An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
Hyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature...
- Autores:
- Tipo de recurso:
- article
- Fecha de publicación:
- 2017
- Institución:
- Pontificia Universidad Javeriana
- Repositorio:
- Repositorio Universidad Javeriana
- Idioma:
- eng
- OAI Identifier:
- oai:repository.javeriana.edu.co:10554/25825
- Acceso en línea:
- http://revistas.javeriana.edu.co/index.php/iyu/article/view/257
http://hdl.handle.net/10554/25825
- Palabra clave:
- Rights
- openAccess
- License
- Copyright (c) 2017 David Alberto Boada
id |
JAVERIANA_71a30faac2ada66ce0fbb6de90bc329d |
---|---|
oai_identifier_str |
oai:repository.javeriana.edu.co:10554/25825 |
network_acronym_str |
JAVERIANA |
network_name_str |
Repositorio Universidad Javeriana |
repository_id_str |
|
spelling |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architectureBoada, David AlbertoVargas Garcia, Héctor MiguelAlbarracín Ferreira, Jaime OctavioFuentes, Henry ArguelloHyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature detection, classification, or identification based on their spectral characteristics. Novel architectures have been developed for the acquisition of compressive spectral images with just a few coded aperture focal plane array measurements. This work focuses on the development of a target detection approach in hyperspectral images directly from compressive measurements without first reconstructing the full data cube that represents the real image. Specifically, a sparsity-based target detection model that uses compressive measurement for the detection task is designed and tested using an optimization algorithm. Simulations show that it is possible to perform certain transformations to the dictionaries used in traditional target detection, in order to achieve an accurate image representation in the compressed subspacePontificia Universidad Javeriana2020-04-16T17:27:30Z2020-04-16T17:27:30Z2017-06-15http://purl.org/coar/version/c_970fb48d4fbd8a85Artículo de revistahttp://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlePeer-reviewed Articleinfo:eu-repo/semantics/publishedVersionPDFapplication/pdfhttp://revistas.javeriana.edu.co/index.php/iyu/article/view/25710.11144/Javeriana.iyu21-2.sasi2011-27690123-2126http://hdl.handle.net/10554/25825enghttp://revistas.javeriana.edu.co/index.php/iyu/article/view/257/15039Ingenieria y Universidad; Vol 21 No 2 (2017): July-December; 272Ingenieria y Universidad; Vol. 21 Núm. 2 (2017): Julio-Dicciembre; 272Copyright (c) 2017 David Alberto BoadaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2reponame:Repositorio Universidad Javerianainstname:Pontificia Universidad Javerianainstacron:Pontificia Universidad Javeriana2023-03-29T17:44:02Z |
dc.title.none.fl_str_mv |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
title |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
spellingShingle |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture Boada, David Alberto |
title_short |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
title_full |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
title_fullStr |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
title_full_unstemmed |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
title_sort |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
dc.creator.none.fl_str_mv |
Boada, David Alberto Vargas Garcia, Héctor Miguel Albarracín Ferreira, Jaime Octavio Fuentes, Henry Arguello |
author |
Boada, David Alberto |
author_facet |
Boada, David Alberto Vargas Garcia, Héctor Miguel Albarracín Ferreira, Jaime Octavio Fuentes, Henry Arguello |
author_role |
author |
author2 |
Vargas Garcia, Héctor Miguel Albarracín Ferreira, Jaime Octavio Fuentes, Henry Arguello |
author2_role |
author author author |
description |
Hyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature detection, classification, or identification based on their spectral characteristics. Novel architectures have been developed for the acquisition of compressive spectral images with just a few coded aperture focal plane array measurements. This work focuses on the development of a target detection approach in hyperspectral images directly from compressive measurements without first reconstructing the full data cube that represents the real image. Specifically, a sparsity-based target detection model that uses compressive measurement for the detection task is designed and tested using an optimization algorithm. Simulations show that it is possible to perform certain transformations to the dictionaries used in traditional target detection, in order to achieve an accurate image representation in the compressed subspace |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-15 2020-04-16T17:27:30Z 2020-04-16T17:27:30Z |
dc.type.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 Artículo de revista http://purl.org/coar/resource_type/c_6501 info:eu-repo/semantics/article Peer-reviewed Article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257 10.11144/Javeriana.iyu21-2.sasi 2011-2769 0123-2126 http://hdl.handle.net/10554/25825 |
url |
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257 http://hdl.handle.net/10554/25825 |
identifier_str_mv |
10.11144/Javeriana.iyu21-2.sasi 2011-2769 0123-2126 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257/15039 Ingenieria y Universidad; Vol 21 No 2 (2017): July-December; 272 Ingenieria y Universidad; Vol. 21 Núm. 2 (2017): Julio-Dicciembre; 272 |
dc.rights.none.fl_str_mv |
Copyright (c) 2017 David Alberto Boada Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Copyright (c) 2017 David Alberto Boada Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
PDF application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Javeriana |
publisher.none.fl_str_mv |
Pontificia Universidad Javeriana |
dc.source.none.fl_str_mv |
reponame:Repositorio Universidad Javeriana instname:Pontificia Universidad Javeriana instacron:Pontificia Universidad Javeriana |
instname_str |
Pontificia Universidad Javeriana |
instacron_str |
Pontificia Universidad Javeriana |
institution |
Pontificia Universidad Javeriana |
reponame_str |
Repositorio Universidad Javeriana |
collection |
Repositorio Universidad Javeriana |
_version_ |
1803712800616349696 |