On the classification of 3-bridge links
Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infin...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2012
- Institución:
- Ministerio de Ciencia, Tecnología e Innovación
- Repositorio:
- Repositorio Minciencias
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.minciencias.gov.co:20.500.14143/22006
- Acceso en línea:
- https://repositorio.minciencias.gov.co/handle/20.500.14143/22006
- Palabra clave:
- Teoría de los números
Bridge links
Bridge presentation
Link diagram
Butterfly
Butterfly presentation
Variables reales
Topología algebraica
Homomorfismos
Modelos matemáticos
Diagramas de curvas
- Rights
- License
- http://purl.org/coar/access_right/c_f1cf
id |
RCENDOC_bff88210d38dcef49f2eefefbd291bbd |
---|---|
oai_identifier_str |
oai:repositorio.minciencias.gov.co:20.500.14143/22006 |
network_acronym_str |
RCENDOC |
network_name_str |
Repositorio Minciencias |
repository_id_str |
|
spelling |
Medellín, Antioquia2018-09-30T01:50:46Z2018-09-30T01:50:46Z2012info:eu-repo/date/embargoEnd/2024-01-310034-7426https://repositorio.minciencias.gov.co/handle/20.500.14143/22006Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infinite number of 3-bridge diagrams, so we define an order in the set (p/n, q/m, s/l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butterfly of L, and call it the butterfly presentation of L. This presentation extends, in a natural way, the well-known Schubert classification of 2-bridge links. We obtain necessary and sufficient conditions for a triple (p/n, q/m, s/l) to correspond to a 3-butterfly and so, to a 3-bridge link diagram. Given a triple (p/n, q/m, s/l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butterfly of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p/n, q/m, s/l) and (p’/n’, q’/m’, s’/l’) represent the same 3-bridge link?Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] Colciencias1118-521-28160Mariposas, enlaces de tres puentes y grupos relacionadosnopdf32 páginasengMariposas, enlaces de tres puentes y grupos relacionados : Informe científico final. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/22003" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/22003</a>Revista Colombiana de Matemáticas Volumen 46(2012)2, páginas 113-144Contiene 26 referencias bibliográficas. Véase el documento adjuntoOn the classification of 3-bridge linksArtículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1EstudiantesProfesoresTeoría de los númerosBridge linksBridge presentationLink diagramButterflyButterfly presentationVariables realesTopología algebraicaHomomorfismosModelos matemáticosDiagramas de curvashttp://purl.org/coar/access_right/c_f1cfHilden, Hugh MichaelMontesinos, José MaríaTejada Jiménez, Débora MaríaToro Villegas, Margarita MaríaUniversidad Nacional de Colombia, UNAL - Sede Medellínmmtoro@unal.edu.co2014-06Programa de ciencias básicasComunidad académica de Colombia0521-2010Artículos de investigaciónPublicationORIGINALA_HMTT1.pdfA_HMTT1.pdfArticulo asociado al proyectoapplication/pdf812850https://repositorio.minciencias.gov.co/bitstreams/a267939b-c775-418d-9c33-195461836747/downloadc6145dd2e4fd83cd1e34f189d2d6ecebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.minciencias.gov.co/bitstreams/b1f80e32-96e1-4f92-82cc-9cf4feb31181/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA_HMTT1.pdf.txtA_HMTT1.pdf.txtExtracted texttext/plain58847https://repositorio.minciencias.gov.co/bitstreams/3e3dfa16-9930-4fa7-bec4-fdc0bf45f2ef/downloadc1c544e33a4afca606fc05be2b7a5b8cMD55THUMBNAILA_HMTT1.pdf.jpgA_HMTT1.pdf.jpgGenerated Thumbnailimage/jpeg8962https://repositorio.minciencias.gov.co/bitstreams/1cb47259-7642-4b7e-8fec-a17d4d99c630/downloadf2c4672e268cafd35478413ab2d053cfMD5620.500.14143/22006oai:repositorio.minciencias.gov.co:20.500.14143/220062023-11-29 17:37:29.181restrictedhttps://repositorio.minciencias.gov.coRepositorio Institucional de Mincienciascendoc@minciencias.gov.co |
dc.title.es_CO.fl_str_mv |
On the classification of 3-bridge links |
title |
On the classification of 3-bridge links |
spellingShingle |
On the classification of 3-bridge links Teoría de los números Bridge links Bridge presentation Link diagram Butterfly Butterfly presentation Variables reales Topología algebraica Homomorfismos Modelos matemáticos Diagramas de curvas |
title_short |
On the classification of 3-bridge links |
title_full |
On the classification of 3-bridge links |
title_fullStr |
On the classification of 3-bridge links |
title_full_unstemmed |
On the classification of 3-bridge links |
title_sort |
On the classification of 3-bridge links |
dc.subject.lemb.es_CO.fl_str_mv |
Teoría de los números |
topic |
Teoría de los números Bridge links Bridge presentation Link diagram Butterfly Butterfly presentation Variables reales Topología algebraica Homomorfismos Modelos matemáticos Diagramas de curvas |
dc.subject.keyword.none.fl_str_mv |
Bridge links Bridge presentation Link diagram Butterfly Butterfly presentation |
dc.subject.spines.es_CO.fl_str_mv |
Variables reales Topología algebraica Homomorfismos Modelos matemáticos Diagramas de curvas |
description |
Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infinite number of 3-bridge diagrams, so we define an order in the set (p/n, q/m, s/l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butterfly of L, and call it the butterfly presentation of L. This presentation extends, in a natural way, the well-known Schubert classification of 2-bridge links. We obtain necessary and sufficient conditions for a triple (p/n, q/m, s/l) to correspond to a 3-butterfly and so, to a 3-bridge link diagram. Given a triple (p/n, q/m, s/l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butterfly of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p/n, q/m, s/l) and (p’/n’, q’/m’, s’/l’) represent the same 3-bridge link? |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2018-09-30T01:50:46Z |
dc.date.available.none.fl_str_mv |
2018-09-30T01:50:46Z |
dc.date.embargoEnd.es_CO.fl_str_mv |
info:eu-repo/date/embargoEnd/2024-01-31 |
dc.type.es_CO.fl_str_mv |
Artículo científico |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.es_CO.fl_str_mv |
info:eu-repo/semantics/article |
dc.identifier.issn.none.fl_str_mv |
0034-7426 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.minciencias.gov.co/handle/20.500.14143/22006 |
identifier_str_mv |
0034-7426 |
url |
https://repositorio.minciencias.gov.co/handle/20.500.14143/22006 |
dc.language.iso.es_CO.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.none.fl_str_mv |
Mariposas, enlaces de tres puentes y grupos relacionados : Informe científico final. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/22003" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/22003</a> |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_f1cf |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_f1cf |
dc.format.es_CO.fl_str_mv |
pdf |
dc.format.extent.es_CO.fl_str_mv |
32 páginas |
dc.coverage.spatial.es_CO.fl_str_mv |
Medellín, Antioquia |
dc.source.es_CO.fl_str_mv |
Revista Colombiana de Matemáticas Volumen 46(2012)2, páginas 113-144 |
institution |
Ministerio de Ciencia, Tecnología e Innovación |
dc.source.bibliographicCitation.es_CO.fl_str_mv |
Contiene 26 referencias bibliográficas. Véase el documento adjunto |
bitstream.url.fl_str_mv |
https://repositorio.minciencias.gov.co/bitstreams/a267939b-c775-418d-9c33-195461836747/download https://repositorio.minciencias.gov.co/bitstreams/b1f80e32-96e1-4f92-82cc-9cf4feb31181/download https://repositorio.minciencias.gov.co/bitstreams/3e3dfa16-9930-4fa7-bec4-fdc0bf45f2ef/download https://repositorio.minciencias.gov.co/bitstreams/1cb47259-7642-4b7e-8fec-a17d4d99c630/download |
bitstream.checksum.fl_str_mv |
c6145dd2e4fd83cd1e34f189d2d6eceb 8a4605be74aa9ea9d79846c1fba20a33 c1c544e33a4afca606fc05be2b7a5b8c f2c4672e268cafd35478413ab2d053cf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de Minciencias |
repository.mail.fl_str_mv |
cendoc@minciencias.gov.co |
_version_ |
1811305885139468288 |