Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas

Los campos aleatorios gaussianos (CAG) son un concepto probabilístico que tiene aplicación en varias disciplinas científicas, como la astrofísica. Debido a la importancia tanto de aspectos teóricos, como computacionales y de modelado que se entrelazan en la utilización de los CAG, en este trabajo de...

Full description

Autores:
García Navarro, Luis Alfonso
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Fundación Universitaria Konrand Lorenz
Repositorio:
Fundación Universitaria Konrand Lorenz
Idioma:
spa
OAI Identifier:
oai:repositorio.konradlorenz.edu.co:001/5636
Acceso en línea:
https://repositorio.konradlorenz.edu.co/handle/001/5636
Palabra clave:
Campo estocástico
Covarianza
Campos aleatorios gaussianos
Modelación
Simulación
Rights
License
Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
id Konrad2_e285c523db260e31c5ea62c2413ab2c3
oai_identifier_str oai:repositorio.konradlorenz.edu.co:001/5636
network_acronym_str Konrad2
network_name_str Fundación Universitaria Konrand Lorenz
repository_id_str
dc.title.none.fl_str_mv Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
title Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
spellingShingle Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
Campo estocástico
Covarianza
Campos aleatorios gaussianos
Modelación
Simulación
title_short Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
title_full Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
title_fullStr Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
title_full_unstemmed Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
title_sort Generación de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticas
dc.creator.fl_str_mv García Navarro, Luis Alfonso
dc.contributor.advisor.none.fl_str_mv Mora Paz, Jaime David
dc.contributor.author.none.fl_str_mv García Navarro, Luis Alfonso
dc.contributor.editor.none.fl_str_mv Fundación Universitaria Konrad Lorenz
dc.contributor.researchgroup.none.fl_str_mv Promente-Konrad
dc.subject.classification.none.fl_str_mv Campo estocástico
Covarianza
topic Campo estocástico
Covarianza
Campos aleatorios gaussianos
Modelación
Simulación
dc.subject.proposal.none.fl_str_mv Campos aleatorios gaussianos
Modelación
Simulación
description Los campos aleatorios gaussianos (CAG) son un concepto probabilístico que tiene aplicación en varias disciplinas científicas, como la astrofísica. Debido a la importancia tanto de aspectos teóricos, como computacionales y de modelado que se entrelazan en la utilización de los CAG, en este trabajo de grado se estudiaron esos tres aspectos como forma de poner en práctica y culminar el aprendizaje obtenido durante todo el programa de pregrado en matemáticas en la Fundación Universitaria Konrad Lorenz. En primer lugar, se han reproducido las definiciones y resultados principales que se deben tener en cuenta para generar un CAG. Gracias a ello, se ha implementado un algoritmo basado en la factorización de la matriz de covarianza deseada, obteniendo computacionalmente varias realizaciones de CAG isotrópicos y homogéneos. En segundo lugar, se ha realizado un repaso sobre el método de diferencias finitas (MDF) para resolver problemas con valor en la frontera tanto en una como en dos dimensiones. Ese repaso comprende la implementación de múltiples algoritmos para generar resultados en una gran diversidad de casos, incluyendo particularmente el caso de la ecuación de Difusión-Reacción con condiciones de frontera periódicas. Finalmente, sabiendo que en el estudio de los discos astrofísicos se puede modelar su brillo con un CAG que soluciona cierta ecuación diferencial parcial estocástica (EDPE), se lleva a cabo su aproximación numérica usando el MDF. Es posible, entonces, evidenciar que la generación de CAG basada en el MDF es mucho más eficiente que la basada en factorización de la matriz de covarianza, lo cual puede permitir, en el futuro, la generalización de este algoritmo para CAG anisotrópicos y no homogéneos, que son mucho más apropiados para la aplicación astrofísica mencionada.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-21T14:51:15Z
dc.date.available.none.fl_str_mv 2024-05-21T14:51:15Z
dc.type.none.fl_str_mv Trabajo de grado - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.content.none.fl_str_mv Text
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://repositorio.konradlorenz.edu.co/handle/001/5636
url https://repositorio.konradlorenz.edu.co/handle/001/5636
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv James Bardeen, J. Bond, Nick Kaiser, and A. Szalay, The statistics of peaks of gaussian random fields, The Astrophysical Journal 304 (1986), 15–61.
Eduardo Calleja, Campos aleatorios i: simulación de campos gaussianos (2015).
Joseph Doob, Stochastic processes, Vol. 7, Wiley New York, 1953.
James F. Epperson, An introduction to numerical methods and analysis, wiley, 2013.
Geir-Arne Fuglstad, Finn Lindgren, Daniel Simpson, and Håvard Rue, Exploring a new class of nonstationary spatial gaussian random fields with varying local anisotropy, Vol. 25, Institute of Statistical Science, 2015 (English).
Exploring a new class of non-stationary spatial gaussian random fields with varying local anisotropy, Statistica Sinica (2015), 115–133.
Goon Garret, Gaussian fiels, what they are and how to generate them simply., CMU (2021).
Walter Gautschi, Numerical analysis, Birkhäuser - Springer Science + Business Media, 2012.
John A Gubner, Probability and random processes for electrical and computer engineers, Cambridge University Press, 2006.
Isaac Held, Why focus so much on global mean temperature?, Geophysical Fluid Dynamics Laboratory (2011).
Brandon Kelly, Jill Bechtold, and Aneta Siemiginowska, Are the variations in quasar optical flux driven by thermal fluctuations?, The Astrophysical Journal 698 (2009), no. 1, 895.
Daeyoung Lee and Charles F Gammie, Disks as inhomogeneous, anisotropic gaussian random fields, The Astrophysical Journal 906 (2021), no. 1, 39.
Finn Lindgren, Håvard Rue, and Johan Lindström, An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2011), no. 4, 423–498.
Gabriel J Lord, Catherine E Powell, and Tony Shardlow, An introduction to computational stochastic pdes, Vol. 50, Cambridge University Press, 2014.
Ch. MacLeod, Ž Ivezić, CS Kochanek, S. Kozłowski, B. Kelly, E. Bullock, A. Kimball, B. Sesar, D. Westman, K. Brooks, et al., Modeling the time variability of sdss stripe 82 quasars as a damped random walk, The Astrophysical Journal 721 (2010), no. 2, 1014.
AM Mood, FA Graybill, and DC Boes, Introduction to the theory of statistics. book [internet]. 1974; 3: 540–1.
Mark Pinsky and Samuel Karlin, An introduction to stochastic modeling, Academic press, 2010.
Hååvard Rue and Hååkon Tjelmeland, Fitting gaussian markov random fields to gaussian fields, Scandinavian journal of Statistics 29 (2002), no. 1, 31–49.
Paul Sampson and Peter Guttorp, Nonparametric estimation of nonstationary spatial covariance structure, Journal of the American Statistical Association 87 (1992), no. 417, 108–119.
George Smoot, Mark Gorenstein, and Richard Muller, Detection of anisotropy in the cosmic blackbody radiation, Physical Review Letters 39 (1977), no. 14, 898.
Juan Soler, The galactic magnetic field as revealed by planck, INSTITUTE D’ASTROPHISIQUE SPATIALE (2014).
Erik Vanmarcke, Random fields: analysis and synthesis (2010).
Peter Whittle, On stationary processes in the plane, Biometrika (1954), 434–449.
Stochastic-processes in several dimensions, Bulletin of the International Statistical Institute 40 (1963), no. 2, 974–994.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.license.none.fl_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc/4.0/
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)
https://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_14cb
dc.format.extent.none.fl_str_mv 64 páginas: figuras
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Bogotá D.C : Fundación Universitaria Konrad Lorenz, 2023
dc.publisher.faculty.none.fl_str_mv Facultad de Matemáticas e Ingenierías
dc.publisher.program.none.fl_str_mv Matemáticas
publisher.none.fl_str_mv Bogotá D.C : Fundación Universitaria Konrad Lorenz, 2023
institution Fundación Universitaria Konrand Lorenz
bitstream.url.fl_str_mv https://repositorio.konradlorenz.edu.co/bitstreams/57a36355-6484-45c1-9f5e-3e05975499f2/download
https://repositorio.konradlorenz.edu.co/bitstreams/779e8959-5de4-4258-a198-3f66d65c73e7/download
https://repositorio.konradlorenz.edu.co/bitstreams/ed0035fb-2b6d-472c-b8d6-82a017a31318/download
https://repositorio.konradlorenz.edu.co/bitstreams/34184388-c5de-41ac-b604-1cd0a87a1019/download
https://repositorio.konradlorenz.edu.co/bitstreams/bf1aadbb-2d5c-4683-92bb-4e77638e34b9/download
https://repositorio.konradlorenz.edu.co/bitstreams/25d5af2f-0185-4b81-89c1-b66ae104d9c5/download
https://repositorio.konradlorenz.edu.co/bitstreams/ac7d5d4e-5394-4f00-8053-9205fda97f1f/download
https://repositorio.konradlorenz.edu.co/bitstreams/229da57a-c676-47d6-9aae-078b886b0547/download
https://repositorio.konradlorenz.edu.co/bitstreams/c3a0e20b-19ca-400e-a1ea-27b5c3e0a4fd/download
https://repositorio.konradlorenz.edu.co/bitstreams/cd60cfea-4e6c-47a2-9340-fe277e25f396/download
https://repositorio.konradlorenz.edu.co/bitstreams/d71d9e0b-fd07-40e6-959b-cbaa2be35926/download
https://repositorio.konradlorenz.edu.co/bitstreams/30a51037-cb48-4fb1-bfe5-9da935cecc8b/download
https://repositorio.konradlorenz.edu.co/bitstreams/7e0e1fdf-3cfb-42d2-bee3-cefe42b40ca9/download
bitstream.checksum.fl_str_mv 219572631329e62be26bd9ee1ff57dbd
01906a92f4d092dd3e6ffc841ae92e6e
d3da99543446b9489cf14a2a1556bddb
87b10526bead7a27b40501f569de3078
f5801f8b77d851629ff0633e9edd621d
d9c1f283f1fb3e73fabe37b77b051a6a
5f8428e9c3f03323e9e3c2913cbcfdb0
65cea99242a34e215d775ae838f5d7c7
82742a33839261cbb9bf46f11bb3fde0
e062957c556a4b4141493796bc775f0b
c398af937fa7701e88bb6344040298ef
d95c3c873a58ba16f0b2a539db9b3c27
9821e02a9318d6ff4475489d8d12f90b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio - Fundación Universitaria Konrad Lorenz
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1811852025979207680
spelling Atribución-NoComercial 4.0 Internacional (CC BY-NC 4.0)d.c rights --- Atribucion - Nocomercial - Sinderivar: permite que otros puedan descargar las obras y compartirlas con otras personas, siempre que se reconozca su autoría, pero no se pueden cambiar de ninguna manera ni se pueden utilizar comercialmentehttps://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_14cbMora Paz, Jaime DavidGarcía Navarro, Luis AlfonsoFundación Universitaria Konrad LorenzPromente-Konrad2024-05-21T14:51:15Z2024-05-21T14:51:15Z2023https://repositorio.konradlorenz.edu.co/handle/001/5636Los campos aleatorios gaussianos (CAG) son un concepto probabilístico que tiene aplicación en varias disciplinas científicas, como la astrofísica. Debido a la importancia tanto de aspectos teóricos, como computacionales y de modelado que se entrelazan en la utilización de los CAG, en este trabajo de grado se estudiaron esos tres aspectos como forma de poner en práctica y culminar el aprendizaje obtenido durante todo el programa de pregrado en matemáticas en la Fundación Universitaria Konrad Lorenz. En primer lugar, se han reproducido las definiciones y resultados principales que se deben tener en cuenta para generar un CAG. Gracias a ello, se ha implementado un algoritmo basado en la factorización de la matriz de covarianza deseada, obteniendo computacionalmente varias realizaciones de CAG isotrópicos y homogéneos. En segundo lugar, se ha realizado un repaso sobre el método de diferencias finitas (MDF) para resolver problemas con valor en la frontera tanto en una como en dos dimensiones. Ese repaso comprende la implementación de múltiples algoritmos para generar resultados en una gran diversidad de casos, incluyendo particularmente el caso de la ecuación de Difusión-Reacción con condiciones de frontera periódicas. Finalmente, sabiendo que en el estudio de los discos astrofísicos se puede modelar su brillo con un CAG que soluciona cierta ecuación diferencial parcial estocástica (EDPE), se lleva a cabo su aproximación numérica usando el MDF. Es posible, entonces, evidenciar que la generación de CAG basada en el MDF es mucho más eficiente que la basada en factorización de la matriz de covarianza, lo cual puede permitir, en el futuro, la generalización de este algoritmo para CAG anisotrópicos y no homogéneos, que son mucho más apropiados para la aplicación astrofísica mencionada.Gaussian random fields (GFRs) are a probabilistic concept that has application in several scientific disciplines, such as astrophysics. in several scientific disciplines, such as astrophysics. Due to the importance of both theoretical, computational and modeling theoretical, computational and modeling aspects that are intertwined in the use of GACs, in this work of CAGs, in this degree work these three aspects were studied as a way to put into practice and culminate the learning and culminate the learning obtained throughout the undergraduate program in mathematics at Konrad University Foundation at the Konrad Lorenz University Foundation. First, the main definitions and results to be taken into account in generating a CAG have been reproduced. to be taken into account in order to generate a CAG. Thanks to this, an algorithm based on the factorization of the desired covariance matrix has been implemented. factorization of the desired covariance matrix, computationally obtaining several isotropic and homotropic CAG realizations. several isotropic and homogeneous CAG realizations. Secondly, a review of the finite difference method secondly, a review of the finite difference method (FDM) for solving boundary-valued problems in both one and two dimensions was boundary-valued problems in both one and two dimensions. This review includes the implementation of multiple of multiple algorithms to generate results in a wide variety of cases, including in particular the case of the particularly the case of the Diffusion-Reaction equation with periodic boundary conditions. Finally, knowing that in the study of astrophysical disks, it is possible to model their brightness with a CAG that solves their brightness with a CAG that solves a certain stochastic partial differential equation (PDEE), its numerical approximation is carried out using the SDM. It is possible, then, to show that CAG generation based on the MDF is much more efficient than that based on covariance matrix factorization. more efficient than that based on factorization of the covariance matrix, which may allow, in the future, the generalization of this algorithm for anisotropic and inhomogeneous CAGs, in the future, the generalization of this algorithm for anisotropic and inhomogeneous CAGs, which are much more appropriate for the astrophysical application mentioned above.MatemáticoPregradoMatemáticas aplicadas64 páginas: figurasapplication/pdfspaBogotá D.C : Fundación Universitaria Konrad Lorenz, 2023Facultad de Matemáticas e IngenieríasMatemáticasCampo estocásticoCovarianzaCampos aleatorios gaussianosModelaciónSimulaciónGeneración de campos aleatorios Gaussianos a través de ecuaciones diferenciales parciales estocásticasTrabajo de grado - Pregradohttp://purl.org/coar/resource_type/c_7a1fTextJames Bardeen, J. Bond, Nick Kaiser, and A. Szalay, The statistics of peaks of gaussian random fields, The Astrophysical Journal 304 (1986), 15–61.Eduardo Calleja, Campos aleatorios i: simulación de campos gaussianos (2015).Joseph Doob, Stochastic processes, Vol. 7, Wiley New York, 1953.James F. Epperson, An introduction to numerical methods and analysis, wiley, 2013.Geir-Arne Fuglstad, Finn Lindgren, Daniel Simpson, and Håvard Rue, Exploring a new class of nonstationary spatial gaussian random fields with varying local anisotropy, Vol. 25, Institute of Statistical Science, 2015 (English).Exploring a new class of non-stationary spatial gaussian random fields with varying local anisotropy, Statistica Sinica (2015), 115–133.Goon Garret, Gaussian fiels, what they are and how to generate them simply., CMU (2021).Walter Gautschi, Numerical analysis, Birkhäuser - Springer Science + Business Media, 2012.John A Gubner, Probability and random processes for electrical and computer engineers, Cambridge University Press, 2006.Isaac Held, Why focus so much on global mean temperature?, Geophysical Fluid Dynamics Laboratory (2011).Brandon Kelly, Jill Bechtold, and Aneta Siemiginowska, Are the variations in quasar optical flux driven by thermal fluctuations?, The Astrophysical Journal 698 (2009), no. 1, 895.Daeyoung Lee and Charles F Gammie, Disks as inhomogeneous, anisotropic gaussian random fields, The Astrophysical Journal 906 (2021), no. 1, 39.Finn Lindgren, Håvard Rue, and Johan Lindström, An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73 (2011), no. 4, 423–498.Gabriel J Lord, Catherine E Powell, and Tony Shardlow, An introduction to computational stochastic pdes, Vol. 50, Cambridge University Press, 2014.Ch. MacLeod, Ž Ivezić, CS Kochanek, S. Kozłowski, B. Kelly, E. Bullock, A. Kimball, B. Sesar, D. Westman, K. Brooks, et al., Modeling the time variability of sdss stripe 82 quasars as a damped random walk, The Astrophysical Journal 721 (2010), no. 2, 1014.AM Mood, FA Graybill, and DC Boes, Introduction to the theory of statistics. book [internet]. 1974; 3: 540–1.Mark Pinsky and Samuel Karlin, An introduction to stochastic modeling, Academic press, 2010.Hååvard Rue and Hååkon Tjelmeland, Fitting gaussian markov random fields to gaussian fields, Scandinavian journal of Statistics 29 (2002), no. 1, 31–49.Paul Sampson and Peter Guttorp, Nonparametric estimation of nonstationary spatial covariance structure, Journal of the American Statistical Association 87 (1992), no. 417, 108–119.George Smoot, Mark Gorenstein, and Richard Muller, Detection of anisotropy in the cosmic blackbody radiation, Physical Review Letters 39 (1977), no. 14, 898.Juan Soler, The galactic magnetic field as revealed by planck, INSTITUTE D’ASTROPHISIQUE SPATIALE (2014).Erik Vanmarcke, Random fields: analysis and synthesis (2010).Peter Whittle, On stationary processes in the plane, Biometrika (1954), 434–449.Stochastic-processes in several dimensions, Bulletin of the International Statistical Institute 40 (1963), no. 2, 974–994.PublicationORIGINALTrabajo.pdfTrabajo.pdfapplication/pdf916541https://repositorio.konradlorenz.edu.co/bitstreams/57a36355-6484-45c1-9f5e-3e05975499f2/download219572631329e62be26bd9ee1ff57dbdMD51RAI.pdfRAI.pdfapplication/pdf182695https://repositorio.konradlorenz.edu.co/bitstreams/779e8959-5de4-4258-a198-3f66d65c73e7/download01906a92f4d092dd3e6ffc841ae92e6eMD52Autorizacion.pdfAutorizacion.pdfapplication/pdf781731https://repositorio.konradlorenz.edu.co/bitstreams/ed0035fb-2b6d-472c-b8d6-82a017a31318/downloadd3da99543446b9489cf14a2a1556bddbMD53Acta .pdfActa .pdfapplication/pdf250469https://repositorio.konradlorenz.edu.co/bitstreams/34184388-c5de-41ac-b604-1cd0a87a1019/download87b10526bead7a27b40501f569de3078MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81383https://repositorio.konradlorenz.edu.co/bitstreams/bf1aadbb-2d5c-4683-92bb-4e77638e34b9/downloadf5801f8b77d851629ff0633e9edd621dMD55TEXTTrabajo.pdf.txtTrabajo.pdf.txtExtracted texttext/plain63715https://repositorio.konradlorenz.edu.co/bitstreams/25d5af2f-0185-4b81-89c1-b66ae104d9c5/downloadd9c1f283f1fb3e73fabe37b77b051a6aMD56RAI.pdf.txtRAI.pdf.txtExtracted texttext/plain13348https://repositorio.konradlorenz.edu.co/bitstreams/ac7d5d4e-5394-4f00-8053-9205fda97f1f/download5f8428e9c3f03323e9e3c2913cbcfdb0MD58Autorizacion.pdf.txtAutorizacion.pdf.txtExtracted texttext/plain3772https://repositorio.konradlorenz.edu.co/bitstreams/229da57a-c676-47d6-9aae-078b886b0547/download65cea99242a34e215d775ae838f5d7c7MD510Acta .pdf.txtActa .pdf.txtExtracted texttext/plain5120https://repositorio.konradlorenz.edu.co/bitstreams/c3a0e20b-19ca-400e-a1ea-27b5c3e0a4fd/download82742a33839261cbb9bf46f11bb3fde0MD512THUMBNAILTrabajo.pdf.jpgTrabajo.pdf.jpgGenerated Thumbnailimage/jpeg6677https://repositorio.konradlorenz.edu.co/bitstreams/cd60cfea-4e6c-47a2-9340-fe277e25f396/downloade062957c556a4b4141493796bc775f0bMD57RAI.pdf.jpgRAI.pdf.jpgGenerated Thumbnailimage/jpeg8676https://repositorio.konradlorenz.edu.co/bitstreams/d71d9e0b-fd07-40e6-959b-cbaa2be35926/downloadc398af937fa7701e88bb6344040298efMD59Autorizacion.pdf.jpgAutorizacion.pdf.jpgGenerated Thumbnailimage/jpeg13431https://repositorio.konradlorenz.edu.co/bitstreams/30a51037-cb48-4fb1-bfe5-9da935cecc8b/downloadd95c3c873a58ba16f0b2a539db9b3c27MD511Acta .pdf.jpgActa .pdf.jpgGenerated Thumbnailimage/jpeg12187https://repositorio.konradlorenz.edu.co/bitstreams/7e0e1fdf-3cfb-42d2-bee3-cefe42b40ca9/download9821e02a9318d6ff4475489d8d12f90bMD513001/5636oai:repositorio.konradlorenz.edu.co:001/56362024-05-22 03:00:19.299https://creativecommons.org/licenses/by-nc/4.0/d.c rights --- Atribucion - Nocomercial - Sinderivar: permite que otros puedan descargar las obras y compartirlas con otras personas, siempre que se reconozca su autoría, pero no se pueden cambiar de ninguna manera ni se pueden utilizar comercialmenterestrictedhttps://repositorio.konradlorenz.edu.coRepositorio - Fundación Universitaria Konrad Lorenzbdigital@metabiblioteca.comPHA+UG9yIG1lZGlvIGRlbCBwcmVzZW50ZSBBVVRPUklaTyBhIGxhIEZ1bmRhY2nDs24gVW5pdmVyc2l0YXJpYSBLb25yYWQgTG9yZW56LCBjb24gTklUIE5vLjg2MC41MDQuNzU5LTUgeSBEb21pY2lsaW8gU29jaWFsIGVuIEJvZ290w6EgRC4gQy4sIHViaWNhZGEgZW4gbGEgQ2FycmVyYSA5wqouQklTIE5vLiA2MiDigJMgNDMsIEJvZ290w6EsIHBhcmEgbWVuY2lvbmFyIG1pIG5vbWJyZSwgYXPDrSBjb21vIHBhcmEgcHVibGljYXIgeSBkaWZ1bmRpciB0ZXh0b3MsIHBvc3RzLCBwYXBlcnMsIGFydMOtY3Vsb3MsIHRyYWJham9zIGFjYWTDqW1pY29zIG8gbcO6c2ljYSBkZSBtaSBhdXRvcsOtYSwgY29udmVyc2FjaW9uZXMgY29uIG1pIHZveiB5IGRlbcOhcyBtYXRlcmlhbGVzIGVzY3JpdG9zLCBmb3RvZ3LDoWZpY29zIG8gYXVkaW92aXN1YWxlcyBxdWUgaW5jbHV5ZW4gbWkgcGFydGljaXBhY2nDs24gZGUgZm9ybWEgZXNjcml0YSwgaW1wcmVzYSBvIGdyYWJhZGEgZW4gYXVkaW8gbyBlbiB2aWRlbyBjb24gZWwgZmluIGRlIHNlciBpbmNsdWlkb3MgZW4gbGFzIGVtaXNpb25lcyByYWRpYWxlcywgcG9kY2FzdHMsIGJsb2dzLCBww6FnaW5hcyB3ZWIgeSBkZW3DoXMgbWVkaW9zIGRlIGRpZnVzacOzbiBvIHBpZXphcyBwcm9tb2Npb25hbGVzIGRlIGxhIHVuaXZlcnNpZGFkLiBBc8OtIG1pc21vIGF1dG9yaXpvIGxhIHJlcHJvZHVjY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBkaXN0cmlidWNpw7NuIHNlIGRhbiBzaW4gbGltaXRhY2nDs24gYWxndW5hIGVuIGN1YW50byBhIHRlcnJpdG9yaW8gc2UgcmVmaWVyZS4gRXN0YSBDZXNpw7NuIHNlIGRhIHBvciB0b2RvIGVsIHTDqXJtaW5vIGRlIGR1cmFjacOzbiBlc3RhYmxlY2lkbyBlbiBsYSBsZWdpc2xhY2nDs24gYXV0b3JhbCB2aWdlbnRlIGVuIENvbG9tYmlhLiBFbiB2aXJ0dWQgZGUgbG8gYW50ZXJpb3Igc2UgZW50aWVuZGUgcXVlIGxhICBGdW5kYWNpw7NuIFVuaXZlcnNpdGFyaWEgS29ucmFkIExvcmVueiwgYWRxdWllcmUgZWwgZGVyZWNobyBkZSByZXByb2R1Y2Npw7NuIGVuIHRvZGFzIHN1cyBtb2RhbGlkYWRlcywgYXPDrSBjb21vIGVsIGRlcmVjaG8gZGUgdHJhbnNmb3JtYWNpw7NuIG8gYWRhcHRhY2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBlbiBnZW5lcmFsLCBjdWFscXVpZXIgdXNvIHF1ZSBkZWwgbWF0ZXJpYWwgY29uY2VkaWRvIHBvciBtw60gc2UgcHVlZGEgcmVhbGl6YXIgcG9yIGN1YWxxdWllciBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyLCBpbmNsdXNpdmUgcG9yIG1lZGlvcyBpbXByZXNvcywgYXVkaW92aXN1YWxlcywgcG9ydGFibGVzIGNvbW8gQ0QsIERWRCBvIHNpbWlsYXJlcywgSW50ZXJuZXQsIGVudHJlIG90cm9zLjwvcD4K