Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip

Currently quantum computing has proven to make fast and accurate logical calculations and promises to drastically change the field of computing. One of the main limitations are the short coherence times of qubits, which precludes information storage, and the possibility of making distant communicati...

Full description

Autores:
Rosero Realpe, Mateo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
spa
OAI Identifier:
oai:repository.javeriana.edu.co:10554/66800
Acceso en línea:
http://hdl.handle.net/10554/66800
Palabra clave:
Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
Ingeniería electrónica - Tesis y disertaciones académicas
Maestría en ingeniería electrónica - Tesis y disertaciones académicas
Fotónica
Ondas sísmicas - Pruebas
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id JAVERIANA2_b75dc4b7453119e9cb7f3044878b41ba
oai_identifier_str oai:repository.javeriana.edu.co:10554/66800
network_acronym_str JAVERIANA2
network_name_str Repositorio Universidad Javeriana
repository_id_str
dc.title.spa.fl_str_mv Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
dc.title.english.spa.fl_str_mv Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
title Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
spellingShingle Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
Ingeniería electrónica - Tesis y disertaciones académicas
Maestría en ingeniería electrónica - Tesis y disertaciones académicas
Fotónica
Ondas sísmicas - Pruebas
title_short Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
title_full Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
title_fullStr Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
title_full_unstemmed Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
title_sort Fabrication of an integrated optical resonator for microwave to optical conversion on an atom chip
dc.creator.fl_str_mv Rosero Realpe, Mateo
dc.contributor.advisor.spa.fl_str_mv Cocuzza, Matteo
Angelini, Angelo
dc.contributor.author.spa.fl_str_mv Rosero Realpe, Mateo
dc.contributor.evaluator.spa.fl_str_mv Cocuzza, Matteo
Martina, Maurizio
Masera, Guido
Piccinini, Gianluca
Graziano, Mariagrazia
dc.subject.none.fl_str_mv Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
topic Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
Ingeniería electrónica - Tesis y disertaciones académicas
Maestría en ingeniería electrónica - Tesis y disertaciones académicas
Fotónica
Ondas sísmicas - Pruebas
dc.subject.keyword.none.fl_str_mv Atom
Chip
Resonator
Photonics
Quantum
Waveguide
Grating
Coupler
dc.subject.armarc.none.fl_str_mv Ingeniería electrónica - Tesis y disertaciones académicas
Maestría en ingeniería electrónica - Tesis y disertaciones académicas
dc.subject.armarc.spa.fl_str_mv Fotónica
Ondas sísmicas - Pruebas
description Currently quantum computing has proven to make fast and accurate logical calculations and promises to drastically change the field of computing. One of the main limitations are the short coherence times of qubits, which precludes information storage, and the possibility of making distant communications between quantum registers that is challenging using microwave photons (these are resonant with qubit transitions). The MOCA project proposes the use of an integrated chip combining superconducting resonators with optical waveguides and cavities that converts the microwave photons to optical photons. The chip is then coupled to an ensemble of cold atoms for the long term storage of the information. In this way, the fabrication of a Radio Frequency (RF) resonator and a photonic resonator play an important role in the creation of the device. The project is part of the QuantERA programme, created to develop quantum technologies in Europe. However, the tasks to accomplish the goal are divided into 5 research groups in which experimental and theoretical physics are applied. INRIM is in charge of fabricating the RF and photonic resonators, and in my thesis I focused on developing the photonic components. The resonator consists of 3 parts: a waveguide in which the optical photons are confined, a cavity with bragg reflectors to create a resonator for efficient photon conversion and a grating to couple the signal from the waveguide to the optical fibers. The operating wavelength chosen is 760 nm. For the good confinement of the wave in the waveguide, a high refractive index material with low losses is needed. We chose Silicon Nitride (SiN), and we modified the recipe for deposition in order to increase the refractive index up to 2.4. The SiN thin films are deposited by Chemical Vapor Deposition (CVD) on a dielectric substrate (in this case, thick corning glass). We calibrated the deposition process and measured the deposition rate in order to obtain a final thickness of 200 nm, which is the thickness required for the waveguides. We optimized the final geometry for the waveguides and the gratings by means of a Finite Element Method commercial software and the obtained structures were replicated in a CAD software for Electron Beam Lithography (EBL). The lithographic process was followed by an Aluminum deposition to obtain an hard mask that could be used in a Reactive Ion Etching step to remove the exceeding Silicon Nitride. For the RIE step we optimized a recipe that approximates to a Silicon Etching recipe more than a SiN recipe, and taking into account the need of a conformal structure, a pseudo-bosch etching was used. Secondly is the grating coupler, whose parameters can be calculated considering the angle of incidence of the light into the grating and the Bragg’s condition for the proper diffraction of the light. Finite Element Method (FEM) modeling was performed to optimize the structure. Thirdly, we want to confine light in a microcavity by fabricating Distributed Bragg Reflectors (DBR) along the waveguide. In such a way, we want to increase the photon density within the cavity and enable the conversion of microwave photons radiated by the cold atom ensemble into optical ones. As an alternative route for the light confinement and manipulation, we also considered using a metasurface made of SiN nanopillars. FEM models show that such structures can sustain resonant modes with a quality factor as high as 10^5.
publishDate 2023
dc.date.created.spa.fl_str_mv 2023-10-27
dc.date.accessioned.none.fl_str_mv 2024-03-04T19:06:14Z
dc.date.available.none.fl_str_mv 2024-03-04T19:06:14Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10554/66800
dc.identifier.instname.none.fl_str_mv instname:Pontificia Universidad Javeriana
dc.identifier.reponame.none.fl_str_mv reponame:Repositorio Institucional - Pontificia Universidad Javeriana
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.javeriana.edu.co
url http://hdl.handle.net/10554/66800
identifier_str_mv instname:Pontificia Universidad Javeriana
reponame:Repositorio Institucional - Pontificia Universidad Javeriana
repourl:https://repository.javeriana.edu.co
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.licence.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv PDF
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
Maestría en Ingeniería Electrónica
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeniería
publisher.none.fl_str_mv Pontificia Universidad Javeriana
institution Pontificia Universidad Javeriana
bitstream.url.fl_str_mv http://repository.javeriana.edu.co/bitstream/10554/66800/1/attachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf
http://repository.javeriana.edu.co/bitstream/10554/66800/2/attachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf.jpg
bitstream.checksum.fl_str_mv 0320b5cdf58364d1d8838263a97fdbb8
db2157324a01c93c972c4df49063ffee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Pontificia Universidad Javeriana
repository.mail.fl_str_mv repositorio@javeriana.edu.co
_version_ 1808389566321655808
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/De acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cocuzza, MatteoAngelini, AngeloRosero Realpe, MateoCocuzza, MatteoMartina, MaurizioMasera, GuidoPiccinini, GianlucaGraziano, Mariagrazia2024-03-04T19:06:14Z2024-03-04T19:06:14Z2023-10-27http://hdl.handle.net/10554/66800instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coCurrently quantum computing has proven to make fast and accurate logical calculations and promises to drastically change the field of computing. One of the main limitations are the short coherence times of qubits, which precludes information storage, and the possibility of making distant communications between quantum registers that is challenging using microwave photons (these are resonant with qubit transitions). The MOCA project proposes the use of an integrated chip combining superconducting resonators with optical waveguides and cavities that converts the microwave photons to optical photons. The chip is then coupled to an ensemble of cold atoms for the long term storage of the information. In this way, the fabrication of a Radio Frequency (RF) resonator and a photonic resonator play an important role in the creation of the device. The project is part of the QuantERA programme, created to develop quantum technologies in Europe. However, the tasks to accomplish the goal are divided into 5 research groups in which experimental and theoretical physics are applied. INRIM is in charge of fabricating the RF and photonic resonators, and in my thesis I focused on developing the photonic components. The resonator consists of 3 parts: a waveguide in which the optical photons are confined, a cavity with bragg reflectors to create a resonator for efficient photon conversion and a grating to couple the signal from the waveguide to the optical fibers. The operating wavelength chosen is 760 nm. For the good confinement of the wave in the waveguide, a high refractive index material with low losses is needed. We chose Silicon Nitride (SiN), and we modified the recipe for deposition in order to increase the refractive index up to 2.4. The SiN thin films are deposited by Chemical Vapor Deposition (CVD) on a dielectric substrate (in this case, thick corning glass). We calibrated the deposition process and measured the deposition rate in order to obtain a final thickness of 200 nm, which is the thickness required for the waveguides. We optimized the final geometry for the waveguides and the gratings by means of a Finite Element Method commercial software and the obtained structures were replicated in a CAD software for Electron Beam Lithography (EBL). The lithographic process was followed by an Aluminum deposition to obtain an hard mask that could be used in a Reactive Ion Etching step to remove the exceeding Silicon Nitride. For the RIE step we optimized a recipe that approximates to a Silicon Etching recipe more than a SiN recipe, and taking into account the need of a conformal structure, a pseudo-bosch etching was used. Secondly is the grating coupler, whose parameters can be calculated considering the angle of incidence of the light into the grating and the Bragg’s condition for the proper diffraction of the light. Finite Element Method (FEM) modeling was performed to optimize the structure. Thirdly, we want to confine light in a microcavity by fabricating Distributed Bragg Reflectors (DBR) along the waveguide. In such a way, we want to increase the photon density within the cavity and enable the conversion of microwave photons radiated by the cold atom ensemble into optical ones. As an alternative route for the light confinement and manipulation, we also considered using a metasurface made of SiN nanopillars. FEM models show that such structures can sustain resonant modes with a quality factor as high as 10^5.Currently quantum computing has proven to make fast and accurate logical calculations and promises to drastically change the field of computing. One of the main limitations are the short coherence times of qubits, which precludes information storage, and the possibility of making distant communications between quantum registers that is challenging using microwave photons (these are resonant with qubit transitions). The MOCA project proposes the use of an integrated chip combining superconducting resonators with optical waveguides and cavities that converts the microwave photons to optical photons. The chip is then coupled to an ensemble of cold atoms for the long term storage of the information. In this way, the fabrication of a Radio Frequency (RF) resonator and a photonic resonator play an important role in the creation of the device. The project is part of the QuantERA programme, created to develop quantum technologies in Europe. However, the tasks to accomplish the goal are divided into 5 research groups in which experimental and theoretical physics are applied. INRIM is in charge of fabricating the RF and photonic resonators, and in my thesis I focused on developing the photonic components. The resonator consists of 3 parts: a waveguide in which the optical photons are confined, a cavity with bragg reflectors to create a resonator for efficient photon conversion and a grating to couple the signal from the waveguide to the optical fibers. The operating wavelength chosen is 760 nm. For the good confinement of the wave in the waveguide, a high refractive index material with low losses is needed. We chose Silicon Nitride (SiN), and we modified the recipe for deposition in order to increase the refractive index up to 2.4. The SiN thin films are deposited by Chemical Vapor Deposition (CVD) on a dielectric substrate (in this case, thick corning glass). We calibrated the deposition process and measured the deposition rate in order to obtain a final thickness of 200 nm, which is the thickness required for the waveguides. We optimized the final geometry for the waveguides and the gratings by means of a Finite Element Method commercial software and the obtained structures were replicated in a CAD software for Electron Beam Lithography (EBL). The lithographic process was followed by an Aluminum deposition to obtain an hard mask that could be used in a Reactive Ion Etching step to remove the exceeding Silicon Nitride. For the RIE step we optimized a recipe that approximates to a Silicon Etching recipe more than a SiN recipe, and taking into account the need of a conformal structure, a pseudo-bosch etching was used. Secondly is the grating coupler, whose parameters can be calculated considering the angle of incidence of the light into the grating and the Bragg’s condition for the proper diffraction of the light. Finite Element Method (FEM) modeling was performed to optimize the structure. Thirdly, we want to confine light in a microcavity by fabricating Distributed Bragg Reflectors (DBR) along the waveguide. In such a way, we want to increase the photon density within the cavity and enable the conversion of microwave photons radiated by the cold atom ensemble into optical ones. As an alternative route for the light confinement and manipulation, we also considered using a metasurface made of SiN nanopillars. FEM models show that such structures can sustain resonant modes with a quality factor as high as 10^5.Ingeniero (a) ElectrónicoMagíster en Ingeniería ElectrónicaPregradoPDFapplication/pdfspaPontificia Universidad JaverianaIngeniería ElectrónicaMaestría en Ingeniería ElectrónicaFacultad de IngenieríaAtomChipResonatorPhotonicsQuantumWaveguideGratingCouplerAtomChipResonatorPhotonicsQuantumWaveguideGratingCouplerIngeniería electrónica - Tesis y disertaciones académicasMaestría en ingeniería electrónica - Tesis y disertaciones académicasFotónicaOndas sísmicas - PruebasFabrication of an integrated optical resonator for microwave to optical conversion on an atom chipFabrication of an integrated optical resonator for microwave to optical conversion on an atom chipTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisORIGINALattachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdfattachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdfDocumentoapplication/pdf17942601http://repository.javeriana.edu.co/bitstream/10554/66800/1/attachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf0320b5cdf58364d1d8838263a97fdbb8MD51open accessTHUMBNAILattachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf.jpgattachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf.jpgIM Thumbnailimage/jpeg6452http://repository.javeriana.edu.co/bitstream/10554/66800/2/attachment_0_s294275_Tesi_conv_thesis_mateo_rosero.pdf.jpgdb2157324a01c93c972c4df49063ffeeMD52open access10554/66800oai:repository.javeriana.edu.co:10554/668002024-03-05 03:12:03.702Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co