Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars

The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse,...

Full description

Autores:
M. Machado, Lauren M.
Frantz Lütke, Sabrina
Perondi, Daniele
Oliveira Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7103
Acceso en línea:
https://hdl.handle.net/11323/7103
https://doi.org/10.1016/j.jece.2020.104473
https://repositorio.cuc.edu.co/
Palabra clave:
Chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
Clorofenol
Adsorción
Biocarbón
Bagazo de malta
Pirólisis
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_0101e09699afde7fddd39b0701c6a717
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7103
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
dc.title.translated.spa.fl_str_mv Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
title Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
spellingShingle Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
Chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
Clorofenol
Adsorción
Biocarbón
Bagazo de malta
Pirólisis
title_short Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
title_full Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
title_fullStr Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
title_full_unstemmed Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
title_sort Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars
dc.creator.fl_str_mv M. Machado, Lauren M.
Frantz Lütke, Sabrina
Perondi, Daniele
Oliveira Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv M. Machado, Lauren M.
Frantz Lütke, Sabrina
Perondi, Daniele
Oliveira Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
dc.subject.spa.fl_str_mv Chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
Clorofenol
Adsorción
Biocarbón
Bagazo de malta
Pirólisis
topic Chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
Clorofenol
Adsorción
Biocarbón
Bagazo de malta
Pirólisis
description The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g-1 (CO2) and 545 m² g-1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g-1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98% (using a dosage of 10 g L-1) in the treatment of industrial effluents containing 2-chlorophenol.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-15T15:46:58Z
dc.date.available.none.fl_str_mv 2020-09-15T15:46:58Z
dc.date.issued.none.fl_str_mv 2020-09-09
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 22133437
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7103
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jece.2020.104473
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 22133437
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7103
https://doi.org/10.1016/j.jece.2020.104473
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] A. Adewuyi, A. Göpfert, O. Anuoluwapo, T. Wolff, Adsorption of 2- chlorophenol onto the surface of underutilized seed of Adenopus brevi florus : A potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664– 672. doi:10.1016/j.jece.2015.12.012.
[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442. doi:10.1016/j.jece.2018.01.051.
[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surfaces and Interfaces. 8 (2017) 182–192. doi:10.1016/j.surfin.2017.03.011.
[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876. doi:10.1016/j.jwpe.2019.100876.
[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using Adsorbents: A Review, Environ. Technol. Innov. 11 (2018) 187–240. doi:10.1016/j.eti.2018.05.006.
[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review, J. Environ. Manage. 241 (2019) 59–75. doi:10.1016/j.jenvman.2019.04.004.
[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988. doi:10.1016/j.jece.2020.103988.
[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation , characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080. doi:10.1016/j.molliq.2016.09.032.
[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65. doi:10.1016/j.jclepro.2017.10.007.
[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers ’ spent grain : a review with an emphasis on food and health, (2016). doi:10.1002/jib.363.
[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638. doi:10.1016/j.wasman.2018.06.040.
[12] A.M. Carvajal-Bernal, F. Gómez, L. Giraldo, J.C. Moreno-Piraján, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156. doi:10.1016/j.micromeso.2015.01.052.
[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051.
[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982. doi:10.1016/j.biortech.2009.10.031.
[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372. doi:10.1016/s1872-5805(19)30022-8.
[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104. doi:10.1016/j.wasman.2020.05.038.
[17] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287. doi:10.1016/j.scitotenv.2019.01.027.
[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.
[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403. doi:10.1021/ja02242a004.
[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143. doi:10.1016/j.jhazmat.2009.09.027.
[21] P.S. Thue, G.S. Reis, Activated carbon obtained from sapelli wood sawdust by microwave heating for o -cresol adsorption, Res. Chem. Intermed. 43 (2017) 1063–1087. doi:10.1007/s11164-016-2683-8.
[22] S.F. Lütke, A. V Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of Environmental Chemical Engineering Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396. doi:10.1016/j.jece.2019.103396.
[23] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015). doi:10.1515/pac-2014-1117.
[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336. doi:10.1016/j.ecoenv.2015.11.012.
[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051.
[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review, J. Environ. Chem. Eng. 1 (2013) 658–666. doi:10.1016/j.jece.2013.09.017.
[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Peña-Crecente, Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: A review, Anal. Chim. Acta. 1002 (2018) 1–17. doi:10.1016/j.aca.2017.11.042.
[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater. 265 (2014) 191–200. doi:10.1016/j.jhazmat.2013.11.057.
[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol. 36 (2018) 1066–1099. doi:10.1177/0263617417750739.
[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684. doi:10.1016/j.cej.2010.06.020.
[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180. doi:10.1016/j.jcis.2016.07.049.
[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp. 484 (2015) 118–129. doi:10.1016/j.colsurfa.2015.07.055.
[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste, Chem. Eng. Commun. 202 (2015) 181–193. doi:10.1080/00986445.2013.836633.
[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.
[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741. doi:10.1016/j.apsusc.2013.12.041.
[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, 2017. doi:10.1016/S0301-7036(14)70853-3.
[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C.Collazzo, G.L.Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248. doi: 10.1016/j.chemosphere.2020.126248.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Environmental Chemical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343720308228#!
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f58e48c0-d1b6-447f-8a47-f71ee5f7ffce/download
https://repositorio.cuc.edu.co/bitstreams/13f72c59-dd26-421a-8f4c-9122be0a4062/download
https://repositorio.cuc.edu.co/bitstreams/fc7a17ba-ad3e-400f-9548-d0af1cf7c9f8/download
https://repositorio.cuc.edu.co/bitstreams/befe41b3-febe-4237-8a10-425c3797ccd8/download
https://repositorio.cuc.edu.co/bitstreams/79f8b2dc-1485-4f71-abb9-b2daf48c39f8/download
bitstream.checksum.fl_str_mv bd4234542970ee5ac55116774c7bac14
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
476cbfd5ec4fc268b83649c21853095a
b054e5288ba362b69fe5af693de91290
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760831225921536
spelling M. Machado, Lauren M.Frantz Lütke, SabrinaPerondi, DanieleOliveira Godinho, MarceloS. Oliveira, Marcos L.Collazzo, GabrielaDotto, Guilherme Luiz2020-09-15T15:46:58Z2020-09-15T15:46:58Z2020-09-0922133437https://hdl.handle.net/11323/7103https://doi.org/10.1016/j.jece.2020.104473Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g-1 (CO2) and 545 m² g-1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g-1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98% (using a dosage of 10 g L-1) in the treatment of industrial effluents containing 2-chlorophenol.La aplicación de la adsorción mediante biocarros para la remediación de efluentes que contienen contaminantes emergentes, incluidos los clorofenoles, es un punto crítico y un desarrollo de tendencia en la literatura. Este tratamiento es más interesante cuando se utilizan residuos fácilmente disponibles y sin costo, como el bagazo de malta, por ejemplo. Aquí, los biocarros se produjeron a partir de bagazo de malta, mediante activación física y química (con CO2 y ZnCl2, respectivamente) y se emplearon como adsorbentes en la remediación de efluentes que contienen 2-clorofenol. Los resultados revelaron que los biocarros activados tienen estructuras mesoporosas y áreas superficiales de 161 m² g-1 (CO2) y 545 m² g-1 (ZnCl2). Para ambos biocarros activados, la adsorción de 2-clorofenol se vio favorecida en condiciones ácidas, con las capacidades de adsorción más altas encontradas utilizando biocarbón activado con ZnCl2. La capacidad máxima de adsorción usando biocarbón activado con ZnCl2 fue de 150 mg g-1. El proceso fue endotérmico y espontáneo. El biocarbón activado con ZnCl2 exhibió una eficiencia del 98% (usando una dosis de 10 g L-1) en el tratamiento de efluentes industriales que contienen 2-clorofenol.M. Machado, Lauren M.Lütke, Sabrina-will be generated-orcid-0000-0001-6003-5131-600Perondi, Daniele-will be generated-orcid-0000-0001-6110-9673-600Oliveira Godinho, Marcelo-will be generated-orcid-0000-0002-2817-7938-600S. Oliveira, Marcos L.Collazzo, Gabriela-will be generated-orcid-0000-0001-9155-3353-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S2213343720308228#!ChlorophenolAdsorptionBiocharMalt bagassePyrolysisClorofenolAdsorciónBiocarbónBagazo de maltaPirólisisTreatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biocharsTreatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biocharsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] A. Adewuyi, A. Göpfert, O. Anuoluwapo, T. Wolff, Adsorption of 2- chlorophenol onto the surface of underutilized seed of Adenopus brevi florus : A potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664– 672. doi:10.1016/j.jece.2015.12.012.[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442. doi:10.1016/j.jece.2018.01.051.[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surfaces and Interfaces. 8 (2017) 182–192. doi:10.1016/j.surfin.2017.03.011.[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876. doi:10.1016/j.jwpe.2019.100876.[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, Water purification by using Adsorbents: A Review, Environ. Technol. Innov. 11 (2018) 187–240. doi:10.1016/j.eti.2018.05.006.[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review, J. Environ. Manage. 241 (2019) 59–75. doi:10.1016/j.jenvman.2019.04.004.[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988. doi:10.1016/j.jece.2020.103988.[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C.P. Vaghetti, S.L.P. Dias, Preparation , characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080. doi:10.1016/j.molliq.2016.09.032.[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65. doi:10.1016/j.jclepro.2017.10.007.[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers ’ spent grain : a review with an emphasis on food and health, (2016). doi:10.1002/jib.363.[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638. doi:10.1016/j.wasman.2018.06.040.[12] A.M. Carvajal-Bernal, F. Gómez, L. Giraldo, J.C. Moreno-Piraján, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156. doi:10.1016/j.micromeso.2015.01.052.[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051.[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982. doi:10.1016/j.biortech.2009.10.031.[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372. doi:10.1016/s1872-5805(19)30022-8.[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104. doi:10.1016/j.wasman.2020.05.038.[17] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287. doi:10.1016/j.scitotenv.2019.01.027.[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403. doi:10.1021/ja02242a004.[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143. doi:10.1016/j.jhazmat.2009.09.027.[21] P.S. Thue, G.S. Reis, Activated carbon obtained from sapelli wood sawdust by microwave heating for o -cresol adsorption, Res. Chem. Intermed. 43 (2017) 1063–1087. doi:10.1007/s11164-016-2683-8.[22] S.F. Lütke, A. V Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of Environmental Chemical Engineering Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396. doi:10.1016/j.jece.2019.103396.[23] M. Thommes, K. Kaneko, A. V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015). doi:10.1515/pac-2014-1117.[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: Isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336. doi:10.1016/j.ecoenv.2015.11.012.[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review, Renew. Sustain. Energy Rev. 46 (2015) 218–235. doi:10.1016/j.rser.2015.02.051.[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - A review, J. Environ. Chem. Eng. 1 (2013) 658–666. doi:10.1016/j.jece.2013.09.017.[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Peña-Crecente, Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: A review, Anal. Chim. Acta. 1002 (2018) 1–17. doi:10.1016/j.aca.2017.11.042.[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/Mn activation, J. Hazard. Mater. 265 (2014) 191–200. doi:10.1016/j.jhazmat.2013.11.057.[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): Kinetic, equilibrium, and thermodynamic study, Adsorpt. Sci. Technol. 36 (2018) 1066–1099. doi:10.1177/0263617417750739.[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684. doi:10.1016/j.cej.2010.06.020.[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: Comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180. doi:10.1016/j.jcis.2016.07.049.[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surfaces A Physicochem. Eng. Asp. 484 (2015) 118–129. doi:10.1016/j.colsurfa.2015.07.055.[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption Characteristics of Congo Red from Aqueous Solution onto Tea Waste, Chem. Eng. Commun. 202 (2015) 181–193. doi:10.1080/00986445.2013.836633.[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741. doi:10.1016/j.apsusc.2013.12.041.[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Ávila, Adsorption Processes for Water Treatment and Purification, 2017. doi:10.1016/S0301-7036(14)70853-3.[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C.Collazzo, G.L.Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248. doi: 10.1016/j.chemosphere.2020.126248.PublicationORIGINAL..pdf..pdfapplication/pdf3613169https://repositorio.cuc.edu.co/bitstreams/f58e48c0-d1b6-447f-8a47-f71ee5f7ffce/downloadbd4234542970ee5ac55116774c7bac14MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/13f72c59-dd26-421a-8f4c-9122be0a4062/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/fc7a17ba-ad3e-400f-9548-d0af1cf7c9f8/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAIL..pdf.jpg..pdf.jpgimage/jpeg36596https://repositorio.cuc.edu.co/bitstreams/befe41b3-febe-4237-8a10-425c3797ccd8/download476cbfd5ec4fc268b83649c21853095aMD54TEXT..pdf.txt..pdf.txttext/plain49463https://repositorio.cuc.edu.co/bitstreams/79f8b2dc-1485-4f71-abb9-b2daf48c39f8/downloadb054e5288ba362b69fe5af693de91290MD5511323/7103oai:repositorio.cuc.edu.co:11323/71032024-09-17 14:07:06.29http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==