios favorece su escalabilidad automática durante la extracción de características de grandes volúmenes de imágenes y puede ser usada en el diseño y construcción de otros módulos de un sistema de recuperación de imágenes basada en contenido. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-30 00:00:00 2024-04-09T20:21:20Z |
dc.date.available.none.fl_str_mv |
2020-04-30 00:00:00 2024-04-09T20:21:20Z |
dc.date.issued.none.fl_str_mv |
2020-04-30 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12299 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.16.2.2020.15 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.16.2.2020.15 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.16.2.2020.15 2382-4700 |
url |
https://hdl.handle.net/11323/12299 https://doi.org/10.17981/ingecuc.16.2.2020.15 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.spa.fl_str_mv |
M. Becker, S. Lehrig & S. Becker, “Systematically deriving quality metrics for cloud computing systems,” presented at 6th ACM/SPEC Int Conf Perform Eng, ICPE 2015, TX, USA, pp. 169–174, 31 Jan-4 Feb. 2015. https://doi.org/10.1145/2668930.2688043 M. Nabi, M. Toeroe & F. Khendek, “Availability in the cloud: State of the art,” J Netw Comput Appl, vol. 60, pp. 54–67, Jan. 2016. https://doi.org/10.1016/j.jnca.2015.11.014 X. Wang & J. Grabowski, “A Reliability Assessment Framework for Cloud Applications,” presented at Cloud Computing 2015, IARIA, Nnc., Fr., 2015. Available: http://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2015_6_10_20143 A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N. I. Ratyal, B. Zafar, S. H. Dar, M. Sajid & T. Khalil, “Content-based image retrieval and feature extraction: A comprehensive review,” Math Probl Eng, vol. 4, pp. 121, 2019. https://doi.org/10.1155/2019/9658350 L. Kaliciak, H. Myrhaug & A. Goker, “Content-Based Image Retrieval in Augmented Reality,” presented at 8th International Symposium on Ambient Intelligence, ISAmI 2017, PO, PT, pp. 95–103, 21-23 Jun. 017. https://doi.org/10.1007/978-3-319-61118-1 M. Meena, V. A. Bharadi & K. Vartak, “Hybrid Wavelet Based CBIR System Using Software as a Service (SaaS) Model on Public Cloud,” Procedia Comput Sci, vol. 79, pp. 278–286, 2016. https://doi.org/10.1016/j.procs.2016.03.036 M. B. Suresh & B. M. Naik, “A novel scheme for extracting shape and texture features using CBIR approach,” Int Conf Energy Commun Data Anal Soft Comput ICECDS 2017, pp. 3399–3404, Jun. 21, 2018. https://doi.org/10.1109/ICECDS.2017.8390091 J. Pradhan, S. Kumar, A. K. Pal & H. Banka, “A hierarchical CBIR framework using adaptive tetrolet transform and novel histograms from color and shape features,” Digit Signal Process A Rev J, vol. 82, pp. 258–281, Nov. 2018. https://doi.org/10.1016/j.dsp.2018.07.016 A. B. Raut, “NOSQL Database and Its Comparison with RDBMS,” Int J Comput Intell Res, vol. 13, núm. 7, pp. 1645–1651, 2017. M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca & S. Gil, “Evaluating the Monolithic and the Microservice Architecture Pattern to Deploy Web Applications in the Cloud,” presented at 10th Comput Colomb Conf, 10CCC, Bog., Co., 21-25 Sep. 2015. https://doi.org/10.1109/ColumbianCC.2015.7333476 R. Grycuk, P. Najgebauer, R. Nowicki & R. Scherer, “Multilayer Architecture for Content-based Image Retrieval Systems,” presented at IEEE 12th Conf Serv Comput Appl, SOCA, Khh., Tw., 18-21 Nov. 2019. https://doi.org/10.1109/SOCA.2019.00025 S. Easwaramoorthy, U. Moorthy, C. A. Kumar, S. B. Bhushan & V. Sadagopan, “Content Based Image Retrieval with Enhanced Privacy in Cloud Using Apache Spark,” Commun Comput Inf Sci, vol. 804, pp. 114–128, Feb. 2018. https://doi.org/10.1007/978-981-10-8603-8_10 M. Meena, A. R. Singh & V. A. Bharadi, “Architecture for Software as a Service (SaaS) Model of CBIR on Hybrid Cloud of Microsoft Azure,” Procedia Comput Sci, vol. 79, pp. 569–578, 2016. https://doi.org/10.1016/j.procs.2016.03.072 A. Rahman, E. Winarko, y M. E. Wibowo, “Mobile content based image retrieval architectures,” presented at Int Conf Electr Eng Comput Sci Informatics, IEEE, Yo. Id., pp. 208–211, 19-21 Sep. 2017. https://doi.org/10.1109/EECSI.2017.8239111 A. Balalaie, A. Heydarnoori & P. Jamshidi, “Microservices Architecture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE Softw, vol. 33, núm. 3, pp. 42–52, Mar. 2016. https://doi.org/10.1109/MS.2016.64 T. Cerny, M. J. Donahoo & J. Pechanec, “Disambiguation and comparison of SOA, microservices and self-contained systems,”presented at Res Adapt Converg Syst, RACS '17, Krk., Pol., pp. 228–235, Sep. 2017. https://doi.org/10.1145/3129676.3129682 Google LLC, “Cloud Functions,” Cloud.google, [online , 2017. Available: https://cloud.google.com/functions/ Google LLC, “Cloud Functions,” Cloud.google, [online , 2020. Available: https://cloud.google.com/functions/ Google LLC, “Cloud Storage,” Cloud.google, [online , 2019. Available: https://cloud.google.com/storage/?hl=es Google LLC, “Pub/Sub,” Cloud.google, [online , 2019. Available: https://cloud.google.com/storage/?hl=es Google LLC, “Cloud Datastore,” Cloud.google, [online , 2019. Available: https://cloud.google.com/datastore/ S. Mishra, B. Majhi, P. K. Sa & L. Sharma, “Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection,” Biomed Signal Process Control, vol. 33, pp. 272–280, Mar. 2017. https://doi.org/10.1016/j.bspc.2016.11.021 |
dc.relation.citationendpage.none.fl_str_mv |
213 |
dc.relation.citationstartpage.none.fl_str_mv |
202 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
16 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/3247/3012 https://revistascientificas.cuc.edu.co/ingecuc/article/download/3247/3541 https://revistascientificas.cuc.edu.co/ingecuc/article/download/3247/3578 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2020 : (Julio-Diciembre) |
dc.rights.spa.fl_str_mv |
INGE CUC - 2020 |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2020 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf text/html application/xml |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/3247 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/139e3d92-f9ea-45c3-978d-18077600b820/download |
bitstream.checksum.fl_str_mv |
412019fd94e6735bfb6dbea3225a7851 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760661914451968 |
spelling |
Roa-Martínez, Sandra MilenaRuiz Velasco, Andrés Felipe2020-04-30 00:00:002024-04-09T20:21:20Z2020-04-30 00:00:002024-04-09T20:21:20Z2020-04-300122-6517https://hdl.handle.net/11323/12299https://doi.org/10.17981/ingecuc.16.2.2020.1510.17981/ingecuc.16.2.2020.152382-4700Introducción— Los sistemas de recuperación de imágenes basada en contenido permiten a los usuarios, por medio de una imagen de referencia, recuperar aquellas similares a su consulta. En la concepción de dichos sistemas para la Web, deben ser considerados aspectos relacionados al alto volumen de imágenes digitales existentes, que generan problemas durante su procesamiento en tiempo real, específicamente en la extracción de sus características visuales, objeto de esta investigación. Objetivos— Contribuir en la mitigación de los problemas de escalabilidad, elasticidad, disponibilidad y confiabilidad presentada por el módulo de extracción de sus características visuales de un sistema de recuperación de imágenes basada en contenido. Metodología— Se realizó la definición, diseño e implementación de una propuesta de arquitectura basada en microservicios y posteriormente la ejecución de pruebas mediante experimentos basados en simulación para la evaluación de dicha propuesta, presentando el respectivo análisis y discusión de los resultados entregados por el tablero de indicadores de la consola de Google Cloud. Resultados— Una arquitectura basada en microservicios donde cada algoritmo/técnica de extracción de características de una imagen digital fue implementada como un microservicio bajo la infraestructura de Google Cloud. Conclusiones— Esta propuesta arquitectural soportada en microservicios favorece su escalabilidad automática durante la extracción de características de grandes volúmenes de imágenes y puede ser usada en el diseño y construcción de otros módulos de un sistema de recuperación de imágenes basada en contenido.Introduction— Content-based image retrieval systems allow users, using a reference image, to retrieve those similar to their query. In the conception of such systems for the Web, aspects related to the high volume of existing digital images must be considered, which generate problems during their processing in real time, specifically in the extraction of their visual features, the object of this investigation. Objectives— Contribute to the mitigation of scalability, elasticity, availability and reliability problems presented by the module for extracting its visual characteristics from a content-based image retrieval system. Methodology— The definition, design and implementation of a proposal for architecture based on microservices was carried out, followed by the execution of tests using simulation-based experiments for the evaluation of said proposal, presenting the respective analysis and discussion of the results provided by the indicator panel of the Google Cloud console. Results— A microservices-based architecture where each algorithm / technique for extracting features from a digital image was implemented as a microservice under the Google Cloud infrastructure. Conclusions— This architectural proposal supported by microservices favors its automatic scalability during the extraction of features from large volumes of images and can be used in the design and construction of other modules of a content-based image retrieval system.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2020http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/3247CBIR architecturemicroservicesfeature extractionGoogle Cloudimage retrievalarquitectura CBIRmicroserviciosextracción de característicasGoogle Cloudrecuperación de imágenesArquitectura de microservicios para extracción de características en sistemas de recuperación de imágenes basada en contenidoMicroservices architecture for feature extraction in content-based image retrieval systemsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CucM. Becker, S. Lehrig & S. Becker, “Systematically deriving quality metrics for cloud computing systems,” presented at 6th ACM/SPEC Int Conf Perform Eng, ICPE 2015, TX, USA, pp. 169–174, 31 Jan-4 Feb. 2015. https://doi.org/10.1145/2668930.2688043M. Nabi, M. Toeroe & F. Khendek, “Availability in the cloud: State of the art,” J Netw Comput Appl, vol. 60, pp. 54–67, Jan. 2016. https://doi.org/10.1016/j.jnca.2015.11.014X. Wang & J. Grabowski, “A Reliability Assessment Framework for Cloud Applications,” presented at Cloud Computing 2015, IARIA, Nnc., Fr., 2015. Available: http://www.thinkmind.org/index.php?view=article&articleid=cloud_computing_2015_6_10_20143A. Latif, A. Rasheed, U. Sajid, J. Ahmed, N. Ali, N. I. Ratyal, B. Zafar, S. H. Dar, M. Sajid & T. Khalil, “Content-based image retrieval and feature extraction: A comprehensive review,” Math Probl Eng, vol. 4, pp. 121, 2019. https://doi.org/10.1155/2019/9658350L. Kaliciak, H. Myrhaug & A. Goker, “Content-Based Image Retrieval in Augmented Reality,” presented at 8th International Symposium on Ambient Intelligence, ISAmI 2017, PO, PT, pp. 95–103, 21-23 Jun. 017. https://doi.org/10.1007/978-3-319-61118-1M. Meena, V. A. Bharadi & K. Vartak, “Hybrid Wavelet Based CBIR System Using Software as a Service (SaaS) Model on Public Cloud,” Procedia Comput Sci, vol. 79, pp. 278–286, 2016. https://doi.org/10.1016/j.procs.2016.03.036M. B. Suresh & B. M. Naik, “A novel scheme for extracting shape and texture features using CBIR approach,” Int Conf Energy Commun Data Anal Soft Comput ICECDS 2017, pp. 3399–3404, Jun. 21, 2018. https://doi.org/10.1109/ICECDS.2017.8390091J. Pradhan, S. Kumar, A. K. Pal & H. Banka, “A hierarchical CBIR framework using adaptive tetrolet transform and novel histograms from color and shape features,” Digit Signal Process A Rev J, vol. 82, pp. 258–281, Nov. 2018. https://doi.org/10.1016/j.dsp.2018.07.016A. B. Raut, “NOSQL Database and Its Comparison with RDBMS,” Int J Comput Intell Res, vol. 13, núm. 7, pp. 1645–1651, 2017.M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca & S. Gil, “Evaluating the Monolithic and the Microservice Architecture Pattern to Deploy Web Applications in the Cloud,” presented at 10th Comput Colomb Conf, 10CCC, Bog., Co., 21-25 Sep. 2015. https://doi.org/10.1109/ColumbianCC.2015.7333476R. Grycuk, P. Najgebauer, R. Nowicki & R. Scherer, “Multilayer Architecture for Content-based Image Retrieval Systems,” presented at IEEE 12th Conf Serv Comput Appl, SOCA, Khh., Tw., 18-21 Nov. 2019. https://doi.org/10.1109/SOCA.2019.00025S. Easwaramoorthy, U. Moorthy, C. A. Kumar, S. B. Bhushan & V. Sadagopan, “Content Based Image Retrieval with Enhanced Privacy in Cloud Using Apache Spark,” Commun Comput Inf Sci, vol. 804, pp. 114–128, Feb. 2018. https://doi.org/10.1007/978-981-10-8603-8_10M. Meena, A. R. Singh & V. A. Bharadi, “Architecture for Software as a Service (SaaS) Model of CBIR on Hybrid Cloud of Microsoft Azure,” Procedia Comput Sci, vol. 79, pp. 569–578, 2016. https://doi.org/10.1016/j.procs.2016.03.072A. Rahman, E. Winarko, y M. E. Wibowo, “Mobile content based image retrieval architectures,” presented at Int Conf Electr Eng Comput Sci Informatics, IEEE, Yo. Id., pp. 208–211, 19-21 Sep. 2017. https://doi.org/10.1109/EECSI.2017.8239111A. Balalaie, A. Heydarnoori & P. Jamshidi, “Microservices Architecture Enables DevOps: Migration to a Cloud-Native Architecture,” IEEE Softw, vol. 33, núm. 3, pp. 42–52, Mar. 2016. https://doi.org/10.1109/MS.2016.64T. Cerny, M. J. Donahoo & J. Pechanec, “Disambiguation and comparison of SOA, microservices and self-contained systems,”presented at Res Adapt Converg Syst, RACS '17, Krk., Pol., pp. 228–235, Sep. 2017. https://doi.org/10.1145/3129676.3129682Google LLC, “Cloud Functions,” Cloud.google, [online , 2017. Available: https://cloud.google.com/functions/ Google LLC, “Cloud Functions,” Cloud.google, [online , 2020. Available: https://cloud.google.com/functions/ Google LLC, “Cloud Storage,” Cloud.google, [online , 2019. Available: https://cloud.google.com/storage/?hl=es Google LLC, “Pub/Sub,” Cloud.google, [online , 2019. Available: https://cloud.google.com/storage/?hl=es Google LLC, “Cloud Datastore,” Cloud.google, [online , 2019. Available: https://cloud.google.com/datastore/S. Mishra, B. Majhi, P. K. Sa & L. Sharma, “Gray level co-occurrence matrix and random forest based acute lymphoblastic leukemia detection,” Biomed Signal Process Control, vol. 33, pp. 272–280, Mar. 2017. https://doi.org/10.1016/j.bspc.2016.11.021213202216https://revistascientificas.cuc.edu.co/ingecuc/article/download/3247/3012https://revistascientificas.cuc.edu.co/ingecuc/article/download/3247/3541https://revistascientificas.cuc.edu.co/ingecuc/article/download/3247/3578Núm. 2 , Año 2020 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2694https://repositorio.cuc.edu.co/bitstreams/139e3d92-f9ea-45c3-978d-18077600b820/download412019fd94e6735bfb6dbea3225a7851MD5111323/12299oai:repositorio.cuc.edu.co:11323/122992024-09-16 16:35:38.783http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2020metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |