Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist
Objective: To improve hypospadias classification system, we hereby, show the use of machine learning/image recognition to increase objectivity of hypospadias recognition and classification. Hypospadias anatomical variables such as meatal location, quality of urethral plate, glans size, and ventral c...
- Autores:
-
Fernandez, Nicolas
Lorenzo, Armando J.
Rickard, Mandy
Chua, Michael
Pippi-Salle, Joao L.
Perez Niño, Jaime
Braga, Luis H.
Matava, Clyde
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Pontificia Universidad Javeriana
- Repositorio:
- Repositorio Universidad Javeriana
- Idioma:
- eng
- OAI Identifier:
- oai:repository.javeriana.edu.co:10554/60051
- Acceso en línea:
- https://www.goldjournal.net/article/S0090-4295(20)31129-8/fulltext
http://hdl.handle.net/10554/60051
https://doi.org/10.1016/j.urology.2020.09.019
- Palabra clave:
- Article
Artificial Intelligence
Automated Pattern Recognition
Child Urology
Clinical Outcome
Clinician
Data Base
Diagnostic Accuracy
Disease Classification
Functional Assessment
Functional Disease
Human
Hypospadias
Image Analysis
Learning Al
- Rights
- License
- Atribución-NoComercial 4.0 Internacional
id |
JAVERIANA2_a814951724016004882b2fc8c3bb99ce |
---|---|
oai_identifier_str |
oai:repository.javeriana.edu.co:10554/60051 |
network_acronym_str |
JAVERIANA2 |
network_name_str |
Repositorio Universidad Javeriana |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/http://purl.org/coar/access_right/c_abf2Fernandez, NicolasLorenzo, Armando J.Rickard, MandyChua, MichaelPippi-Salle, Joao L.Perez Niño, JaimeBraga, Luis H.Matava, ClydePontificia Universidad Javeriana. Facultad de Medicina. Departamento de Cirugía y Especialidades. UrologíaPontificia Universidad Javeriana. Facultad de Medicina. Hospital Universitario San IgnacioPerez Niño, Jaime2022-05-31T17:11:31Z2022-05-31T17:11:31Z2020-09-25https://www.goldjournal.net/article/S0090-4295(20)31129-8/fulltext0090-4295 / 1527-9995 (Electrónico)http://hdl.handle.net/10554/60051https://doi.org/10.1016/j.urology.2020.09.019instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coObjective: To improve hypospadias classification system, we hereby, show the use of machine learning/image recognition to increase objectivity of hypospadias recognition and classification. Hypospadias anatomical variables such as meatal location, quality of urethral plate, glans size, and ventral curvature have been identified as predictors for postoperative outcomes but there is still significant subjectivity between evaluators. Materials and Methods: A hypospadias image database with 1169 anonymized images (837 distal and 332 proximal) was used. Images were standardized (ventral aspect of the penis including the glans, shaft, and scrotum) and classified into distal or proximal and uploaded for training with TensorFlow. Data from the training were outputted to TensorBoard, to assess for the loss function. The model was then run on a set of 29 “Test” images randomly selected. Same set of images were distributed among expert clinicians in pediatric urology. Inter- and intrarater analyses were performed using Fleiss Kappa statistical analysis using the same 29 images shown to the algorithm. Results: After training with 627 images, detection accuracy was 60%. With1169 images, accuracy increased to 90%. Inter-rater analysis among expert pediatric urologists was k= 0.86 and intrarater 0.74. Image recognition model emulates the almost perfect inter-rater agreement between experts. Conclusion: Our model emulates expert human classification of patients with distal/proximal hypospadias. Future applicability will be on standardizing the use of these technologies and their clinical applicability. The ability of using variables different than only anatomical will feed deep learning algorithms and possibly better assessments and predictions for surgical outcomes.Q3Q2Neonatos con Hipospadiashttps://orcid.org/0000-0002-9675-5963https://orcid.org/0000-0002-2231-4321Revista Internacional - IndexadaA1NoPDFapplication/pdfengArticleArtificial IntelligenceAutomated Pattern RecognitionChild UrologyClinical OutcomeClinicianData BaseDiagnostic AccuracyDisease ClassificationFunctional AssessmentFunctional DiseaseHumanHypospadiasImage AnalysisLearning AlDigital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologistArtículo de revistahttp://purl.org/coar/resource_type/c_6501264269Urology147ORIGINALa1240.pdfapplication/pdf764090http://repository.javeriana.edu.co/bitstream/10554/60051/1/a1240.pdf9da9814c99b8c4b29150c620d49c3631MD51open accessTHUMBNAILa1240.pdf.jpga1240.pdf.jpgIM Thumbnailimage/jpeg10803http://repository.javeriana.edu.co/bitstream/10554/60051/2/a1240.pdf.jpgc326ae12fb772078d1d653c6234cd311MD52open access10554/60051oai:repository.javeriana.edu.co:10554/600512023-05-08 13:53:39.683Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co |
dc.title.none.fl_str_mv |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
title |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
spellingShingle |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist Article Artificial Intelligence Automated Pattern Recognition Child Urology Clinical Outcome Clinician Data Base Diagnostic Accuracy Disease Classification Functional Assessment Functional Disease Human Hypospadias Image Analysis Learning Al |
title_short |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
title_full |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
title_fullStr |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
title_full_unstemmed |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
title_sort |
Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist |
dc.creator.fl_str_mv |
Fernandez, Nicolas Lorenzo, Armando J. Rickard, Mandy Chua, Michael Pippi-Salle, Joao L. Perez Niño, Jaime Braga, Luis H. Matava, Clyde |
dc.contributor.author.none.fl_str_mv |
Fernandez, Nicolas Lorenzo, Armando J. Rickard, Mandy Chua, Michael Pippi-Salle, Joao L. Perez Niño, Jaime Braga, Luis H. Matava, Clyde |
dc.contributor.corporatename.spa.fl_str_mv |
Pontificia Universidad Javeriana. Facultad de Medicina. Departamento de Cirugía y Especialidades. Urología Pontificia Universidad Javeriana. Facultad de Medicina. Hospital Universitario San Ignacio |
dc.contributor.javerianateacher.none.fl_str_mv |
Perez Niño, Jaime |
dc.subject.spa.fl_str_mv |
Article Artificial Intelligence Automated Pattern Recognition Child Urology Clinical Outcome Clinician Data Base Diagnostic Accuracy Disease Classification Functional Assessment Functional Disease Human Hypospadias Image Analysis Learning Al |
topic |
Article Artificial Intelligence Automated Pattern Recognition Child Urology Clinical Outcome Clinician Data Base Diagnostic Accuracy Disease Classification Functional Assessment Functional Disease Human Hypospadias Image Analysis Learning Al |
description |
Objective: To improve hypospadias classification system, we hereby, show the use of machine learning/image recognition to increase objectivity of hypospadias recognition and classification. Hypospadias anatomical variables such as meatal location, quality of urethral plate, glans size, and ventral curvature have been identified as predictors for postoperative outcomes but there is still significant subjectivity between evaluators. Materials and Methods: A hypospadias image database with 1169 anonymized images (837 distal and 332 proximal) was used. Images were standardized (ventral aspect of the penis including the glans, shaft, and scrotum) and classified into distal or proximal and uploaded for training with TensorFlow. Data from the training were outputted to TensorBoard, to assess for the loss function. The model was then run on a set of 29 “Test” images randomly selected. Same set of images were distributed among expert clinicians in pediatric urology. Inter- and intrarater analyses were performed using Fleiss Kappa statistical analysis using the same 29 images shown to the algorithm. Results: After training with 627 images, detection accuracy was 60%. With1169 images, accuracy increased to 90%. Inter-rater analysis among expert pediatric urologists was k= 0.86 and intrarater 0.74. Image recognition model emulates the almost perfect inter-rater agreement between experts. Conclusion: Our model emulates expert human classification of patients with distal/proximal hypospadias. Future applicability will be on standardizing the use of these technologies and their clinical applicability. The ability of using variables different than only anatomical will feed deep learning algorithms and possibly better assessments and predictions for surgical outcomes. |
publishDate |
2020 |
dc.date.created.none.fl_str_mv |
2020-09-25 |
dc.date.accessioned.none.fl_str_mv |
2022-05-31T17:11:31Z |
dc.date.available.none.fl_str_mv |
2022-05-31T17:11:31Z |
dc.type.local.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.spa.fl_str_mv |
https://www.goldjournal.net/article/S0090-4295(20)31129-8/fulltext |
dc.identifier.issn.spa.fl_str_mv |
0090-4295 / 1527-9995 (Electrónico) |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10554/60051 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.urology.2020.09.019 |
dc.identifier.instname.spa.fl_str_mv |
instname:Pontificia Universidad Javeriana |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional - Pontificia Universidad Javeriana |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.javeriana.edu.co |
url |
https://www.goldjournal.net/article/S0090-4295(20)31129-8/fulltext http://hdl.handle.net/10554/60051 https://doi.org/10.1016/j.urology.2020.09.019 |
identifier_str_mv |
0090-4295 / 1527-9995 (Electrónico) instname:Pontificia Universidad Javeriana reponame:Repositorio Institucional - Pontificia Universidad Javeriana repourl:https://repository.javeriana.edu.co |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.citationstartpage.spa.fl_str_mv |
264 |
dc.relation.citationendpage.spa.fl_str_mv |
269 |
dc.relation.ispartofjournal.spa.fl_str_mv |
Urology |
dc.relation.citationvolume.spa.fl_str_mv |
147 |
dc.rights.licence.*.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.spa.fl_str_mv |
PDF |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Pontificia Universidad Javeriana |
bitstream.url.fl_str_mv |
http://repository.javeriana.edu.co/bitstream/10554/60051/1/a1240.pdf http://repository.javeriana.edu.co/bitstream/10554/60051/2/a1240.pdf.jpg |
bitstream.checksum.fl_str_mv |
9da9814c99b8c4b29150c620d49c3631 c326ae12fb772078d1d653c6234cd311 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional - Pontificia Universidad Javeriana |
repository.mail.fl_str_mv |
repositorio@javeriana.edu.co |
_version_ |
1811671331665608704 |