Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias

Outpatient care constitutes the primary healthcare service across different countries. Appoint- ment scheduling within this care setting faces the significant challenge of patient no-shows, which is detrimental to service quality, leading to treatment delays and economic losses for healthcare center...

Full description

Autores:
Romero Romero, Julián Darío
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
spa
OAI Identifier:
oai:repository.javeriana.edu.co:10554/67529
Acceso en línea:
http://hdl.handle.net/10554/67529
Palabra clave:
Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
Ingeniería industrial - Tesis y disertaciones académicas
Aprendizaje de máquinas
Metaheurística
Logística empresarial
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id JAVERIANA2_cc1341ecbab34eccb53547f3de67658a
oai_identifier_str oai:repository.javeriana.edu.co:10554/67529
network_acronym_str JAVERIANA2
network_name_str Repositorio Universidad Javeriana
repository_id_str
dc.title.spa.fl_str_mv Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
dc.title.english.spa.fl_str_mv Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
title Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
spellingShingle Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
Ingeniería industrial - Tesis y disertaciones académicas
Aprendizaje de máquinas
Metaheurística
Logística empresarial
title_short Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
title_full Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
title_fullStr Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
title_full_unstemmed Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
title_sort Machine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic Bias
dc.creator.fl_str_mv Romero Romero, Julián Darío
dc.contributor.advisor.spa.fl_str_mv Barrera Ferro, Oscar David
dc.contributor.author.spa.fl_str_mv Romero Romero, Julián Darío
dc.contributor.evaluator.spa.fl_str_mv Gonzalez Neira, Eliana Maria
dc.subject.none.fl_str_mv Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
topic Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
Ingeniería industrial - Tesis y disertaciones académicas
Aprendizaje de máquinas
Metaheurística
Logística empresarial
dc.subject.keyword.none.fl_str_mv Machine Learning
Algorithm Fairness
Metaheuristics
Appointment Scheduling
Sim- ulation
Bias
dc.subject.armarc.none.fl_str_mv Ingeniería industrial - Tesis y disertaciones académicas
dc.subject.armarc.spa.fl_str_mv Aprendizaje de máquinas
Metaheurística
Logística empresarial
description Outpatient care constitutes the primary healthcare service across different countries. Appoint- ment scheduling within this care setting faces the significant challenge of patient no-shows, which is detrimental to service quality, leading to treatment delays and economic losses for healthcare centers. With the rise of artificial intelligence, the combination of strategies such as overbooking and machine learning (ML) models has emerged as a promising approach. However, there are concerns regarding group bias (GB) and its potential to result in unfair services, perpetuating historical barriers and disparities that society is striving to eliminate. In the ML-enabled overbooking framework proposed in this study, we demonstrate the presence of socioeconomic GB due to the under-representation of a socioeconomically vulnerable population within the dataset, and how this worsens the service quality for the vulnerable group. We illustrate how including post-modeling strategies in the two proposed overbooking methodologies can com- pletely mitigate this effect, ensuring fairness in the framework that combines overbooking and ML
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-05T18:42:15Z
dc.date.available.none.fl_str_mv 2024-06-05T18:42:15Z
dc.date.created.spa.fl_str_mv 2024-06-01
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10554/67529
dc.identifier.instname.none.fl_str_mv instname:Pontificia Universidad Javeriana
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional - Pontificia Universidad Javeriana
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.javeriana.edu.co
url http://hdl.handle.net/10554/67529
identifier_str_mv instname:Pontificia Universidad Javeriana
reponame:Repositorio Institucional - Pontificia Universidad Javeriana
repourl:https://repository.javeriana.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.licence.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv PDF
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.program.none.fl_str_mv Ingeniería Industrial
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
publisher.none.fl_str_mv Pontificia Universidad Javeriana
institution Pontificia Universidad Javeriana
bitstream.url.fl_str_mv http://repository.javeriana.edu.co/bitstream/10554/67529/1/attachment_0_Machine-Learning-Overbooking%2c-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdf
http://repository.javeriana.edu.co/bitstream/10554/67529/2/attachment_0_Machine-Learning-Overbooking%2c-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdf.jpg
bitstream.checksum.fl_str_mv ee34f1fff538aa5df04d8e2e36c2c894
7b81c3cb5809dc04ca1bc8e62ea66733
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Pontificia Universidad Javeriana
repository.mail.fl_str_mv repositorio@javeriana.edu.co
_version_ 1811671299214278656
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barrera Ferro, Oscar DavidRomero Romero, Julián DaríoGonzalez Neira, Eliana Maria2024-06-05T18:42:15Z2024-06-05T18:42:15Z2024-06-01http://hdl.handle.net/10554/67529instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coOutpatient care constitutes the primary healthcare service across different countries. Appoint- ment scheduling within this care setting faces the significant challenge of patient no-shows, which is detrimental to service quality, leading to treatment delays and economic losses for healthcare centers. With the rise of artificial intelligence, the combination of strategies such as overbooking and machine learning (ML) models has emerged as a promising approach. However, there are concerns regarding group bias (GB) and its potential to result in unfair services, perpetuating historical barriers and disparities that society is striving to eliminate. In the ML-enabled overbooking framework proposed in this study, we demonstrate the presence of socioeconomic GB due to the under-representation of a socioeconomically vulnerable population within the dataset, and how this worsens the service quality for the vulnerable group. We illustrate how including post-modeling strategies in the two proposed overbooking methodologies can com- pletely mitigate this effect, ensuring fairness in the framework that combines overbooking and MLOutpatient care constitutes the primary healthcare service across different countries. Appoint- ment scheduling within this care setting faces the significant challenge of patient no-shows, which is detrimental to service quality, leading to treatment delays and economic losses for healthcare centers. With the rise of artificial intelligence, the combination of strategies such as overbooking and machine learning (ML) models has emerged as a promising approach. However, there are concerns regarding group bias (GB) and its potential to result in unfair services, perpetuating historical barriers and disparities that society is striving to eliminate. In the ML-enabled overbooking framework proposed in this study, we demonstrate the presence of socioeconomic GB due to the under-representation of a socioeconomically vulnerable population within the dataset, and how this worsens the service quality for the vulnerable group. We illustrate how including post-modeling strategies in the two proposed overbooking methodologies can com- pletely mitigate this effect, ensuring fairness in the framework that combines overbooking and MLIngeniero (a) IndustrialPregradoPDFapplication/pdfspaPontificia Universidad JaverianaIngeniería IndustrialFacultad de IngenieríaMachine LearningAlgorithm FairnessMetaheuristicsAppointment SchedulingSim- ulationBiasMachine LearningAlgorithm FairnessMetaheuristicsAppointment SchedulingSim- ulationBiasIngeniería industrial - Tesis y disertaciones académicasAprendizaje de máquinasMetaheurísticaLogística empresarialMachine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic BiasMachine Learning Overbooking Framework for Outpatient Appointments: Improving Resource Allocation and Correcting Socioeconomic BiasTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisORIGINALattachment_0_Machine-Learning-Overbooking,-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdfattachment_0_Machine-Learning-Overbooking,-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdfDocumentoapplication/pdf1437877http://repository.javeriana.edu.co/bitstream/10554/67529/1/attachment_0_Machine-Learning-Overbooking%2c-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdfee34f1fff538aa5df04d8e2e36c2c894MD51open accessTHUMBNAILattachment_0_Machine-Learning-Overbooking,-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdf.jpgattachment_0_Machine-Learning-Overbooking,-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdf.jpgIM Thumbnailimage/jpeg8266http://repository.javeriana.edu.co/bitstream/10554/67529/2/attachment_0_Machine-Learning-Overbooking%2c-Framework-for-Outpatient-Appointments_Improving-Resource-Allocation-and.pdf.jpg7b81c3cb5809dc04ca1bc8e62ea66733MD52open access10554/67529oai:repository.javeriana.edu.co:10554/675292024-06-06 03:09:24.906Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co