On Whitney duals of geometric lattices.

The concept of Whitney duality was first introduced by Gonz\'al\'ez D'Le\'on and Hallam in \cite{GONZALEZDLEON2021105301}. Two graded posets are said to be Whitney duals if they have their Whitney numbers of the first and second kind interchanged modulo sign. This is an interesti...

Full description

Autores:
Molina Giraldo, Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
spa
OAI Identifier:
oai:repository.javeriana.edu.co:10554/66715
Acceso en línea:
http://hdl.handle.net/10554/66715
Palabra clave:
Poset
Matroide
Complejo NBC
Actividad interna
Clase de ordenamiento de átomos
Dual de Whitney
Retículo Geométrico
Poset
Réticulo Geométrico
Matroid
NBC complex
Internal activity
Atom ordering class
Whitney dual.
Matemáticas - Tesis y disertaciones académicas
Ordenamiento de átomos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id JAVERIANA2_df7d139d776cac5576ae8ee8dfc1a481
oai_identifier_str oai:repository.javeriana.edu.co:10554/66715
network_acronym_str JAVERIANA2
network_name_str Repositorio Universidad Javeriana
repository_id_str
dc.title.spa.fl_str_mv On Whitney duals of geometric lattices.
dc.title.english.spa.fl_str_mv On Whitney duals of geometric lattices.
title On Whitney duals of geometric lattices.
spellingShingle On Whitney duals of geometric lattices.
Poset
Matroide
Complejo NBC
Actividad interna
Clase de ordenamiento de átomos
Dual de Whitney
Retículo Geométrico
Poset
Réticulo Geométrico
Matroid
NBC complex
Internal activity
Atom ordering class
Whitney dual.
Matemáticas - Tesis y disertaciones académicas
Ordenamiento de átomos
title_short On Whitney duals of geometric lattices.
title_full On Whitney duals of geometric lattices.
title_fullStr On Whitney duals of geometric lattices.
title_full_unstemmed On Whitney duals of geometric lattices.
title_sort On Whitney duals of geometric lattices.
dc.creator.fl_str_mv Molina Giraldo, Andrés
dc.contributor.advisor.spa.fl_str_mv González D'León, Rafael
dc.contributor.author.spa.fl_str_mv Molina Giraldo, Andrés
dc.contributor.evaluator.spa.fl_str_mv Hallam, Joshua
Samper, José
dc.subject.none.fl_str_mv Poset
Matroide
Complejo NBC
Actividad interna
Clase de ordenamiento de átomos
Dual de Whitney
Retículo Geométrico
topic Poset
Matroide
Complejo NBC
Actividad interna
Clase de ordenamiento de átomos
Dual de Whitney
Retículo Geométrico
Poset
Réticulo Geométrico
Matroid
NBC complex
Internal activity
Atom ordering class
Whitney dual.
Matemáticas - Tesis y disertaciones académicas
Ordenamiento de átomos
dc.subject.keyword.none.fl_str_mv Poset
Réticulo Geométrico
Matroid
NBC complex
Internal activity
Atom ordering class
Whitney dual.
dc.subject.armarc.none.fl_str_mv Matemáticas - Tesis y disertaciones académicas
dc.subject.armarc.spa.fl_str_mv Ordenamiento de átomos
description The concept of Whitney duality was first introduced by Gonz\'al\'ez D'Le\'on and Hallam in \cite{GONZALEZDLEON2021105301}. Two graded posets are said to be Whitney duals if they have their Whitney numbers of the first and second kind interchanged modulo sign. This is an interesting property being the Whitney numbers of a graded poset an important invariant in poset theory with connections to other mathematical contexts. The Whitney numbers appear, for example, as coefficients of chromatic polynomials of finite graphs. In \cite{GONZALEZDLEON2021105301} the authors also gave an explicit construction for Whitney duals under certain conditions, through the technique of EW-labelings. Some edge labelings that already appeared in the literature were shown to be EW-labelings, one particular case being the minimal edge labelings of geometric lattices introduced by Stanley. In this work we study specifically the Whitney duals of geometric lattices that arise from minimal EW-labelings. Since geometric lattices are in bijective correspondence to finite simple matroids, we aim to understand the construction of the Whitney duals only in terms of the information contained in an ordered matroid $(M,\omega)$, where $M$ is a simple matroid and $\omega$ is a total ordering of the ground set. To an ordered matroid one can associate its non-broken circuit complex (or NBC complex) as it was introduced by Bj\"orner in \cite{björner_1992}. We show that the Whitney dual corresponding to a minimal labeling of a geometric lattice can be described as a particular subposet of the NBC complex of its associated ordered matroid. More precisely, the subposet of the NBC complex formed by all the NBC sets and whose cover relations are determined by the removal of internally active elements on an NBC set is a Whitney dual to the lattice of flats of a matroid. % More specifically, it begins by giving a brief summary of necessary concepts to understand matroids and geometric lattices, as given in \cite{oxley2011matroid} and \cite{stanley2000enumerative}. Then, through the concept of NBC complexes given by Björner in \cite{björner_1992}, it proves that Whitney duals of geometric lattices formed through a special kind of Whitney labeling called minimal labeling can be described in terms of their corresponding matroid. Using this description we implement an algorithm using \href{http://www.sagemath.org/}{\textsc{Sagemath}} to construct the Whitney dual of the lattice of flats of an ordered matroid. We use this implementation to prove computationally that Whitney duals from different minimal labelings of a geometric lattice are not necessarily isomorphic. We compute the specific isomorphism classes (which here we refer as to atom ordering classes) of Whitney duals corresponding to minimal labelings for particular examples of matroids. In particular we determine that the Fano matroid has $5$ atom ordering classes and the non-Fano matroid has $42$ such classes.
publishDate 2023
dc.date.created.spa.fl_str_mv 2023-05-12
dc.date.accessioned.none.fl_str_mv 2024-02-26T21:45:05Z
dc.date.available.none.fl_str_mv 2024-02-26T21:45:05Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10554/66715
dc.identifier.instname.none.fl_str_mv instname:Pontificia Universidad Javeriana
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional - Pontificia Universidad Javeriana
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.javeriana.edu.co
url http://hdl.handle.net/10554/66715
identifier_str_mv instname:Pontificia Universidad Javeriana
reponame:Repositorio Institucional - Pontificia Universidad Javeriana
repourl:https://repository.javeriana.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.licence.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv PDF
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
publisher.none.fl_str_mv Pontificia Universidad Javeriana
institution Pontificia Universidad Javeriana
bitstream.url.fl_str_mv http://repository.javeriana.edu.co/bitstream/10554/66715/1/attachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdf
http://repository.javeriana.edu.co/bitstream/10554/66715/2/attachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdf.jpg
bitstream.checksum.fl_str_mv e14663aaf6e4e1402d08daebb2149ad5
92a9c2f6ec537dd1a008f5b3c00823c4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Pontificia Universidad Javeriana
repository.mail.fl_str_mv repositorio@javeriana.edu.co
_version_ 1811671384643862528
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González D'León, RafaelMolina Giraldo, AndrésHallam, JoshuaSamper, José2024-02-26T21:45:05Z2024-02-26T21:45:05Z2023-05-12http://hdl.handle.net/10554/66715instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coThe concept of Whitney duality was first introduced by Gonz\'al\'ez D'Le\'on and Hallam in \cite{GONZALEZDLEON2021105301}. Two graded posets are said to be Whitney duals if they have their Whitney numbers of the first and second kind interchanged modulo sign. This is an interesting property being the Whitney numbers of a graded poset an important invariant in poset theory with connections to other mathematical contexts. The Whitney numbers appear, for example, as coefficients of chromatic polynomials of finite graphs. In \cite{GONZALEZDLEON2021105301} the authors also gave an explicit construction for Whitney duals under certain conditions, through the technique of EW-labelings. Some edge labelings that already appeared in the literature were shown to be EW-labelings, one particular case being the minimal edge labelings of geometric lattices introduced by Stanley. In this work we study specifically the Whitney duals of geometric lattices that arise from minimal EW-labelings. Since geometric lattices are in bijective correspondence to finite simple matroids, we aim to understand the construction of the Whitney duals only in terms of the information contained in an ordered matroid $(M,\omega)$, where $M$ is a simple matroid and $\omega$ is a total ordering of the ground set. To an ordered matroid one can associate its non-broken circuit complex (or NBC complex) as it was introduced by Bj\"orner in \cite{björner_1992}. We show that the Whitney dual corresponding to a minimal labeling of a geometric lattice can be described as a particular subposet of the NBC complex of its associated ordered matroid. More precisely, the subposet of the NBC complex formed by all the NBC sets and whose cover relations are determined by the removal of internally active elements on an NBC set is a Whitney dual to the lattice of flats of a matroid. % More specifically, it begins by giving a brief summary of necessary concepts to understand matroids and geometric lattices, as given in \cite{oxley2011matroid} and \cite{stanley2000enumerative}. Then, through the concept of NBC complexes given by Björner in \cite{björner_1992}, it proves that Whitney duals of geometric lattices formed through a special kind of Whitney labeling called minimal labeling can be described in terms of their corresponding matroid. Using this description we implement an algorithm using \href{http://www.sagemath.org/}{\textsc{Sagemath}} to construct the Whitney dual of the lattice of flats of an ordered matroid. We use this implementation to prove computationally that Whitney duals from different minimal labelings of a geometric lattice are not necessarily isomorphic. We compute the specific isomorphism classes (which here we refer as to atom ordering classes) of Whitney duals corresponding to minimal labelings for particular examples of matroids. In particular we determine that the Fano matroid has $5$ atom ordering classes and the non-Fano matroid has $42$ such classes.The concept of Whitney duality was first introduced by Gonz\'al\'ez D'Le\'on and Hallam in \cite{GONZALEZDLEON2021105301}. Two graded posets are said to be Whitney duals if they have their Whitney numbers of the first and second kind interchanged modulo sign. This is an interesting property being the Whitney numbers of a graded poset an important invariant in poset theory with connections to other mathematical contexts. The Whitney numbers appear, for example, as coefficients of chromatic polynomials of finite graphs. In \cite{GONZALEZDLEON2021105301} the authors also gave an explicit construction for Whitney duals under certain conditions, through the technique of EW-labelings. Some edge labelings that already appeared in the literature were shown to be EW-labelings, one particular case being the minimal edge labelings of geometric lattices introduced by Stanley. In this work we study specifically the Whitney duals of geometric lattices that arise from minimal EW-labelings. Since geometric lattices are in bijective correspondence to finite simple matroids, we aim to understand the construction of the Whitney duals only in terms of the information contained in an ordered matroid $(M,\omega)$, where $M$ is a simple matroid and $\omega$ is a total ordering of the ground set. To an ordered matroid one can associate its non-broken circuit complex (or NBC complex) as it was introduced by Bj\"orner in \cite{björner_1992}. We show that the Whitney dual corresponding to a minimal labeling of a geometric lattice can be described as a particular subposet of the NBC complex of its associated ordered matroid. More precisely, the subposet of the NBC complex formed by all the NBC sets and whose cover relations are determined by the removal of internally active elements on an NBC set is a Whitney dual to the lattice of flats of a matroid. % More specifically, it begins by giving a brief summary of necessary concepts to understand matroids and geometric lattices, as given in \cite{oxley2011matroid} and \cite{stanley2000enumerative}. Then, through the concept of NBC complexes given by Björner in \cite{björner_1992}, it proves that Whitney duals of geometric lattices formed through a special kind of Whitney labeling called minimal labeling can be described in terms of their corresponding matroid. Using this description we implement an algorithm using \href{http://www.sagemath.org/}{\textsc{Sagemath}} to construct the Whitney dual of the lattice of flats of an ordered matroid. We use this implementation to prove computationally that Whitney duals from different minimal labelings of a geometric lattice are not necessarily isomorphic. We compute the specific isomorphism classes (which here we refer as to atom ordering classes) of Whitney duals corresponding to minimal labelings for particular examples of matroids. In particular we determine that the Fano matroid has $5$ atom ordering classes and the non-Fano matroid has $42$ such classes.Matemático (a)PregradoPDFapplication/pdfspaPontificia Universidad JaverianaMatemáticasFacultad de CienciasPosetMatroideComplejo NBCActividad internaClase de ordenamiento de átomosDual de WhitneyRetículo GeométricoPosetRéticulo GeométricoMatroidNBC complexInternal activityAtom ordering classWhitney dual.Matemáticas - Tesis y disertaciones académicasOrdenamiento de átomosOn Whitney duals of geometric lattices.On Whitney duals of geometric lattices.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisORIGINALattachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdfattachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdfDocumentoapplication/pdf950705http://repository.javeriana.edu.co/bitstream/10554/66715/1/attachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdfe14663aaf6e4e1402d08daebb2149ad5MD51open accessTHUMBNAILattachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdf.jpgattachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdf.jpgIM Thumbnailimage/jpeg5029http://repository.javeriana.edu.co/bitstream/10554/66715/2/attachment_0_On_Whitney_Duals_of_Geometric_Lattices_Molina.pdf.jpg92a9c2f6ec537dd1a008f5b3c00823c4MD52open access10554/66715oai:repository.javeriana.edu.co:10554/667152024-02-29 03:10:16.325Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co