Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs..
In this project, we propose to extend and spread the Multidimensional Item Response Theory (MIRT) models, by introducing and developing new models, based on some of those developed for the unidimensional case. Furthermore, we will study the problem where one item could be measuring more than one con...
- Autores:
-
Montenegro Díaz, Alvaro Mauricio
- Tipo de recurso:
- Investigation report
- Fecha de publicación:
- 2017
- Institución:
- Ministerio de Ciencia, Tecnología e Innovación
- Repositorio:
- Repositorio Minciencias
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.minciencias.gov.co:20.500.14143/37867
- Acceso en línea:
- https://colciencias.metadirectorio.org/handle/11146/37867
http://colciencias.metabiblioteca.com.co
- Palabra clave:
- MIRT models
Differential functioning
Latent regression
Multiple constructs
Latent models
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RCENDOC_09c1408a5edd38fb0c5f0dce73708cfa |
---|---|
oai_identifier_str |
oai:repositorio.minciencias.gov.co:20.500.14143/37867 |
network_acronym_str |
RCENDOC |
network_name_str |
Repositorio Minciencias |
repository_id_str |
|
spelling |
Montenegro Díaz, Alvaro Mauricio2e7596b37d6b67cc52900295220ef51b-1Universidad Nacional de Colombia (Bogotá, Colombia)COL0001736 - CT&S - UNCOL0033739 - INFERENCIA BAYESIANA2020-02-26T15:12:29Z2020-12-17T21:57:43Z2020-02-26T15:12:29Z2020-12-17T21:57:43Z2017-06-28https://colciencias.metadirectorio.org/handle/11146/37867ColcienciasRepositorio Colcienciashttp://colciencias.metabiblioteca.com.coIn this project, we propose to extend and spread the Multidimensional Item Response Theory (MIRT) models, by introducing and developing new models, based on some of those developed for the unidimensional case. Furthermore, we will study the problem where one item could be measuring more than one construct. The project has been designed to attack several problems existing when a large test is thought to measure more than one construct, and it is applied to a big population. Examples of such tests are those applied by Unversidad Nacional and ICFES. Specifically, we propose the development of MIRT models for including random effects in the item parameters for modeling the differential functioning of the items in the presence of several populations; the modeling of longitudinal data in the case of multidimensional data in tests that are repeated in the time and the introduction of latent regressions for explaining the responses of multidimensional tests by means of explanatory variables based on available socio-demographic information of the responders. Additionally, we propose the introduction of some statistical descriptive tools for detecting the dimensionality of the latent traits and for confirmatory analysis. We propose not only the theoretically development of the models, but also, their implementation in a package for the R statistical system.36 páginas.spaInforme;Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs..Informe de investigaciónhttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/reporthttps://purl.org/redcol/resource_type/PIDinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/submittedVersion2013-2017info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/MIRT modelsDifferential functioningLatent regressionMultiple constructsLatent modelsEstudiantes, Profesores, Comunidad científica colombiana, etc.110156933802Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] ColcienciasPrograma Nacional en Ciencias BásicasExtending and spread the use of the MIRT models in large test apply by big institutions like ICFES and Universidad Nacional in Colombia.PublicationORIGINAL110156933802.pdf110156933802.pdfInforme finalapplication/pdf10424307https://repositorio.minciencias.gov.co/bitstreams/20f6d6ef-200f-406f-af8b-27c2660a6519/download647d1f50393687eae26d73fd13f35ac7MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814800https://repositorio.minciencias.gov.co/bitstreams/6860ace8-253c-46a4-8ce1-4b7ba7e3b137/download8ffe28672ea88fddc177fe365a489039MD52license.txtlicense.txttext/plain; charset=utf-80https://repositorio.minciencias.gov.co/bitstreams/78cba307-1c3f-46a2-9ebe-da41444f5c17/downloadd41d8cd98f00b204e9800998ecf8427eMD55TEXT110156933802.pdf.txt110156933802.pdf.txtExtracted texttext/plain36https://repositorio.minciencias.gov.co/bitstreams/4a1f8720-4870-4760-82ed-37bc9eaf3bce/download359c989e7470416468f7ad84d3dda8c9MD53THUMBNAIL110156933802.pdf.jpg110156933802.pdf.jpgGenerated Thumbnailimage/jpeg8731https://repositorio.minciencias.gov.co/bitstreams/20cbc1d5-fed1-48d0-a4e2-efa54880b7b8/download0b7a50549f593f3f7b1764d85a2c39aeMD5420.500.14143/37867oai:repositorio.minciencias.gov.co:20.500.14143/378672023-11-29 17:31:15.033restrictedhttps://repositorio.minciencias.gov.coRepositorio Institucional de Mincienciascendoc@minciencias.gov.co |
dc.title.spa.fl_str_mv |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
title |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
spellingShingle |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. MIRT models Differential functioning Latent regression Multiple constructs Latent models |
title_short |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
title_full |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
title_fullStr |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
title_full_unstemmed |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
title_sort |
Multidimensional Item Response Theory models for practical application in large tests designed to measure multiple constructs.. |
dc.creator.fl_str_mv |
Montenegro Díaz, Alvaro Mauricio |
dc.contributor.author.none.fl_str_mv |
Montenegro Díaz, Alvaro Mauricio |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia (Bogotá, Colombia) |
dc.contributor.researchgroup.none.fl_str_mv |
COL0001736 - CT&S - UN COL0033739 - INFERENCIA BAYESIANA |
dc.subject.proposal.spa.fl_str_mv |
MIRT models Differential functioning Latent regression Multiple constructs Latent models |
topic |
MIRT models Differential functioning Latent regression Multiple constructs Latent models |
description |
In this project, we propose to extend and spread the Multidimensional Item Response Theory (MIRT) models, by introducing and developing new models, based on some of those developed for the unidimensional case. Furthermore, we will study the problem where one item could be measuring more than one construct. The project has been designed to attack several problems existing when a large test is thought to measure more than one construct, and it is applied to a big population. Examples of such tests are those applied by Unversidad Nacional and ICFES. Specifically, we propose the development of MIRT models for including random effects in the item parameters for modeling the differential functioning of the items in the presence of several populations; the modeling of longitudinal data in the case of multidimensional data in tests that are repeated in the time and the introduction of latent regressions for explaining the responses of multidimensional tests by means of explanatory variables based on available socio-demographic information of the responders. Additionally, we propose the introduction of some statistical descriptive tools for detecting the dimensionality of the latent traits and for confirmatory analysis. We propose not only the theoretically development of the models, but also, their implementation in a package for the R statistical system. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-06-28 |
dc.date.accessioned.none.fl_str_mv |
2020-02-26T15:12:29Z 2020-12-17T21:57:43Z |
dc.date.available.none.fl_str_mv |
2020-02-26T15:12:29Z 2020-12-17T21:57:43Z |
dc.type.spa.fl_str_mv |
Informe de investigación |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_93fc |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_18ws |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/report |
dc.type.redcol.spa.fl_str_mv |
https://purl.org/redcol/resource_type/PID |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/submittedVersion http://purl.org/coar/version/c_71e4c1898caa6e32 info:eu-repo/semantics/submittedVersion |
format |
http://purl.org/coar/resource_type/c_18ws |
status_str |
submittedVersion |
dc.identifier.uri.none.fl_str_mv |
https://colciencias.metadirectorio.org/handle/11146/37867 |
dc.identifier.instname.spa.fl_str_mv |
Colciencias |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Colciencias |
dc.identifier.repourl.spa.fl_str_mv |
http://colciencias.metabiblioteca.com.co |
url |
https://colciencias.metadirectorio.org/handle/11146/37867 http://colciencias.metabiblioteca.com.co |
identifier_str_mv |
Colciencias Repositorio Colciencias |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Informe; |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 https://creativecommons.org/licenses/by/4.0/ |
dc.format.extent.spa.fl_str_mv |
36 páginas. |
dc.coverage.projectdates.spa.fl_str_mv |
2013-2017 |
institution |
Ministerio de Ciencia, Tecnología e Innovación |
bitstream.url.fl_str_mv |
https://repositorio.minciencias.gov.co/bitstreams/20f6d6ef-200f-406f-af8b-27c2660a6519/download https://repositorio.minciencias.gov.co/bitstreams/6860ace8-253c-46a4-8ce1-4b7ba7e3b137/download https://repositorio.minciencias.gov.co/bitstreams/78cba307-1c3f-46a2-9ebe-da41444f5c17/download https://repositorio.minciencias.gov.co/bitstreams/4a1f8720-4870-4760-82ed-37bc9eaf3bce/download https://repositorio.minciencias.gov.co/bitstreams/20cbc1d5-fed1-48d0-a4e2-efa54880b7b8/download |
bitstream.checksum.fl_str_mv |
647d1f50393687eae26d73fd13f35ac7 8ffe28672ea88fddc177fe365a489039 d41d8cd98f00b204e9800998ecf8427e 359c989e7470416468f7ad84d3dda8c9 0b7a50549f593f3f7b1764d85a2c39ae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional de Minciencias |
repository.mail.fl_str_mv |
cendoc@minciencias.gov.co |
_version_ |
1811305871676801024 |