Job shop estocástico con minimización del valor esperado del maximum lateness

The drawbacks that programming in job -shop environment imply, refer to a notorious difficulty for its resolution due to its NP-hard nature. However, the research has grown in the late years because of its constant use in manufacturing industries. According to studies, most of the research has appro...

Full description

Autores:
Forero Ortiz, Gabriel Fernando
Ocampo Monsalve, María José
Rivera Torres, Andrea
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
spa
OAI Identifier:
oai:repository.javeriana.edu.co:10554/53042
Acceso en línea:
http://hdl.handle.net/10554/53042
Palabra clave:
Tienda jop estocástico
Tardanza máxima
Averías
Sim heurístico
Búsqueda tabú
Stochastic jop shop
Maximum lateness
Breakdowns
Simheuristic
Tabu search
Ingeniería industrial - Tesis y disertaciones académicas
Análisis estocástico
Algoritmos de aproximación
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id JAVERIANA2_9a65e79ae202b19062d42119f5fa95bf
oai_identifier_str oai:repository.javeriana.edu.co:10554/53042
network_acronym_str JAVERIANA2
network_name_str Repositorio Universidad Javeriana
repository_id_str
dc.title.spa.fl_str_mv Job shop estocástico con minimización del valor esperado del maximum lateness
title Job shop estocástico con minimización del valor esperado del maximum lateness
spellingShingle Job shop estocástico con minimización del valor esperado del maximum lateness
Tienda jop estocástico
Tardanza máxima
Averías
Sim heurístico
Búsqueda tabú
Stochastic jop shop
Maximum lateness
Breakdowns
Simheuristic
Tabu search
Ingeniería industrial - Tesis y disertaciones académicas
Análisis estocástico
Algoritmos de aproximación
title_short Job shop estocástico con minimización del valor esperado del maximum lateness
title_full Job shop estocástico con minimización del valor esperado del maximum lateness
title_fullStr Job shop estocástico con minimización del valor esperado del maximum lateness
title_full_unstemmed Job shop estocástico con minimización del valor esperado del maximum lateness
title_sort Job shop estocástico con minimización del valor esperado del maximum lateness
dc.creator.fl_str_mv Forero Ortiz, Gabriel Fernando
Ocampo Monsalve, María José
Rivera Torres, Andrea
dc.contributor.advisor.none.fl_str_mv González Neira, Eliana Maria
dc.contributor.author.none.fl_str_mv Forero Ortiz, Gabriel Fernando
Ocampo Monsalve, María José
Rivera Torres, Andrea
dc.subject.spa.fl_str_mv Tienda jop estocástico
Tardanza máxima
Averías
Sim heurístico
Búsqueda tabú
topic Tienda jop estocástico
Tardanza máxima
Averías
Sim heurístico
Búsqueda tabú
Stochastic jop shop
Maximum lateness
Breakdowns
Simheuristic
Tabu search
Ingeniería industrial - Tesis y disertaciones académicas
Análisis estocástico
Algoritmos de aproximación
dc.subject.keyword.spa.fl_str_mv Stochastic jop shop
Maximum lateness
Breakdowns
Simheuristic
Tabu search
dc.subject.armarc.spa.fl_str_mv Ingeniería industrial - Tesis y disertaciones académicas
Análisis estocástico
Algoritmos de aproximación
description The drawbacks that programming in job -shop environment imply, refer to a notorious difficulty for its resolution due to its NP-hard nature. However, the research has grown in the late years because of its constant use in manufacturing industries. According to studies, most of the research has approached the job shop scheduling through a deterministic approach. Nevertheless, real industrial environments are subject to random events as: machinery faults, maintenance duration, processing duration, enlistment times, availability times, among many others. In this project, a stochastic job shop that minimizes the expected maximum lateness is addressed. The problem consider sequence dependent setup times, and the stochastic events are machine breakdowns. To solve the problem a simheuristic approach is proposed. The simheuristic Hybridizes a tabu search algorithm with a Monte Carlo simulation. The problem was solved in three phases: Firstly, a mixed integer linear programming model was designed for the deterministic counterpart of the JSSP studied. Secondly, the meta-heuristic tabu search was designed to solving large instances of the deterministic problem. Thirdly, the simheuristic was designed and implemented to minimize the expected maximum lateness value, considering stochastic machine breakdowns. For the simheuristic designing, stochastic variables were generated: times between failures and repair times, following exponential and log-normal distributions. To generate their respective parameters [expected value (μ) and standard deviation (σ)], the mean time to repair was found (MTTR Mean Time to Repair), out of the total mean time between breakdowns. Four different variation coefficient values were proposed (0%, 5%, 10% and 15%), them being: 0% for the deterministic case and 5%, 10% and 15% for stochastic events, to calculate the (σ) in log-normal distribution. On the other hand, a simulation was performed to calculate the expected objective function. The simheuristic was firstly parametrized through an experimental design considering different tabu list sizes and number of iterations without improvement. With the generated parametrization, another computational experiment was executed for a total of 554 instances of different sizes. First, the performance of the simheuristic, for small instances, was evaluated in comparison with the simulation of optimal solutions obtained with the mathematical model. Results show that the simheuristic improves the results of simulations of the model in a 37% for 4x4 instances and in an 11% for 6x6 instances, demonstrating that the simheuristic is better than a deterministic mathematical model simulated. Additionally, the simheuristic performance was evaluated, for large instances, in comparison with the simulation of EDD dispatching rule sequences. Results show that the average improvement is 28% in log-normal distribution and 10% for exponential distribution.
publishDate 2020
dc.date.created.none.fl_str_mv 2020-12
dc.date.accessioned.none.fl_str_mv 2021-02-22T13:53:57Z
dc.date.available.none.fl_str_mv 2021-02-22T13:53:57Z
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10554/53042
dc.identifier.instname.spa.fl_str_mv instname:Pontificia Universidad Javeriana
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional - Pontificia Universidad Javeriana
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.javeriana.edu.co
url http://hdl.handle.net/10554/53042
identifier_str_mv instname:Pontificia Universidad Javeriana
reponame:Repositorio Institucional - Pontificia Universidad Javeriana
repourl:https://repository.javeriana.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.licence.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.program.spa.fl_str_mv Ingeniería Industrial
Administración de Empresas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
Facultad de Ciencias Económicas y Administrativas
institution Pontificia Universidad Javeriana
bitstream.url.fl_str_mv http://repository.javeriana.edu.co/bitstream/10554/53042/3/license.txt
http://repository.javeriana.edu.co/bitstream/10554/53042/1/201018-Ocampo-Rivera-Forero%20correcciones%20-%20Andrea%20Rivera.pdf
http://repository.javeriana.edu.co/bitstream/10554/53042/6/Ocampo-Monsalve-Mari%cc%81a-Jose%cc%81%20000257579.docx%20%281%29.pdf
http://repository.javeriana.edu.co/bitstream/10554/53042/2/Carta_de_autorizacion-201018%20-%20Andrea%20Rivera.pdf
http://repository.javeriana.edu.co/bitstream/10554/53042/4/201018-Ocampo-Rivera-Forero%20correcciones%20-%20Andrea%20Rivera.pdf.jpg
http://repository.javeriana.edu.co/bitstream/10554/53042/5/Carta_de_autorizacion-201018%20-%20Andrea%20Rivera.pdf.jpg
http://repository.javeriana.edu.co/bitstream/10554/53042/7/Ocampo-Monsalve-Mari%cc%81a-Jose%cc%81%20000257579.docx%20%281%29.pdf.jpg
bitstream.checksum.fl_str_mv 2070d280cc89439d983d9eee1b17df53
924fb964043d6a718348586ce49bfa10
dfe1ac0e190ed48a6bff13883b94e841
d64ff2c65fe57b9a023b28245e73f8de
f9594bd15f74e7ba5bc633c9a51a8f3c
78696e737e426e808e68888cc44c2503
7e51d24749e21e138189e77f2da5a8e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Pontificia Universidad Javeriana
repository.mail.fl_str_mv repositorio@javeriana.edu.co
_version_ 1814338184652259328
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDe acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, "Los derechos morales sobre el trabajo son propiedad de los autores", los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.http://purl.org/coar/access_right/c_abf2González Neira, Eliana MariaForero Ortiz, Gabriel FernandoOcampo Monsalve, María JoséRivera Torres, Andrea2021-02-22T13:53:57Z2021-02-22T13:53:57Z2020-12http://hdl.handle.net/10554/53042instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coPDFapplication/pdfspaPontificia Universidad JaverianaIngeniería IndustrialAdministración de EmpresasFacultad de IngenieríaFacultad de Ciencias Económicas y AdministrativasTienda jop estocásticoTardanza máximaAveríasSim heurísticoBúsqueda tabúStochastic jop shopMaximum latenessBreakdownsSimheuristicTabu searchIngeniería industrial - Tesis y disertaciones académicasAnálisis estocásticoAlgoritmos de aproximaciónJob shop estocástico con minimización del valor esperado del maximum latenessTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/bachelorThesisThe drawbacks that programming in job -shop environment imply, refer to a notorious difficulty for its resolution due to its NP-hard nature. However, the research has grown in the late years because of its constant use in manufacturing industries. According to studies, most of the research has approached the job shop scheduling through a deterministic approach. Nevertheless, real industrial environments are subject to random events as: machinery faults, maintenance duration, processing duration, enlistment times, availability times, among many others. In this project, a stochastic job shop that minimizes the expected maximum lateness is addressed. The problem consider sequence dependent setup times, and the stochastic events are machine breakdowns. To solve the problem a simheuristic approach is proposed. The simheuristic Hybridizes a tabu search algorithm with a Monte Carlo simulation. The problem was solved in three phases: Firstly, a mixed integer linear programming model was designed for the deterministic counterpart of the JSSP studied. Secondly, the meta-heuristic tabu search was designed to solving large instances of the deterministic problem. Thirdly, the simheuristic was designed and implemented to minimize the expected maximum lateness value, considering stochastic machine breakdowns. For the simheuristic designing, stochastic variables were generated: times between failures and repair times, following exponential and log-normal distributions. To generate their respective parameters [expected value (μ) and standard deviation (σ)], the mean time to repair was found (MTTR Mean Time to Repair), out of the total mean time between breakdowns. Four different variation coefficient values were proposed (0%, 5%, 10% and 15%), them being: 0% for the deterministic case and 5%, 10% and 15% for stochastic events, to calculate the (σ) in log-normal distribution. On the other hand, a simulation was performed to calculate the expected objective function. The simheuristic was firstly parametrized through an experimental design considering different tabu list sizes and number of iterations without improvement. With the generated parametrization, another computational experiment was executed for a total of 554 instances of different sizes. First, the performance of the simheuristic, for small instances, was evaluated in comparison with the simulation of optimal solutions obtained with the mathematical model. Results show that the simheuristic improves the results of simulations of the model in a 37% for 4x4 instances and in an 11% for 6x6 instances, demonstrating that the simheuristic is better than a deterministic mathematical model simulated. Additionally, the simheuristic performance was evaluated, for large instances, in comparison with the simulation of EDD dispatching rule sequences. Results show that the average improvement is 28% in log-normal distribution and 10% for exponential distribution.Ingeniero (a) IndustrialAdministrador (a) de EmpresasPregradoLICENSElicense.txtlicense.txttext/plain; charset=utf-82603http://repository.javeriana.edu.co/bitstream/10554/53042/3/license.txt2070d280cc89439d983d9eee1b17df53MD53open accessORIGINAL201018-Ocampo-Rivera-Forero correcciones - Andrea Rivera.pdf201018-Ocampo-Rivera-Forero correcciones - Andrea Rivera.pdfDocumentoapplication/pdf836787http://repository.javeriana.edu.co/bitstream/10554/53042/1/201018-Ocampo-Rivera-Forero%20correcciones%20-%20Andrea%20Rivera.pdf924fb964043d6a718348586ce49bfa10MD51open accessOcampo-Monsalve-María-José 000257579.docx (1).pdfOcampo-Monsalve-María-José 000257579.docx (1).pdfDocumento - Doble titulaciónapplication/pdf2014677http://repository.javeriana.edu.co/bitstream/10554/53042/6/Ocampo-Monsalve-Mari%cc%81a-Jose%cc%81%20000257579.docx%20%281%29.pdfdfe1ac0e190ed48a6bff13883b94e841MD56open accessCarta_de_autorizacion-201018 - Andrea Rivera.pdfCarta_de_autorizacion-201018 - Andrea Rivera.pdfLicencia de usoapplication/pdf280077http://repository.javeriana.edu.co/bitstream/10554/53042/2/Carta_de_autorizacion-201018%20-%20Andrea%20Rivera.pdfd64ff2c65fe57b9a023b28245e73f8deMD52metadata only accessTHUMBNAIL201018-Ocampo-Rivera-Forero correcciones - Andrea Rivera.pdf.jpg201018-Ocampo-Rivera-Forero correcciones - Andrea Rivera.pdf.jpgIM Thumbnailimage/jpeg8331http://repository.javeriana.edu.co/bitstream/10554/53042/4/201018-Ocampo-Rivera-Forero%20correcciones%20-%20Andrea%20Rivera.pdf.jpgf9594bd15f74e7ba5bc633c9a51a8f3cMD54open accessCarta_de_autorizacion-201018 - Andrea Rivera.pdf.jpgCarta_de_autorizacion-201018 - Andrea Rivera.pdf.jpgIM Thumbnailimage/jpeg7077http://repository.javeriana.edu.co/bitstream/10554/53042/5/Carta_de_autorizacion-201018%20-%20Andrea%20Rivera.pdf.jpg78696e737e426e808e68888cc44c2503MD55open accessOcampo-Monsalve-María-José 000257579.docx (1).pdf.jpgOcampo-Monsalve-María-José 000257579.docx (1).pdf.jpgIM Thumbnailimage/jpeg8833http://repository.javeriana.edu.co/bitstream/10554/53042/7/Ocampo-Monsalve-Mari%cc%81a-Jose%cc%81%20000257579.docx%20%281%29.pdf.jpg7e51d24749e21e138189e77f2da5a8e0MD57open access10554/53042oai:repository.javeriana.edu.co:10554/530422022-05-02 15:20:30.035Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIERFIExPUyBBVVRPUkVTIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTy4KClBhcnRlIDEuIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBnZW5lcmFsIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwKQ29tbyB0aXR1bGFyIChlcykgZGVsIGRlcmVjaG8gZGUgYXV0b3IsIGNvbmZpZXJvIChlcmltb3MpIGEgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhcsOhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOgphKSAgICAgIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBkZSBpbmNsdXNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLCBwb3IgdW4gcGxhem8gZGUgNSBhw7FvcywgcXVlIHNlcsOhbiBwcm9ycm9nYWJsZXMgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gcXVlIGR1cmUgZWwgZGVyZWNobyBwYXRyaW1vbmlhbCBkZWwgYXV0b3IuIEVsIGF1dG9yIHBvZHLDoSBkYXIgcG9yIHRlcm1pbmFkYSBsYSBsaWNlbmNpYSBzb2xpY2l0w6FuZG9sbyBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvLgpiKSAgICAgIEF1dG9yaXphIGEgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgYSBwdWJsaWNhciBsYSBvYnJhIGVuIGRpZ2l0YWwsIGNvbm9jaWVuZG8gcXVlLCBkYWRvIHF1ZSBzZSBwdWJsaWNhIGVuIEludGVybmV0LCBwb3IgZXN0ZSBoZWNobyBjaXJjdWxhIGNvbiB1biBhbGNhbmNlIG11bmRpYWwuCmMpICAgICAgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvIHJlbnVuY2lhbiBhIHJlY2liaXIgYmVuZWZpY2lvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBkZSB1c28gY29uIHF1ZSBzZSBwdWJsaWNhLgpkKSAgICAgIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgUG9udGlmaWNpYSBVbml2ZXJzaWRhZCBKYXZlcmlhbmEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uCmUpICAgICAgQXV0b3Jpem8gKGFtb3MpIGEgbGEgVW5pdmVyc2lkYWQgcGFyYSBpbmNsdWlyIGxhIG9icmEgZW4gbG9zIMOtbmRpY2VzIHkgYnVzY2Fkb3JlcyBxdWUgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgc3UgZGlmdXNpw7NuLgpmKSAgICAgIEFjZXB0byAoYW1vcykgcXVlIGxhIFBvbnRpZmljaWEgVW5pdmVyc2lkYWQgSmF2ZXJpYW5hIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLgpnKSAgICAgIEF1dG9yaXpvIChhbW9zKSBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcyBiYWpvIGxvcyBsw61taXRlcyBkZWZpbmlkb3MgcG9yIGxhIHVuaXZlcnNpZGFkIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgUFVKICwgY3V5byB0ZXh0byBjb21wbGV0byBzZSBwdWVkZSBjb25zdWx0YXIgZW4gaHR0cDovL3JlcG9zaXRvcnkuamF2ZXJpYW5hLmVkdS5jby8KClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBQT05USUZJQ0lBIFVOSVZFUlNJREFEIEpBVkVSSUFOQSwgRUwgKExPUykgQVVUT1IoRVMpIEdBUkFOVElaQShNT1MpIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIERFUkVDSE9TIFkgT0JMSUdBQ0lPTkVTIFJFUVVFUklET1MgUE9SIEVMIFJFU1BFQ1RJVk8gQ09OVFJBVE8gTyBBQ1VFUkRPLgo=