Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse,...
- Autores:
-
M. Machado, Lauren M.
Frantz Lütke, Sabrina
Perondi, Daniele
Oliveira Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7103
- Acceso en línea:
- https://hdl.handle.net/11323/7103
https://doi.org/10.1016/j.jece.2020.104473
https://repositorio.cuc.edu.co/
- Palabra clave:
- Chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
Clorofenol
Adsorción
Biocarbón
Bagazo de malta
Pirólisis
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_0101e09699afde7fddd39b0701c6a717 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7103 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
dc.title.translated.spa.fl_str_mv |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
title |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
spellingShingle |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars Chlorophenol Adsorption Biochar Malt bagasse Pyrolysis Clorofenol Adsorción Biocarbón Bagazo de malta Pirólisis |
title_short |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
title_full |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
title_fullStr |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
title_full_unstemmed |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
title_sort |
Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars |
dc.creator.fl_str_mv |
M. Machado, Lauren M. Frantz Lütke, Sabrina Perondi, Daniele Oliveira Godinho, Marcelo S. Oliveira, Marcos L. Collazzo, Gabriela Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
M. Machado, Lauren M. Frantz Lütke, Sabrina Perondi, Daniele Oliveira Godinho, Marcelo S. Oliveira, Marcos L. Collazzo, Gabriela Dotto, Guilherme Luiz |
dc.subject.spa.fl_str_mv |
Chlorophenol Adsorption Biochar Malt bagasse Pyrolysis Clorofenol Adsorción Biocarbón Bagazo de malta Pirólisis |
topic |
Chlorophenol Adsorption Biochar Malt bagasse Pyrolysis Clorofenol Adsorción Biocarbón Bagazo de malta Pirólisis |
description |
The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g-1 (CO2) and 545 m² g-1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g-1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98% (using a dosage of 10 g L-1) in the treatment of industrial effluents containing 2-chlorophenol. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-15T15:46:58Z |
dc.date.available.none.fl_str_mv |
2020-09-15T15:46:58Z |
dc.date.issued.none.fl_str_mv |
2020-09-09 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
22133437 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7103 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2020.104473 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
22133437 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7103 https://doi.org/10.1016/j.jece.2020.104473 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] A. Adewuyi, A. Göpfert, O. Anuoluwapo, T. Wolff, Adsorption of 2- chlorophenol onto the surface of underutilized seed of Adenopus brevi florus : A potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664– 672. doi:10.1016/j.jece.2015.12.012. [2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442. doi:10.1016/j.jece.2018.01.051. [3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surfaces and Interfaces. 8 (2017) 182–192. doi:10.1016/j.surfin.2017.03.011. [4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876. doi:10.1016/j.jwpe.2019.100876. [5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using Adsorbents: A Review, Environ. Technol. Innov. 11 (2018) 187–240. doi:10.1016/j.eti.2018.05.006. [6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review, J. Environ. Manage. 241 (2019) 59–75. doi:10.1016/j.jenvman.2019.04.004. [7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988. doi:10.1016/j.jece.2020.103988. [8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation , characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080. doi:10.1016/j.molliq.2016.09.032. [9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65. doi:10.1016/j.jclepro.2017.10.007. [10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers ’ spent grain : a review with an emphasis on food and health, (2016). doi:10.1002/jib.363. [11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638. doi:10.1016/j.wasman.2018.06.040. [12] A.M. Carvajal-Bernal, F. Gómez, L. Giraldo, J.C. Moreno-Piraján, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156. doi:10.1016/j.micromeso.2015.01.052. [13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051. [14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982. doi:10.1016/j.biortech.2009.10.031. [15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372. doi:10.1016/s1872-5805(19)30022-8. [16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104. doi:10.1016/j.wasman.2020.05.038. [17] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287. doi:10.1016/j.scitotenv.2019.01.027. [18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191. [19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403. doi:10.1021/ja02242a004. [20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143. doi:10.1016/j.jhazmat.2009.09.027. [21] P.S. Thue, G.S. Reis, Activated carbon obtained from sapelli wood sawdust by microwave heating for o -cresol adsorption, Res. Chem. Intermed. 43 (2017) 1063–1087. doi:10.1007/s11164-016-2683-8. [22] S.F. Lütke, A. V Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of Environmental Chemical Engineering Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396. doi:10.1016/j.jece.2019.103396. [23] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015). doi:10.1515/pac-2014-1117. [24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336. doi:10.1016/j.ecoenv.2015.11.012. [25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051. [26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review, J. Environ. Chem. Eng. 1 (2013) 658–666. doi:10.1016/j.jece.2013.09.017. [27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Peña-Crecente, Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: A review, Anal. Chim. Acta. 1002 (2018) 1–17. doi:10.1016/j.aca.2017.11.042. [28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater. 265 (2014) 191–200. doi:10.1016/j.jhazmat.2013.11.057. [29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol. 36 (2018) 1066–1099. doi:10.1177/0263617417750739. [30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684. doi:10.1016/j.cej.2010.06.020. [31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180. doi:10.1016/j.jcis.2016.07.049. [32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp. 484 (2015) 118–129. doi:10.1016/j.colsurfa.2015.07.055. [33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste, Chem. Eng. Commun. 202 (2015) 181–193. doi:10.1080/00986445.2013.836633. [34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973. [35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741. doi:10.1016/j.apsusc.2013.12.041. [36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, 2017. doi:10.1016/S0301-7036(14)70853-3. [37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C.Collazzo, G.L.Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248. doi: 10.1016/j.chemosphere.2020.126248. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343720308228#! |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/f58e48c0-d1b6-447f-8a47-f71ee5f7ffce/download https://repositorio.cuc.edu.co/bitstreams/13f72c59-dd26-421a-8f4c-9122be0a4062/download https://repositorio.cuc.edu.co/bitstreams/fc7a17ba-ad3e-400f-9548-d0af1cf7c9f8/download https://repositorio.cuc.edu.co/bitstreams/befe41b3-febe-4237-8a10-425c3797ccd8/download https://repositorio.cuc.edu.co/bitstreams/79f8b2dc-1485-4f71-abb9-b2daf48c39f8/download |
bitstream.checksum.fl_str_mv |
bd4234542970ee5ac55116774c7bac14 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 476cbfd5ec4fc268b83649c21853095a b054e5288ba362b69fe5af693de91290 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760831225921536 |
spelling |
M. Machado, Lauren M.Frantz Lütke, SabrinaPerondi, DanieleOliveira Godinho, MarceloS. Oliveira, Marcos L.Collazzo, GabrielaDotto, Guilherme Luiz2020-09-15T15:46:58Z2020-09-15T15:46:58Z2020-09-0922133437https://hdl.handle.net/11323/7103https://doi.org/10.1016/j.jece.2020.104473Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g-1 (CO2) and 545 m² g-1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g-1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98% (using a dosage of 10 g L-1) in the treatment of industrial effluents containing 2-chlorophenol.La aplicación de la adsorción mediante biocarros para la remediación de efluentes que contienen contaminantes emergentes, incluidos los clorofenoles, es un punto crítico y un desarrollo de tendencia en la literatura. Este tratamiento es más interesante cuando se utilizan residuos fácilmente disponibles y sin costo, como el bagazo de malta, por ejemplo. Aquí, los biocarros se produjeron a partir de bagazo de malta, mediante activación física y química (con CO2 y ZnCl2, respectivamente) y se emplearon como adsorbentes en la remediación de efluentes que contienen 2-clorofenol. Los resultados revelaron que los biocarros activados tienen estructuras mesoporosas y áreas superficiales de 161 m² g-1 (CO2) y 545 m² g-1 (ZnCl2). Para ambos biocarros activados, la adsorción de 2-clorofenol se vio favorecida en condiciones ácidas, con las capacidades de adsorción más altas encontradas utilizando biocarbón activado con ZnCl2. La capacidad máxima de adsorción usando biocarbón activado con ZnCl2 fue de 150 mg g-1. El proceso fue endotérmico y espontáneo. El biocarbón activado con ZnCl2 exhibió una eficiencia del 98% (usando una dosis de 10 g L-1) en el tratamiento de efluentes industriales que contienen 2-clorofenol.M. Machado, Lauren M.Lütke, Sabrina-will be generated-orcid-0000-0001-6003-5131-600Perondi, Daniele-will be generated-orcid-0000-0001-6110-9673-600Oliveira Godinho, Marcelo-will be generated-orcid-0000-0002-2817-7938-600S. Oliveira, Marcos L.Collazzo, Gabriela-will be generated-orcid-0000-0001-9155-3353-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S2213343720308228#!ChlorophenolAdsorptionBiocharMalt bagassePyrolysisClorofenolAdsorciónBiocarbónBagazo de maltaPirólisisTreatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biocharsTreatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biocharsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] A. Adewuyi, A. Göpfert, O. Anuoluwapo, T. Wolff, Adsorption of 2- chlorophenol onto the surface of underutilized seed of Adenopus brevi florus : A potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664– 672. doi:10.1016/j.jece.2015.12.012.[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442. doi:10.1016/j.jece.2018.01.051.[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surfaces and Interfaces. 8 (2017) 182–192. doi:10.1016/j.surfin.2017.03.011.[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876. doi:10.1016/j.jwpe.2019.100876.[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using Adsorbents: A Review, Environ. Technol. Innov. 11 (2018) 187–240. doi:10.1016/j.eti.2018.05.006.[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review, J. Environ. Manage. 241 (2019) 59–75. doi:10.1016/j.jenvman.2019.04.004.[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988. doi:10.1016/j.jece.2020.103988.[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation , characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080. doi:10.1016/j.molliq.2016.09.032.[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65. doi:10.1016/j.jclepro.2017.10.007.[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers ’ spent grain : a review with an emphasis on food and health, (2016). doi:10.1002/jib.363.[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638. doi:10.1016/j.wasman.2018.06.040.[12] A.M. Carvajal-Bernal, F. Gómez, L. Giraldo, J.C. Moreno-Piraján, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156. doi:10.1016/j.micromeso.2015.01.052.[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051.[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982. doi:10.1016/j.biortech.2009.10.031.[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372. doi:10.1016/s1872-5805(19)30022-8.[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104. doi:10.1016/j.wasman.2020.05.038.[17] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287. doi:10.1016/j.scitotenv.2019.01.027.[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403. doi:10.1021/ja02242a004.[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143. doi:10.1016/j.jhazmat.2009.09.027.[21] P.S. Thue, G.S. Reis, Activated carbon obtained from sapelli wood sawdust by microwave heating for o -cresol adsorption, Res. Chem. Intermed. 43 (2017) 1063–1087. doi:10.1007/s11164-016-2683-8.[22] S.F. Lütke, A. V Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of Environmental Chemical Engineering Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396. doi:10.1016/j.jece.2019.103396.[23] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015). doi:10.1515/pac-2014-1117.[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336. doi:10.1016/j.ecoenv.2015.11.012.[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051.[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review, J. Environ. Chem. Eng. 1 (2013) 658–666. doi:10.1016/j.jece.2013.09.017.[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Peña-Crecente, Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: A review, Anal. Chim. Acta. 1002 (2018) 1–17. doi:10.1016/j.aca.2017.11.042.[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater. 265 (2014) 191–200. doi:10.1016/j.jhazmat.2013.11.057.[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol. 36 (2018) 1066–1099. doi:10.1177/0263617417750739.[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684. doi:10.1016/j.cej.2010.06.020.[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180. doi:10.1016/j.jcis.2016.07.049.[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp. 484 (2015) 118–129. doi:10.1016/j.colsurfa.2015.07.055.[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste, Chem. Eng. Commun. 202 (2015) 181–193. doi:10.1080/00986445.2013.836633.[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741. doi:10.1016/j.apsusc.2013.12.041.[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, 2017. doi:10.1016/S0301-7036(14)70853-3.[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C.Collazzo, G.L.Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248. doi: 10.1016/j.chemosphere.2020.126248.PublicationORIGINAL..pdf..pdfapplication/pdf3613169https://repositorio.cuc.edu.co/bitstreams/f58e48c0-d1b6-447f-8a47-f71ee5f7ffce/downloadbd4234542970ee5ac55116774c7bac14MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/13f72c59-dd26-421a-8f4c-9122be0a4062/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/fc7a17ba-ad3e-400f-9548-d0af1cf7c9f8/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL..pdf.jpg..pdf.jpgimage/jpeg36596https://repositorio.cuc.edu.co/bitstreams/befe41b3-febe-4237-8a10-425c3797ccd8/download476cbfd5ec4fc268b83649c21853095aMD54TEXT..pdf.txt..pdf.txttext/plain49463https://repositorio.cuc.edu.co/bitstreams/79f8b2dc-1485-4f71-abb9-b2daf48c39f8/downloadb054e5288ba362b69fe5af693de91290MD5511323/7103oai:repositorio.cuc.edu.co:11323/71032024-09-17 14:07:06.29http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |