Combinatoria y Cohomología de Nudos.

La cohomología de Khovanov enlaza aspectos geométricos y algebraicos de modos insospechados. El simple cambio en el álgebra de Frobenius A, de la teoría produce toda una nueva Teoría Topológica Cuántica de Campos TQFT, hechos estos de los cuales se dieron cuenta muy tempranamente, Lee, Bar N atan y...

Full description

Autores:
Huerfano, Stella
Tipo de recurso:
Investigation report
Fecha de publicación:
2005
Institución:
Ministerio de Ciencia, Tecnología e Innovación
Repositorio:
Repositorio Minciencias
Idioma:
spa
OAI Identifier:
oai:repositorio.minciencias.gov.co:20.500.14143/39963
Acceso en línea:
https://colciencias.metadirectorio.org/handle/11146/39963
http://colciencias.metabiblioteca.com.co
Palabra clave:
Homología
Nudo
Polinomio de Jones
Cohomología
Polinomio de Alexander
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCENDOC_08b5fc67b4517f84ef75ccd26eb7b825
oai_identifier_str oai:repositorio.minciencias.gov.co:20.500.14143/39963
network_acronym_str RCENDOC
network_name_str Repositorio Minciencias
repository_id_str
dc.title.spa.fl_str_mv Combinatoria y Cohomología de Nudos.
title Combinatoria y Cohomología de Nudos.
spellingShingle Combinatoria y Cohomología de Nudos.
Homología
Nudo
Polinomio de Jones
Cohomología
Polinomio de Alexander
title_short Combinatoria y Cohomología de Nudos.
title_full Combinatoria y Cohomología de Nudos.
title_fullStr Combinatoria y Cohomología de Nudos.
title_full_unstemmed Combinatoria y Cohomología de Nudos.
title_sort Combinatoria y Cohomología de Nudos.
dc.creator.fl_str_mv Huerfano, Stella
dc.contributor.author.none.fl_str_mv Huerfano, Stella
dc.contributor.corporatename.spa.fl_str_mv Universidad Nacional de Colombia (Bogotá, Colombia)
dc.subject.proposal.spa.fl_str_mv Homología
Nudo
Polinomio de Jones
Cohomología
Polinomio de Alexander
topic Homología
Nudo
Polinomio de Jones
Cohomología
Polinomio de Alexander
description La cohomología de Khovanov enlaza aspectos geométricos y algebraicos de modos insospechados. El simple cambio en el álgebra de Frobenius A, de la teoría produce toda una nueva Teoría Topológica Cuántica de Campos TQFT, hechos estos de los cuales se dieron cuenta muy tempranamente, Lee, Bar N atan y Rasmussen. Estos autores han sabido tomar ventaja de este cambio de TQFT (álgebra de Frobenius) para producir homologías nuevas del tipo de la de Khovanov, pero esta vez con la capacidad de proporcionar nuevos invariantes topológicos que han servido para identificar propiedades típicamente topológicas de propiedades geométricas diferenciales. Con esto último detectando variedades exóticas . Es nuestro interés continuar con esta línea de ideas, es decir, ahondar en el conocimiento de las álgebras de Frobenius, su relación con las TQFT, y con los invariantes de nudos, con el propósito de establecer propiedades nuevas (posibles nuevos invariantes) que permitan distinguir variedades homeomorfas pero no difeomorfas. (Apartes del texto).
publishDate 2005
dc.date.issued.none.fl_str_mv 2005-06-18
dc.date.accessioned.none.fl_str_mv 2020-02-05T21:37:59Z
2020-12-18T01:14:45Z
dc.date.available.none.fl_str_mv 2020-02-05T21:37:59Z
2020-12-18T01:14:45Z
dc.type.spa.fl_str_mv Informe de investigación
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_93fc
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_18ws
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/report
dc.type.redcol.spa.fl_str_mv https://purl.org/redcol/resource_type/PID
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/submittedVersion
http://purl.org/coar/version/c_71e4c1898caa6e32
info:eu-repo/semantics/submittedVersion
format http://purl.org/coar/resource_type/c_18ws
status_str submittedVersion
dc.identifier.uri.none.fl_str_mv https://colciencias.metadirectorio.org/handle/11146/39963
dc.identifier.instname.spa.fl_str_mv Colciencias
dc.identifier.reponame.spa.fl_str_mv Repositorio Colciencias
dc.identifier.repourl.spa.fl_str_mv http://colciencias.metabiblioteca.com.co
url https://colciencias.metadirectorio.org/handle/11146/39963
http://colciencias.metabiblioteca.com.co
identifier_str_mv Colciencias
Repositorio Colciencias
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Informe;
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
https://creativecommons.org/licenses/by/4.0/
dc.format.extent.spa.fl_str_mv 197 páginas.
dc.coverage.projectdates.spa.fl_str_mv 2001-2005
institution Ministerio de Ciencia, Tecnología e Innovación
bitstream.url.fl_str_mv https://repositorio.minciencias.gov.co/bitstreams/0480178b-0c9a-4e25-958e-c2b67c18c17b/download
https://repositorio.minciencias.gov.co/bitstreams/0c6fe187-0c0f-45dc-aac3-f8fc856c4b04/download
https://repositorio.minciencias.gov.co/bitstreams/b1b90d43-e8af-4472-874c-8a7cc0e6278f/download
https://repositorio.minciencias.gov.co/bitstreams/f6b92841-7031-4b86-95e3-5c4b72257abd/download
https://repositorio.minciencias.gov.co/bitstreams/baf15533-ed15-4c5a-be38-25be88f2ecc6/download
bitstream.checksum.fl_str_mv 72a193daa09fa57a249ad82d482dade0
8ffe28672ea88fddc177fe365a489039
d41d8cd98f00b204e9800998ecf8427e
dabe98c21563b3da3e045ab294758392
67f374bb9230e8e66e9b9ebd1740a6ab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional de Minciencias
repository.mail.fl_str_mv cendoc@minciencias.gov.co
_version_ 1811305860255711232
spelling Huerfano, Stella80bcc835fc17ecbdfcf786a8e51219f6-1Universidad Nacional de Colombia (Bogotá, Colombia)2020-02-05T21:37:59Z2020-12-18T01:14:45Z2020-02-05T21:37:59Z2020-12-18T01:14:45Z2005-06-18https://colciencias.metadirectorio.org/handle/11146/39963ColcienciasRepositorio Colcienciashttp://colciencias.metabiblioteca.com.coLa cohomología de Khovanov enlaza aspectos geométricos y algebraicos de modos insospechados. El simple cambio en el álgebra de Frobenius A, de la teoría produce toda una nueva Teoría Topológica Cuántica de Campos TQFT, hechos estos de los cuales se dieron cuenta muy tempranamente, Lee, Bar N atan y Rasmussen. Estos autores han sabido tomar ventaja de este cambio de TQFT (álgebra de Frobenius) para producir homologías nuevas del tipo de la de Khovanov, pero esta vez con la capacidad de proporcionar nuevos invariantes topológicos que han servido para identificar propiedades típicamente topológicas de propiedades geométricas diferenciales. Con esto último detectando variedades exóticas . Es nuestro interés continuar con esta línea de ideas, es decir, ahondar en el conocimiento de las álgebras de Frobenius, su relación con las TQFT, y con los invariantes de nudos, con el propósito de establecer propiedades nuevas (posibles nuevos invariantes) que permitan distinguir variedades homeomorfas pero no difeomorfas. (Apartes del texto).197 páginas.spaInforme;Combinatoria y Cohomología de Nudos.Informe de investigaciónhttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_93fcTextinfo:eu-repo/semantics/reporthttps://purl.org/redcol/resource_type/PIDinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/version/c_71e4c1898caa6e32info:eu-repo/semantics/submittedVersion2001-2005info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2https://creativecommons.org/licenses/by/4.0/HomologíaNudoPolinomio de JonesCohomologíaPolinomio de AlexanderEstudiantes, Profesores, Comunidad científica colombiana, etc.11010511445259-2001Departamento Administrativo de Ciencia, Tecnología e Innovación [CO] ColcienciasPrograma Nacional en Ciencias BásicasEstudiar el trabajo de Rasmussen, entender como este generaliza la homología de Khovanov y relacionar estos resultados con la homología de Lee. Extender los resultados de Rasmusscn y observar como la homología de Khovanov así generalizada, permite el estudio de variedades exóticas de dimensión 4.PublicationORIGINAL1101-05-11445.pdf1101-05-11445.pdfInforme finalapplication/pdf59452199https://repositorio.minciencias.gov.co/bitstreams/0480178b-0c9a-4e25-958e-c2b67c18c17b/download72a193daa09fa57a249ad82d482dade0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814800https://repositorio.minciencias.gov.co/bitstreams/0c6fe187-0c0f-45dc-aac3-f8fc856c4b04/download8ffe28672ea88fddc177fe365a489039MD52license.txtlicense.txttext/plain; charset=utf-80https://repositorio.minciencias.gov.co/bitstreams/b1b90d43-e8af-4472-874c-8a7cc0e6278f/downloadd41d8cd98f00b204e9800998ecf8427eMD54TEXT1101-05-11445.pdf.txt1101-05-11445.pdf.txtExtracted texttext/plain349224https://repositorio.minciencias.gov.co/bitstreams/f6b92841-7031-4b86-95e3-5c4b72257abd/downloaddabe98c21563b3da3e045ab294758392MD53THUMBNAIL1101-05-11445.pdf.jpg1101-05-11445.pdf.jpgGenerated Thumbnailimage/jpeg15724https://repositorio.minciencias.gov.co/bitstreams/baf15533-ed15-4c5a-be38-25be88f2ecc6/download67f374bb9230e8e66e9b9ebd1740a6abMD5520.500.14143/39963oai:repositorio.minciencias.gov.co:20.500.14143/399632023-11-29 17:26:09.49restrictedhttps://repositorio.minciencias.gov.coRepositorio Institucional de Mincienciascendoc@minciencias.gov.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCk1FRElBTlRFIEVMIEVKRVJDSUNJTyBERSBDVUFMUVVJRVJBIERFIExPUyBERVJFQ0hPUyBRVUUgU0UgT1RPUkdBTiBFTiBFU1RBIExJQ0VOQ0lBLCBVU1RFRCBBQ0VQVEEgWSBBQ1VFUkRBIFFVRURBUiBPQkxJR0FETyBFTiBMT1MgVEVSTUlOT1MgUVVFIFNFIFNFw5FBTEFOIEVOIEVMTEEuIEVMIExJQ0VOQ0lBTlRFIENPTkNFREUgQSBVU1RFRCBMT1MgREVSRUNIT1MgQ09OVEVOSURPUyBFTiBFU1RBIExJQ0VOQ0lBIENPTkRJQ0lPTkFET1MgQSBMQSBBQ0VQVEFDScOTTiBERSBTVVMgVEVSTUlOT1MgWSBDT05ESUNJT05FUy4KCjEuIERlZmluaWNpb25lcwphLglPYnJhIENvbGVjdGl2YSBlcyB1bmEgb2JyYSwgdGFsIGNvbW8gdW5hIHB1YmxpY2FjacOzbiBwZXJpw7NkaWNhLCB1bmEgYW50b2xvZ8OtYSwgbyB1bmEgZW5jaWNsb3BlZGlhLCBlbiBsYSBxdWUgbGEgb2JyYSBlbiBzdSB0b3RhbGlkYWQsIHNpbiBtb2RpZmljYWNpw7NuIGFsZ3VuYSwganVudG8gY29uIHVuIGdydXBvIGRlIG90cmFzIGNvbnRyaWJ1Y2lvbmVzIHF1ZSBjb25zdGl0dXllbiBvYnJhcyBzZXBhcmFkYXMgZSBpbmRlcGVuZGllbnRlcyBlbiBzw60gbWlzbWFzLCBzZSBpbnRlZ3JhbiBlbiB1biB0b2RvIGNvbGVjdGl2by4gVW5hIE9icmEgcXVlIGNvbnN0aXR1eWUgdW5hIG9icmEgY29sZWN0aXZhIG5vIHNlIGNvbnNpZGVyYXLDoSB1bmEgT2JyYSBEZXJpdmFkYSAoY29tbyBzZSBkZWZpbmUgYWJham8pIHBhcmEgbG9zIHByb3DDs3NpdG9zIGRlIGVzdGEgbGljZW5jaWEuIGFxdWVsbGEgcHJvZHVjaWRhIHBvciB1biBncnVwbyBkZSBhdXRvcmVzLCBlbiBxdWUgbGEgT2JyYSBzZSBlbmN1ZW50cmEgc2luIG1vZGlmaWNhY2lvbmVzLCBqdW50byBjb24gdW5hIGNpZXJ0YSBjYW50aWRhZCBkZSBvdHJhcyBjb250cmlidWNpb25lcywgcXVlIGNvbnN0aXR1eWVuIGVuIHPDrSBtaXNtb3MgdHJhYmFqb3Mgc2VwYXJhZG9zIGUgaW5kZXBlbmRpZW50ZXMsIHF1ZSBzb24gaW50ZWdyYWRvcyBhbCB0b2RvIGNvbGVjdGl2bywgdGFsZXMgY29tbyBwdWJsaWNhY2lvbmVzIHBlcmnDs2RpY2FzLCBhbnRvbG9nw61hcyBvIGVuY2ljbG9wZWRpYXMuCmIuCU9icmEgRGVyaXZhZGEgc2lnbmlmaWNhIHVuYSBvYnJhIGJhc2FkYSBlbiBsYSBvYnJhIG9iamV0byBkZSBlc3RhIGxpY2VuY2lhIG8gZW4gw6lzdGEgeSBvdHJhcyBvYnJhcyBwcmVleGlzdGVudGVzLCB0YWxlcyBjb21vIHRyYWR1Y2Npb25lcywgYXJyZWdsb3MgbXVzaWNhbGVzLCBkcmFtYXRpemFjaW9uZXMsIOKAnGZpY2Npb25hbGl6YWNpb25lc+KAnSwgdmVyc2lvbmVzIHBhcmEgY2luZSwg4oCcZ3JhYmFjaW9uZXMgZGUgc29uaWRv4oCdLCByZXByb2R1Y2Npb25lcyBkZSBhcnRlLCByZXPDum1lbmVzLCBjb25kZW5zYWNpb25lcywgbyBjdWFscXVpZXIgb3RyYSBlbiBsYSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgdHJhbnNmb3JtYWRhLCBjYW1iaWFkYSBvIGFkYXB0YWRhLCBleGNlcHRvIGFxdWVsbGFzIHF1ZSBjb25zdGl0dXlhbiB1bmEgb2JyYSBjb2xlY3RpdmEsIGxhcyBxdWUgbm8gc2Vyw6FuIGNvbnNpZGVyYWRhcyB1bmEgb2JyYSBkZXJpdmFkYSBwYXJhIGVmZWN0b3MgZGUgZXN0YSBsaWNlbmNpYS4gKFBhcmEgZXZpdGFyIGR1ZGFzLCBlbiBlbCBjYXNvIGRlIHF1ZSBsYSBPYnJhIHNlYSB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWwgbyB1bmEgZ3JhYmFjacOzbiBzb25vcmEsIHBhcmEgbG9zIGVmZWN0b3MgZGUgZXN0YSBMaWNlbmNpYSBsYSBzaW5jcm9uaXphY2nDs24gdGVtcG9yYWwgZGUgbGEgT2JyYSBjb24gdW5hIGltYWdlbiBlbiBtb3ZpbWllbnRvIHNlIGNvbnNpZGVyYXLDoSB1bmEgT2JyYSBEZXJpdmFkYSBwYXJhIGxvcyBmaW5lcyBkZSBlc3RhIGxpY2VuY2lhKS4KYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KZC4JQXV0b3Igb3JpZ2luYWwsIGVzIGVsIGluZGl2aWR1byBxdWUgY3Jlw7MgbGEgT2JyYS4KZS4JT2JyYSwgZXMgYXF1ZWxsYSBvYnJhIHN1c2NlcHRpYmxlIGRlIHByb3RlY2Npw7NuIHBvciBlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yIHkgcXVlIGVzIG9mcmVjaWRhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYQpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KMy4gQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KQmFqbyBsb3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgZWwgTGljZW5jaWFudGUgb3RvcmdhIGEgVXN0ZWQgdW5hIGxpY2VuY2lhIG11bmRpYWwsIGxpYnJlIGRlIHJlZ2Fsw61hcywgbm8gZXhjbHVzaXZhIHkgcGVycGV0dWEgKGR1cmFudGUgdG9kbyBlbCBwZXLDrW9kbyBkZSB2aWdlbmNpYSBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IpIHBhcmEgZWplcmNlciBlc3RvcyBkZXJlY2hvcyBzb2JyZSBsYSBPYnJhIHRhbCB5IGNvbW8gc2UgaW5kaWNhIGEgY29udGludWFjacOzbjoKYS4JUmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhczsKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhOwpjLglEaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLgpMb3MgZGVyZWNob3MgbWVuY2lvbmFkb3MgYW50ZXJpb3JtZW50ZSBwdWVkZW4gc2VyIGVqZXJjaWRvcyBlbiB0b2RvcyBsb3MgbWVkaW9zIHkgZm9ybWF0b3MsIGFjdHVhbG1lbnRlIGNvbm9jaWRvcyBvIHF1ZSBzZSBpbnZlbnRlbiBlbiBlbCBmdXR1cm8uIExvcyBkZXJlY2hvcyBhbnRlcyBtZW5jaW9uYWRvcyBpbmNsdXllbiBlbCBkZXJlY2hvIGEgcmVhbGl6YXIgZGljaGFzIG1vZGlmaWNhY2lvbmVzIGVuIGxhIG1lZGlkYSBxdWUgc2VhbiB0w6ljbmljYW1lbnRlIG5lY2VzYXJpYXMgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBlbiBvdHJvIG1lZGlvIG8gZm9ybWF0b3MsIHBlcm8gZGUgb3RyYSBtYW5lcmEgdXN0ZWQgbm8gZXN0w6EgYXV0b3JpemFkbyBwYXJhIHJlYWxpemFyIG9icmFzIGRlcml2YWRhcy4gVG9kb3MgbG9zIGRlcmVjaG9zIG5vIG90b3JnYWRvcyBleHByZXNhbWVudGUgcG9yIGVsIExpY2VuY2lhbnRlIHF1ZWRhbiBwb3IgZXN0ZSBtZWRpbyByZXNlcnZhZG9zLCBpbmNsdXllbmRvIHBlcm8gc2luIGxpbWl0YXJzZSBhIGFxdWVsbG9zIHF1ZSBzZSBtZW5jaW9uYW4gZW4gbGFzIHNlY2Npb25lcyA0KGQpIHkgNChlKS4KNC4gUmVzdHJpY2Npb25lcy4KTGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6CmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KYi4JVXN0ZWQgbm8gcHVlZGUgZWplcmNlciBuaW5ndW5vIGRlIGxvcyBkZXJlY2hvcyBxdWUgbGUgaGFuIHNpZG8gb3RvcmdhZG9zIGVuIGxhIFNlY2Npw7NuIDMgcHJlY2VkZW50ZSBkZSBtb2RvIHF1ZSBlc3TDqW4gcHJpbmNpcGFsbWVudGUgZGVzdGluYWRvcyBvIGRpcmVjdGFtZW50ZSBkaXJpZ2lkb3MgYSBjb25zZWd1aXIgdW4gcHJvdmVjaG8gY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuIEVsIGludGVyY2FtYmlvIGRlIGxhIE9icmEgcG9yIG90cmFzIG9icmFzIHByb3RlZ2lkYXMgcG9yIGRlcmVjaG9zIGRlIGF1dG9yLCB5YSBzZWEgYSB0cmF2w6lzIGRlIHVuIHNpc3RlbWEgcGFyYSBjb21wYXJ0aXIgYXJjaGl2b3MgZGlnaXRhbGVzIChkaWdpdGFsIGZpbGUtc2hhcmluZykgbyBkZSBjdWFscXVpZXIgb3RyYSBtYW5lcmEgbm8gc2Vyw6EgY29uc2lkZXJhZG8gY29tbyBlc3RhciBkZXN0aW5hZG8gcHJpbmNpcGFsbWVudGUgbyBkaXJpZ2lkbyBkaXJlY3RhbWVudGUgYSBjb25zZWd1aXIgdW4gcHJvdmVjaG8gY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEsIHNpZW1wcmUgcXVlIG5vIHNlIHJlYWxpY2UgdW4gcGFnbyBtZWRpYW50ZSB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgZW4gcmVsYWNpw7NuIGNvbiBlbCBpbnRlcmNhbWJpbyBkZSBvYnJhcyBwcm90ZWdpZGFzIHBvciBlbCBkZXJlY2hvIGRlIGF1dG9yLgpjLglTaSB1c3RlZCBkaXN0cmlidXllLCBleGhpYmUgcMO6YmxpY2FtZW50ZSwgZWplY3V0YSBww7pibGljYW1lbnRlIG8gZWplY3V0YSBww7pibGljYW1lbnRlIGVuIGZvcm1hIGRpZ2l0YWwgbGEgT2JyYSBvIGN1YWxxdWllciBPYnJhIERlcml2YWRhIHUgT2JyYSBDb2xlY3RpdmEsIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0YSB0b2RhIGxhIGluZm9ybWFjacOzbiBkZSBkZXJlY2hvIGRlIGF1dG9yIGRlIGxhIE9icmEgeSBwcm9wb3JjaW9uYXIsIGRlIGZvcm1hIHJhem9uYWJsZSBzZWfDum4gZWwgbWVkaW8gbyBtYW5lcmEgcXVlIFVzdGVkIGVzdMOpIHV0aWxpemFuZG86IChpKSBlbCBub21icmUgZGVsIEF1dG9yIE9yaWdpbmFsIHNpIGVzdMOhIHByb3Zpc3RvIChvIHNldWTDs25pbW8sIHNpIGZ1ZXJlIGFwbGljYWJsZSksIHkvbyAoaWkpIGVsIG5vbWJyZSBkZSBsYSBwYXJ0ZSBvIGxhcyBwYXJ0ZXMgcXVlIGVsIEF1dG9yIE9yaWdpbmFsIHkvbyBlbCBMaWNlbmNpYW50ZSBodWJpZXJlbiBkZXNpZ25hZG8gcGFyYSBsYSBhdHJpYnVjacOzbiAodi5nLiwgdW4gaW5zdGl0dXRvIHBhdHJvY2luYWRvciwgZWRpdG9yaWFsLCBwdWJsaWNhY2nDs24pIGVuIGxhIGluZm9ybWFjacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgZGVsIExpY2VuY2lhbnRlLCB0w6lybWlub3MgZGUgc2VydmljaW9zIG8gZGUgb3RyYXMgZm9ybWFzIHJhem9uYWJsZXM7IGVsIHTDrXR1bG8gZGUgbGEgT2JyYSBzaSBlc3TDoSBwcm92aXN0bzsgZW4gbGEgbWVkaWRhIGRlIGxvIHJhem9uYWJsZW1lbnRlIGZhY3RpYmxlIHksIHNpIGVzdMOhIHByb3Zpc3RvLCBlbCBJZGVudGlmaWNhZG9yIFVuaWZvcm1lIGRlIFJlY3Vyc29zIChVbmlmb3JtIFJlc291cmNlIElkZW50aWZpZXIpIHF1ZSBlbCBMaWNlbmNpYW50ZSBlc3BlY2lmaWNhIHBhcmEgc2VyIGFzb2NpYWRvIGNvbiBsYSBPYnJhLCBzYWx2byBxdWUgdGFsIFVSSSBubyBzZSByZWZpZXJhIGEgbGEgbm90YSBzb2JyZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgbyBhIGxhIGluZm9ybWFjacOzbiBzb2JyZSBlbCBsaWNlbmNpYW1pZW50byBkZSBsYSBPYnJhOyB5IGVuIGVsIGNhc28gZGUgdW5hIE9icmEgRGVyaXZhZGEsIGF0cmlidWlyIGVsIGNyw6lkaXRvIGlkZW50aWZpY2FuZG8gZWwgdXNvIGRlIGxhIE9icmEgZW4gbGEgT2JyYSBEZXJpdmFkYSAodi5nLiwgIlRyYWR1Y2Npw7NuIEZyYW5jZXNhIGRlIGxhIE9icmEgZGVsIEF1dG9yIE9yaWdpbmFsLCIgbyAiR3Vpw7NuIENpbmVtYXRvZ3LDoWZpY28gYmFzYWRvIGVuIGxhIE9icmEgb3JpZ2luYWwgZGVsIEF1dG9yIE9yaWdpbmFsIikuIFRhbCBjcsOpZGl0byBwdWVkZSBzZXIgaW1wbGVtZW50YWRvIGRlIGN1YWxxdWllciBmb3JtYSByYXpvbmFibGU7IGVuIGVsIGNhc28sIHNpbiBlbWJhcmdvLCBkZSBPYnJhcyBEZXJpdmFkYXMgdSBPYnJhcyBDb2xlY3RpdmFzLCB0YWwgY3LDqWRpdG8gYXBhcmVjZXLDoSwgY29tbyBtw61uaW1vLCBkb25kZSBhcGFyZWNlIGVsIGNyw6lkaXRvIGRlIGN1YWxxdWllciBvdHJvIGF1dG9yIGNvbXBhcmFibGUgeSBkZSB1bmEgbWFuZXJhLCBhbCBtZW5vcywgdGFuIGRlc3RhY2FkYSBjb21vIGVsIGNyw6lkaXRvIGRlIG90cm8gYXV0b3IgY29tcGFyYWJsZS4KZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CmkuCVJlZ2Fsw61hcyBwb3IgaW50ZXJwcmV0YWNpw7NuIHkgZWplY3VjacOzbiBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgYXV0b3JpemFyIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSB5IGRlIHJlY29sZWN0YXIsIHNlYSBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBTQVlDTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgbyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvIFdlYmNhc3QpIGxpY2VuY2lhZGEgYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLCBzaSBsYSBpbnRlcnByZXRhY2nDs24gbyBlamVjdWNpw7NuIGRlIGxhIG9icmEgZXN0w6EgcHJpbW9yZGlhbG1lbnRlIG9yaWVudGFkYSBwb3IgbyBkaXJpZ2lkYSBhIGxhIG9idGVuY2nDs24gZGUgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCmlpLglSZWdhbMOtYXMgcG9yIEZvbm9ncmFtYXMuIEVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBleGNsdXNpdm8gZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgbG9zIGNvbnNhZ3JhZG9zIHBvciBsYSBTQVlDTyksIHVuYSBhZ2VuY2lhIGRlIGRlcmVjaG9zIG11c2ljYWxlcyBvIGFsZ8O6biBhZ2VudGUgZGVzaWduYWRvLCBsYXMgcmVnYWzDrWFzIHBvciBjdWFscXVpZXIgZm9ub2dyYW1hIHF1ZSBVc3RlZCBjcmVlIGEgcGFydGlyIGRlIGxhIG9icmEgKOKAnHZlcnNpw7NuIGNvdmVy4oCdKSB5IGRpc3RyaWJ1eWEsIGVuIGxvcyB0w6lybWlub3MgZGVsIHLDqWdpbWVuIGRlIGRlcmVjaG9zIGRlIGF1dG9yLCBzaSBsYSBjcmVhY2nDs24gbyBkaXN0cmlidWNpw7NuIGRlIGVzYSB2ZXJzacOzbiBjb3ZlciBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGVzdGluYWRhIG8gZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCjUuIFJlcHJlc2VudGFjaW9uZXMsIEdhcmFudMOtYXMgeSBMaW1pdGFjaW9uZXMgZGUgUmVzcG9uc2FiaWxpZGFkLgpBIE1FTk9TIFFVRSBMQVMgUEFSVEVTIExPIEFDT1JEQVJBTiBERSBPVFJBIEZPUk1BIFBPUiBFU0NSSVRPLCBFTCBMSUNFTkNJQU5URSBPRlJFQ0UgTEEgT0JSQSAoRU4gRUwgRVNUQURPIEVOIEVMIFFVRSBTRSBFTkNVRU5UUkEpIOKAnFRBTCBDVUFM4oCdLCBTSU4gQlJJTkRBUiBHQVJBTlTDjUFTIERFIENMQVNFIEFMR1VOQSBSRVNQRUNUTyBERSBMQSBPQlJBLCBZQSBTRUEgRVhQUkVTQSwgSU1QTMONQ0lUQSwgTEVHQUwgTyBDVUFMUVVJRVJBIE9UUkEsIElOQ0xVWUVORE8sIFNJTiBMSU1JVEFSU0UgQSBFTExBUywgR0FSQU5Uw41BUyBERSBUSVRVTEFSSURBRCwgQ09NRVJDSUFCSUxJREFELCBBREFQVEFCSUxJREFEIE8gQURFQ1VBQ0nDk04gQSBQUk9Qw5NTSVRPIERFVEVSTUlOQURPLCBBVVNFTkNJQSBERSBJTkZSQUNDScOTTiwgREUgQVVTRU5DSUEgREUgREVGRUNUT1MgTEFURU5URVMgTyBERSBPVFJPIFRJUE8sIE8gTEEgUFJFU0VOQ0lBIE8gQVVTRU5DSUEgREUgRVJST1JFUywgU0VBTiBPIE5PIERFU0NVQlJJQkxFUyAoUFVFREFOIE8gTk8gU0VSIEVTVE9TIERFU0NVQklFUlRPUykuIEFMR1VOQVMgSlVSSVNESUNDSU9ORVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBHQVJBTlTDjUFTIElNUEzDjUNJVEFTLCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELgo2LiBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCkEgTUVOT1MgUVVFIExPIEVYSUpBIEVYUFJFU0FNRU5URSBMQSBMRVkgQVBMSUNBQkxFLCBFTCBMSUNFTkNJQU5URSBOTyBTRVLDgSBSRVNQT05TQUJMRSBBTlRFIFVTVEVEIFBPUiBEQcORTyBBTEdVTk8sIFNFQSBQT1IgUkVTUE9OU0FCSUxJREFEIEVYVFJBQ09OVFJBQ1RVQUwsIFBSRUNPTlRSQUNUVUFMIE8gQ09OVFJBQ1RVQUwsIE9CSkVUSVZBIE8gU1VCSkVUSVZBLCBTRSBUUkFURSBERSBEQcORT1MgTU9SQUxFUyBPIFBBVFJJTU9OSUFMRVMsIERJUkVDVE9TIE8gSU5ESVJFQ1RPUywgUFJFVklTVE9TIE8gSU1QUkVWSVNUT1MgUFJPRFVDSURPUyBQT1IgRUwgVVNPIERFIEVTVEEgTElDRU5DSUEgTyBERSBMQSBPQlJBLCBBVU4gQ1VBTkRPIEVMIExJQ0VOQ0lBTlRFIEhBWUEgU0lETyBBRFZFUlRJRE8gREUgTEEgUE9TSUJJTElEQUQgREUgRElDSE9TIERBw5FPUy4gQUxHVU5BUyBMRVlFUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIENJRVJUQSBSRVNQT05TQUJJTElEQUQsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuCjcuIFTDqXJtaW5vLgphLglFc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS4KYi4JU3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuCjguIFZhcmlvcy4KYS4JQ2FkYSB2ZXogcXVlIFVzdGVkIGRpc3RyaWJ1eWEgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIG8gdW5hIE9icmEgQ29sZWN0aXZhLCBlbCBMaWNlbmNpYW50ZSBvZnJlY2Vyw6EgYWwgZGVzdGluYXRhcmlvIHVuYSBsaWNlbmNpYSBlbiBsb3MgbWlzbW9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIHF1ZSBsYSBsaWNlbmNpYSBvdG9yZ2FkYSBhIFVzdGVkIGJham8gZXN0YSBMaWNlbmNpYS4KYi4JU2kgYWxndW5hIGRpc3Bvc2ljacOzbiBkZSBlc3RhIExpY2VuY2lhIHJlc3VsdGEgaW52YWxpZGFkYSBvIG5vIGV4aWdpYmxlLCBzZWfDum4gbGEgbGVnaXNsYWNpw7NuIHZpZ2VudGUsIGVzdG8gbm8gYWZlY3RhcsOhIG5pIGxhIHZhbGlkZXogbmkgbGEgYXBsaWNhYmlsaWRhZCBkZWwgcmVzdG8gZGUgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSB5LCBzaW4gYWNjacOzbiBhZGljaW9uYWwgcG9yIHBhcnRlIGRlIGxvcyBzdWpldG9zIGRlIGVzdGUgYWN1ZXJkbywgYXF1w6lsbGEgc2UgZW50ZW5kZXLDoSByZWZvcm1hZGEgbG8gbcOtbmltbyBuZWNlc2FyaW8gcGFyYSBoYWNlciBxdWUgZGljaGEgZGlzcG9zaWNpw7NuIHNlYSB2w6FsaWRhIHkgZXhpZ2libGUuCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgpkLglFc3RhIExpY2VuY2lhIHJlZmxlamEgZWwgYWN1ZXJkbyBwbGVubyBlbnRyZSBsYXMgcGFydGVzIHJlc3BlY3RvIGEgbGEgT2JyYSBhcXXDrSBsaWNlbmNpYWRhLiBObyBoYXkgYXJyZWdsb3MsIGFjdWVyZG9zIG8gZGVjbGFyYWNpb25lcyByZXNwZWN0byBhIGxhIE9icmEgcXVlIG5vIGVzdMOpbiBlc3BlY2lmaWNhZG9zIGVuIGVzdGUgZG9jdW1lbnRvLiBFbCBMaWNlbmNpYW50ZSBubyBzZSB2ZXLDoSBsaW1pdGFkbyBwb3IgbmluZ3VuYSBkaXNwb3NpY2nDs24gYWRpY2lvbmFsIHF1ZSBwdWVkYSBzdXJnaXIgZW4gYWxndW5hIGNvbXVuaWNhY2nDs24gZW1hbmFkYSBkZSBVc3RlZC4gRXN0YSBMaWNlbmNpYSBubyBwdWVkZSBzZXIgbW9kaWZpY2FkYSBzaW4gZWwgY29uc2VudGltaWVudG8gbXV0dW8gcG9yIGVzY3JpdG8gZGVsIExpY2VuY2lhbnRlIHkgVXN0ZWQuCg==