Digital pattern recognition for the identification and classification of hypospadias using artificial intelligence vs experienced pediatric urologist

Objective: To improve hypospadias classification system, we hereby, show the use of machine learning/image recognition to increase objectivity of hypospadias recognition and classification. Hypospadias anatomical variables such as meatal location, quality of urethral plate, glans size, and ventral c...

Full description

Autores:
Fernandez, Nicolas
Lorenzo, Armando J.
Rickard, Mandy
Chua, Michael
Pippi-Salle, Joao L.
Perez Niño, Jaime
Braga, Luis H.
Matava, Clyde
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
eng
OAI Identifier:
oai:repository.javeriana.edu.co:10554/60051
Acceso en línea:
https://www.goldjournal.net/article/S0090-4295(20)31129-8/fulltext
http://hdl.handle.net/10554/60051
https://doi.org/10.1016/j.urology.2020.09.019
Palabra clave:
Article
Artificial Intelligence
Automated Pattern Recognition
Child Urology
Clinical Outcome
Clinician
Data Base
Diagnostic Accuracy
Disease Classification
Functional Assessment
Functional Disease
Human
Hypospadias
Image Analysis
Learning Al
Rights
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Objective: To improve hypospadias classification system, we hereby, show the use of machine learning/image recognition to increase objectivity of hypospadias recognition and classification. Hypospadias anatomical variables such as meatal location, quality of urethral plate, glans size, and ventral curvature have been identified as predictors for postoperative outcomes but there is still significant subjectivity between evaluators. Materials and Methods: A hypospadias image database with 1169 anonymized images (837 distal and 332 proximal) was used. Images were standardized (ventral aspect of the penis including the glans, shaft, and scrotum) and classified into distal or proximal and uploaded for training with TensorFlow. Data from the training were outputted to TensorBoard, to assess for the loss function. The model was then run on a set of 29 “Test” images randomly selected. Same set of images were distributed among expert clinicians in pediatric urology. Inter- and intrarater analyses were performed using Fleiss Kappa statistical analysis using the same 29 images shown to the algorithm. Results: After training with 627 images, detection accuracy was 60%. With1169 images, accuracy increased to 90%. Inter-rater analysis among expert pediatric urologists was k= 0.86 and intrarater 0.74. Image recognition model emulates the almost perfect inter-rater agreement between experts. Conclusion: Our model emulates expert human classification of patients with distal/proximal hypospadias. Future applicability will be on standardizing the use of these technologies and their clinical applicability. The ability of using variables different than only anatomical will feed deep learning algorithms and possibly better assessments and predictions for surgical outcomes.