On the classification of 3-bridge links

Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infin...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2012
Institución:
Ministerio de Ciencia, Tecnología e Innovación
Repositorio:
Repositorio Minciencias
Idioma:
eng
OAI Identifier:
oai:repositorio.minciencias.gov.co:20.500.14143/22006
Acceso en línea:
https://repositorio.minciencias.gov.co/handle/20.500.14143/22006
Palabra clave:
Teoría de los números
Bridge links
Bridge presentation
Link diagram
Butterfly
Butterfly presentation
Variables reales
Topología algebraica
Homomorfismos
Modelos matemáticos
Diagramas de curvas
Rights
License
http://purl.org/coar/access_right/c_f1cf
id RCENDOC_bff88210d38dcef49f2eefefbd291bbd
oai_identifier_str oai:repositorio.minciencias.gov.co:20.500.14143/22006
network_acronym_str RCENDOC
network_name_str Repositorio Minciencias
repository_id_str
spelling Medellín, Antioquia2018-09-30T01:50:46Z2018-09-30T01:50:46Z2012info:eu-repo/date/embargoEnd/2024-01-310034-7426https://repositorio.minciencias.gov.co/handle/20.500.14143/22006Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infinite number of 3-bridge diagrams, so we define an order in the set (p/n, q/m, s/l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butterfly of L, and call it the butterfly presentation of L. This presentation extends, in a natural way, the well-known Schubert classification of 2-bridge links. We obtain necessary and sufficient conditions for a triple (p/n, q/m, s/l) to correspond to a 3-butterfly and so, to a 3-bridge link diagram. Given a triple (p/n, q/m, s/l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butterfly of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p/n, q/m, s/l) and (p’/n’, q’/m’, s’/l’) represent the same 3-bridge link?Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] Colciencias1118-521-28160Mariposas, enlaces de tres puentes y grupos relacionadosnopdf32 páginasengMariposas, enlaces de tres puentes y grupos relacionados : Informe científico final. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/22003" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/22003</a>Revista Colombiana de Matemáticas Volumen 46(2012)2, páginas 113-144Contiene 26 referencias bibliográficas. Véase el documento adjuntoOn the classification of 3-bridge linksArtículo científicoinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1EstudiantesProfesoresTeoría de los númerosBridge linksBridge presentationLink diagramButterflyButterfly presentationVariables realesTopología algebraicaHomomorfismosModelos matemáticosDiagramas de curvashttp://purl.org/coar/access_right/c_f1cfHilden, Hugh MichaelMontesinos, José MaríaTejada Jiménez, Débora MaríaToro Villegas, Margarita MaríaUniversidad Nacional de Colombia, UNAL - Sede Medellínmmtoro@unal.edu.co2014-06Programa de ciencias básicasComunidad académica de Colombia0521-2010Artículos de investigaciónPublicationORIGINALA_HMTT1.pdfA_HMTT1.pdfArticulo asociado al proyectoapplication/pdf812850https://repositorio.minciencias.gov.co/bitstreams/a267939b-c775-418d-9c33-195461836747/downloadc6145dd2e4fd83cd1e34f189d2d6ecebMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.minciencias.gov.co/bitstreams/b1f80e32-96e1-4f92-82cc-9cf4feb31181/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA_HMTT1.pdf.txtA_HMTT1.pdf.txtExtracted texttext/plain58847https://repositorio.minciencias.gov.co/bitstreams/3e3dfa16-9930-4fa7-bec4-fdc0bf45f2ef/downloadc1c544e33a4afca606fc05be2b7a5b8cMD55THUMBNAILA_HMTT1.pdf.jpgA_HMTT1.pdf.jpgGenerated Thumbnailimage/jpeg8962https://repositorio.minciencias.gov.co/bitstreams/1cb47259-7642-4b7e-8fec-a17d4d99c630/downloadf2c4672e268cafd35478413ab2d053cfMD5620.500.14143/22006oai:repositorio.minciencias.gov.co:20.500.14143/220062023-11-29 17:37:29.181restrictedhttps://repositorio.minciencias.gov.coRepositorio Institucional de Mincienciascendoc@minciencias.gov.co
dc.title.es_CO.fl_str_mv On the classification of 3-bridge links
title On the classification of 3-bridge links
spellingShingle On the classification of 3-bridge links
Teoría de los números
Bridge links
Bridge presentation
Link diagram
Butterfly
Butterfly presentation
Variables reales
Topología algebraica
Homomorfismos
Modelos matemáticos
Diagramas de curvas
title_short On the classification of 3-bridge links
title_full On the classification of 3-bridge links
title_fullStr On the classification of 3-bridge links
title_full_unstemmed On the classification of 3-bridge links
title_sort On the classification of 3-bridge links
dc.subject.lemb.es_CO.fl_str_mv Teoría de los números
topic Teoría de los números
Bridge links
Bridge presentation
Link diagram
Butterfly
Butterfly presentation
Variables reales
Topología algebraica
Homomorfismos
Modelos matemáticos
Diagramas de curvas
dc.subject.keyword.none.fl_str_mv Bridge links
Bridge presentation
Link diagram
Butterfly
Butterfly presentation
dc.subject.spines.es_CO.fl_str_mv Variables reales
Topología algebraica
Homomorfismos
Modelos matemáticos
Diagramas de curvas
description Using a new way to represent links, that we call a butterfly representation, we assign to each 3-bridge link diagram a sequence of six integers, collected as a triple (p/n, q/m, s/l), such that p ≥ q ≥ ≥ s ≥ 2, 0 < n ≤ p, 0 < m ≤ q and 0 < l ≤ s. For each 3-bridge link there exists an infinite number of 3-bridge diagrams, so we define an order in the set (p/n, q/m, s/l) and assign to each 3-bridge link L the minimum among all the triples that correspond to a 3-butterfly of L, and call it the butterfly presentation of L. This presentation extends, in a natural way, the well-known Schubert classification of 2-bridge links. We obtain necessary and sufficient conditions for a triple (p/n, q/m, s/l) to correspond to a 3-butterfly and so, to a 3-bridge link diagram. Given a triple (p/n, q/m, s/l) we give an algorithm to draw a canonical 3-bridge diagram of the associated link. We present formulas for a 3-butterfly of the mirror image of a link, for the connected sum of two rational knots and for some important families of 3-bridge links. We present the open question: When do the triples (p/n, q/m, s/l) and (p’/n’, q’/m’, s’/l’) represent the same 3-bridge link?
publishDate 2012
dc.date.issued.none.fl_str_mv 2012
dc.date.accessioned.none.fl_str_mv 2018-09-30T01:50:46Z
dc.date.available.none.fl_str_mv 2018-09-30T01:50:46Z
dc.date.embargoEnd.es_CO.fl_str_mv info:eu-repo/date/embargoEnd/2024-01-31
dc.type.es_CO.fl_str_mv Artículo científico
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.es_CO.fl_str_mv info:eu-repo/semantics/article
dc.identifier.issn.none.fl_str_mv 0034-7426
dc.identifier.uri.none.fl_str_mv https://repositorio.minciencias.gov.co/handle/20.500.14143/22006
identifier_str_mv 0034-7426
url https://repositorio.minciencias.gov.co/handle/20.500.14143/22006
dc.language.iso.es_CO.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Mariposas, enlaces de tres puentes y grupos relacionados : Informe científico final. La publicación completa está disponible en : <a href="http://repositorio.colciencias.gov.co:80/handle/11146/22003" target="blank">http://repositorio.colciencias.gov.co:80/handle/11146/22003</a>
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv http://purl.org/coar/access_right/c_f1cf
dc.format.es_CO.fl_str_mv pdf
dc.format.extent.es_CO.fl_str_mv 32 páginas
dc.coverage.spatial.es_CO.fl_str_mv Medellín, Antioquia
dc.source.es_CO.fl_str_mv Revista Colombiana de Matemáticas Volumen 46(2012)2, páginas 113-144
institution Ministerio de Ciencia, Tecnología e Innovación
dc.source.bibliographicCitation.es_CO.fl_str_mv Contiene 26 referencias bibliográficas. Véase el documento adjunto
bitstream.url.fl_str_mv https://repositorio.minciencias.gov.co/bitstreams/a267939b-c775-418d-9c33-195461836747/download
https://repositorio.minciencias.gov.co/bitstreams/b1f80e32-96e1-4f92-82cc-9cf4feb31181/download
https://repositorio.minciencias.gov.co/bitstreams/3e3dfa16-9930-4fa7-bec4-fdc0bf45f2ef/download
https://repositorio.minciencias.gov.co/bitstreams/1cb47259-7642-4b7e-8fec-a17d4d99c630/download
bitstream.checksum.fl_str_mv c6145dd2e4fd83cd1e34f189d2d6eceb
8a4605be74aa9ea9d79846c1fba20a33
c1c544e33a4afca606fc05be2b7a5b8c
f2c4672e268cafd35478413ab2d053cf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de Minciencias
repository.mail.fl_str_mv cendoc@minciencias.gov.co
_version_ 1811305885139468288