Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells

We have studied the quantum confinement, applied hydrostatic pressure, and temperature dependence of the binding energy of a magnetoexciton bound to a ionized-donor impurity in GaAs/Ga1−xAlxAs quantum wells, taking into account the spin-orbit coupling between the (Γv7,Γv8) and (Γc7,Γc8) multiplets,...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Ministerio de Ciencia, Tecnología e Innovación
Repositorio:
Repositorio Minciencias
Idioma:
eng
OAI Identifier:
oai:repositorio.minciencias.gov.co:20.500.14143/18432
Acceso en línea:
https://repositorio.minciencias.gov.co/handle/20.500.14143/18432
Palabra clave:
Hidrostática
Energía mecánica
Química cuántica
Dispositivos semiconductores
Rights
License
http://purl.org/coar/access_right/c_f1cf
id RCENDOC_efb189e75ec7a1e4e0f8306c7ad284d9
oai_identifier_str oai:repositorio.minciencias.gov.co:20.500.14143/18432
network_acronym_str RCENDOC
network_name_str Repositorio Minciencias
repository_id_str
spelling Colombia2018-08-02T22:34:32Z2018-08-02T22:34:32Z2011-04info:eu-repo/date/embargoEnd/2024-01-31https://repositorio.minciencias.gov.co/handle/20.500.14143/1843210.1063/1.3594691We have studied the quantum confinement, applied hydrostatic pressure, and temperature dependence of the binding energy of a magnetoexciton bound to a ionized-donor impurity in GaAs/Ga1−xAlxAs quantum wells, taking into account the spin-orbit coupling between the (Γv7,Γv8) and (Γc7,Γc8) multiplets, including the Al concentration, temperature, and applied hydrostatic pressure dependence on the electron effective-mass me(P,T,x) and the Landé ge(P,T,x) factor by using the well known five-level k · p theory. We have found that the binding energy Eb increases with the strong geometrical confinement, as well as with the growth-direction applied magnetic field. The presence of the ionized-donor impurity clearly increases the heavy-hole exciton binding energy. The quantum confinement, in part determined by the height of the barrier potential-well, i.e., by the Al concentration and the hydrostatic pressure, contributes to enhance the binding energy. Also, we found that the exciton binding energy increases with temperature due to the different temperature band-gap dependence of the well and barrier regions, which conduces to a net increasing of the potential barrier. Also, we have obtained a good agreement with previous theoretical and experimental findings. We hope the present work must be taken into account for the understanding of experimental reports and for the design of optoelectronic devices with multiple technological purposes.Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] Colciencias1106-452-21296Control cuántico de las propiedades electrónicas y de espín en nanoestructuras inorgánicas, orgánicas y biológicasnopdf8 páginasengControl cuántico de las propiedades electrónicas y de espín en nanoestructuras inorgánicas, orgánicas y biológicas. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/18424" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/18424</a>Journal of Applied Physics 109; 2011Contiene 47 referencias bibliográficas. Véase el documento adjuntoTemperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wellsArtículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Administradores de ciencia y tecnologíaInvestigadoresHidrostáticaEnergía mecánicaQuímica cuánticaDispositivos semiconductoreshttp://purl.org/coar/access_right/c_f1cfVivas Moreno, José JoaquinMejía Salazar, Jorge RicardoPorras Montenegro, NelsonUniversidad del Valle, Univallenelmonte@univalle.edu.coPrograma nacional de ciencias básicasComunidad científica colombiana0284-2008Artículos de investigaciónPublicationORIGINAL1-1-1-9-art.pdf1-1-1-9-art.pdfArticulo de Revista Journal of Applied Physicsapplication/pdf2088168https://repositorio.minciencias.gov.co/bitstreams/d9a187ee-1f32-49fa-b2bd-011220f9e071/download920ff5d54c3f27d2b5f78b844b44357aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.minciencias.gov.co/bitstreams/e56cd942-bcf1-463c-80f2-2a3f719c8d2f/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXT1-1-1-9-art.pdf.txt1-1-1-9-art.pdf.txtExtracted texttext/plain2https://repositorio.minciencias.gov.co/bitstreams/81d715a1-f8e1-4880-981f-139544fdd7d9/downloade1c06d85ae7b8b032bef47e42e4c08f9MD55THUMBNAIL1-1-1-9-art.pdf.jpg1-1-1-9-art.pdf.jpgGenerated Thumbnailimage/jpeg20295https://repositorio.minciencias.gov.co/bitstreams/2173d237-85fe-44e3-a8bb-1fb44b8c9e82/downloadd7ca5ac409c11801e829b8983407f083MD5620.500.14143/18432oai:repositorio.minciencias.gov.co:20.500.14143/184322023-11-29 17:25:17.903restrictedhttps://repositorio.minciencias.gov.coRepositorio Institucional de Mincienciascendoc@minciencias.gov.co
dc.title.es_CO.fl_str_mv Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
title Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
spellingShingle Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
Hidrostática
Energía mecánica
Química cuántica
Dispositivos semiconductores
title_short Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
title_full Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
title_fullStr Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
title_full_unstemmed Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
title_sort Temperature and hydrostatic pressure effects on the binding energy of magnetoexcitons bound to ionized-donor impurities in GaAs/AlxGa1−xAs quantum wells
dc.subject.spines.none.fl_str_mv Hidrostática
Energía mecánica
Química cuántica
Dispositivos semiconductores
topic Hidrostática
Energía mecánica
Química cuántica
Dispositivos semiconductores
description We have studied the quantum confinement, applied hydrostatic pressure, and temperature dependence of the binding energy of a magnetoexciton bound to a ionized-donor impurity in GaAs/Ga1−xAlxAs quantum wells, taking into account the spin-orbit coupling between the (Γv7,Γv8) and (Γc7,Γc8) multiplets, including the Al concentration, temperature, and applied hydrostatic pressure dependence on the electron effective-mass me(P,T,x) and the Landé ge(P,T,x) factor by using the well known five-level k · p theory. We have found that the binding energy Eb increases with the strong geometrical confinement, as well as with the growth-direction applied magnetic field. The presence of the ionized-donor impurity clearly increases the heavy-hole exciton binding energy. The quantum confinement, in part determined by the height of the barrier potential-well, i.e., by the Al concentration and the hydrostatic pressure, contributes to enhance the binding energy. Also, we found that the exciton binding energy increases with temperature due to the different temperature band-gap dependence of the well and barrier regions, which conduces to a net increasing of the potential barrier. Also, we have obtained a good agreement with previous theoretical and experimental findings. We hope the present work must be taken into account for the understanding of experimental reports and for the design of optoelectronic devices with multiple technological purposes.
publishDate 2011
dc.date.issued.none.fl_str_mv 2011-04
dc.date.accessioned.none.fl_str_mv 2018-08-02T22:34:32Z
dc.date.available.none.fl_str_mv 2018-08-02T22:34:32Z
dc.date.embargoEnd.es_CO.fl_str_mv info:eu-repo/date/embargoEnd/2024-01-31
dc.type.es_CO.fl_str_mv Artículo científico
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.identifier.uri.none.fl_str_mv https://repositorio.minciencias.gov.co/handle/20.500.14143/18432
dc.identifier.doi.none.fl_str_mv 10.1063/1.3594691
url https://repositorio.minciencias.gov.co/handle/20.500.14143/18432
identifier_str_mv 10.1063/1.3594691
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Control cuántico de las propiedades electrónicas y de espín en nanoestructuras inorgánicas, orgánicas y biológicas. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/18424" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/18424</a>
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://purl.org/coar/access_right/c_f1cf
dc.format.es_CO.fl_str_mv pdf
dc.format.extent.es_CO.fl_str_mv 8 páginas
dc.coverage.spatial.es_CO.fl_str_mv Colombia
dc.source.es_CO.fl_str_mv Journal of Applied Physics 109; 2011
institution Ministerio de Ciencia, Tecnología e Innovación
dc.source.bibliographicCitation.es_CO.fl_str_mv Contiene 47 referencias bibliográficas. Véase el documento adjunto
bitstream.url.fl_str_mv https://repositorio.minciencias.gov.co/bitstreams/d9a187ee-1f32-49fa-b2bd-011220f9e071/download
https://repositorio.minciencias.gov.co/bitstreams/e56cd942-bcf1-463c-80f2-2a3f719c8d2f/download
https://repositorio.minciencias.gov.co/bitstreams/81d715a1-f8e1-4880-981f-139544fdd7d9/download
https://repositorio.minciencias.gov.co/bitstreams/2173d237-85fe-44e3-a8bb-1fb44b8c9e82/download
bitstream.checksum.fl_str_mv 920ff5d54c3f27d2b5f78b844b44357a
8a4605be74aa9ea9d79846c1fba20a33
e1c06d85ae7b8b032bef47e42e4c08f9
d7ca5ac409c11801e829b8983407f083
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de Minciencias
repository.mail.fl_str_mv cendoc@minciencias.gov.co
_version_ 1811305858058944512