An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture

Hyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature...

Full description

Autores:
Tipo de recurso:
article
Fecha de publicación:
2017
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
eng
OAI Identifier:
oai:repository.javeriana.edu.co:10554/25825
Acceso en línea:
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257
http://hdl.handle.net/10554/25825
Palabra clave:
Rights
openAccess
License
Copyright (c) 2017 David Alberto Boada
id JAVERIANA_71a30faac2ada66ce0fbb6de90bc329d
oai_identifier_str oai:repository.javeriana.edu.co:10554/25825
network_acronym_str JAVERIANA
network_name_str Repositorio Universidad Javeriana
repository_id_str
spelling An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architectureBoada, David AlbertoVargas Garcia, Héctor MiguelAlbarracín Ferreira, Jaime OctavioFuentes, Henry ArguelloHyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature detection, classification, or identification based on their spectral characteristics. Novel architectures have been developed for the acquisition of compressive spectral images with just a few coded aperture focal plane array measurements. This work focuses on the development of a target detection approach in hyperspectral images directly from compressive measurements without first reconstructing the full data cube that represents the real image. Specifically, a sparsity-based target detection model that uses compressive measurement for the detection task is designed and tested using an optimization algorithm. Simulations show that it is possible to perform certain transformations to the dictionaries used in traditional target detection, in order to achieve an accurate image representation in the compressed subspacePontificia Universidad Javeriana2020-04-16T17:27:30Z2020-04-16T17:27:30Z2017-06-15http://purl.org/coar/version/c_970fb48d4fbd8a85Artículo de revistahttp://purl.org/coar/resource_type/c_6501info:eu-repo/semantics/articlePeer-reviewed Articleinfo:eu-repo/semantics/publishedVersionPDFapplication/pdfhttp://revistas.javeriana.edu.co/index.php/iyu/article/view/25710.11144/Javeriana.iyu21-2.sasi2011-27690123-2126http://hdl.handle.net/10554/25825enghttp://revistas.javeriana.edu.co/index.php/iyu/article/view/257/15039Ingenieria y Universidad; Vol 21 No 2 (2017): July-December; 272Ingenieria y Universidad; Vol. 21 Núm. 2 (2017): Julio-Dicciembre; 272Copyright (c) 2017 David Alberto BoadaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2reponame:Repositorio Universidad Javerianainstname:Pontificia Universidad Javerianainstacron:Pontificia Universidad Javeriana2023-03-29T17:44:02Z
dc.title.none.fl_str_mv An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
title An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
spellingShingle An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
Boada, David Alberto
title_short An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
title_full An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
title_fullStr An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
title_full_unstemmed An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
title_sort An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture
dc.creator.none.fl_str_mv Boada, David Alberto
Vargas Garcia, Héctor Miguel
Albarracín Ferreira, Jaime Octavio
Fuentes, Henry Arguello
author Boada, David Alberto
author_facet Boada, David Alberto
Vargas Garcia, Héctor Miguel
Albarracín Ferreira, Jaime Octavio
Fuentes, Henry Arguello
author_role author
author2 Vargas Garcia, Héctor Miguel
Albarracín Ferreira, Jaime Octavio
Fuentes, Henry Arguello
author2_role author
author
author
description Hyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature detection, classification, or identification based on their spectral characteristics. Novel architectures have been developed for the acquisition of compressive spectral images with just a few coded aperture focal plane array measurements. This work focuses on the development of a target detection approach in hyperspectral images directly from compressive measurements without first reconstructing the full data cube that represents the real image. Specifically, a sparsity-based target detection model that uses compressive measurement for the detection task is designed and tested using an optimization algorithm. Simulations show that it is possible to perform certain transformations to the dictionaries used in traditional target detection, in order to achieve an accurate image representation in the compressed subspace
publishDate 2017
dc.date.none.fl_str_mv 2017-06-15
2020-04-16T17:27:30Z
2020-04-16T17:27:30Z
dc.type.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
Artículo de revista
http://purl.org/coar/resource_type/c_6501
info:eu-repo/semantics/article
Peer-reviewed Article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://revistas.javeriana.edu.co/index.php/iyu/article/view/257
10.11144/Javeriana.iyu21-2.sasi
2011-2769
0123-2126
http://hdl.handle.net/10554/25825
url http://revistas.javeriana.edu.co/index.php/iyu/article/view/257
http://hdl.handle.net/10554/25825
identifier_str_mv 10.11144/Javeriana.iyu21-2.sasi
2011-2769
0123-2126
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv http://revistas.javeriana.edu.co/index.php/iyu/article/view/257/15039
Ingenieria y Universidad; Vol 21 No 2 (2017): July-December; 272
Ingenieria y Universidad; Vol. 21 Núm. 2 (2017): Julio-Dicciembre; 272
dc.rights.none.fl_str_mv Copyright (c) 2017 David Alberto Boada
Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Copyright (c) 2017 David Alberto Boada
Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv PDF
application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana
publisher.none.fl_str_mv Pontificia Universidad Javeriana
dc.source.none.fl_str_mv reponame:Repositorio Universidad Javeriana
instname:Pontificia Universidad Javeriana
instacron:Pontificia Universidad Javeriana
instname_str Pontificia Universidad Javeriana
instacron_str Pontificia Universidad Javeriana
institution Pontificia Universidad Javeriana
reponame_str Repositorio Universidad Javeriana
collection Repositorio Universidad Javeriana
_version_ 1803712800616349696