Hyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature...
- Autores:
-
Boada, David Alberto
Vargas Garcia, Héctor Miguel
Albarracín Ferreira, Jaime Octavio
Fuentes, Henry Arguello
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Pontificia Universidad Javeriana
- Repositorio:
- Repositorio Universidad Javeriana
- Idioma:
- eng
- OAI Identifier:
- oai:repository.javeriana.edu.co:10554/25825
- Acceso en línea:
- http://revistas.javeriana.edu.co/index.php/iyu/article/view/257
http://hdl.handle.net/10554/25825
- Palabra clave:
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
JAVERIANA2_71a30faac2ada66ce0fbb6de90bc329d |
---|---|
oai_identifier_str |
oai:repository.javeriana.edu.co:10554/25825 |
network_acronym_str |
JAVERIANA2 |
network_name_str |
Repositorio Universidad Javeriana |
repository_id_str |
|
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalCopyright (c) 2017 David Alberto Boadahttp://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Boada, David AlbertoVargas Garcia, Héctor MiguelAlbarracín Ferreira, Jaime OctavioFuentes, Henry Arguello2020-04-16T17:27:30Z2020-04-16T17:27:30Z2017-06-15http://revistas.javeriana.edu.co/index.php/iyu/article/view/25710.11144/Javeriana.iyu21-2.sasi2011-27690123-2126http://hdl.handle.net/10554/25825PDFapplication/pdfengPontificia Universidad Javerianahttp://revistas.javeriana.edu.co/index.php/iyu/article/view/257/15039Ingenieria y Universidad; Vol 21 No 2 (2017): July-December; 272Ingenieria y Universidad; Vol. 21 Núm. 2 (2017): Julio-Dicciembre; 272http://purl.org/coar/version/c_970fb48d4fbd8a85Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlePeer-reviewed ArticleAn sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architectureHyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature detection, classification, or identification based on their spectral characteristics. Novel architectures have been developed for the acquisition of compressive spectral images with just a few coded aperture focal plane array measurements. This work focuses on the development of a target detection approach in hyperspectral images directly from compressive measurements without first reconstructing the full data cube that represents the real image. Specifically, a sparsity-based target detection model that uses compressive measurement for the detection task is designed and tested using an optimization algorithm. Simulations show that it is possible to perform certain transformations to the dictionaries used in traditional target detection, in order to achieve an accurate image representation in the compressed subspace10554/25825oai:repository.javeriana.edu.co:10554/258252023-03-29 12:44:02.412Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co |
dc.title.english.eng.fl_str_mv |
An sparsity-based approach for spectral image target detection from compressive measurements acquired by the CASSI architecture |
dc.creator.fl_str_mv |
Boada, David Alberto Vargas Garcia, Héctor Miguel Albarracín Ferreira, Jaime Octavio Fuentes, Henry Arguello |
dc.contributor.author.none.fl_str_mv |
Boada, David Alberto Vargas Garcia, Héctor Miguel Albarracín Ferreira, Jaime Octavio Fuentes, Henry Arguello |
description |
Hyperspectral imaging entails data typically spanning hundreds of contiguous wavebands in a certain spectral range. Each spatial point in hyperspectral images is therefore represented by a vector whose entries correspond to the intensity on each spectral band. These images enable object and feature detection, classification, or identification based on their spectral characteristics. Novel architectures have been developed for the acquisition of compressive spectral images with just a few coded aperture focal plane array measurements. This work focuses on the development of a target detection approach in hyperspectral images directly from compressive measurements without first reconstructing the full data cube that represents the real image. Specifically, a sparsity-based target detection model that uses compressive measurement for the detection task is designed and tested using an optimization algorithm. Simulations show that it is possible to perform certain transformations to the dictionaries used in traditional target detection, in order to achieve an accurate image representation in the compressed subspace |
publishDate |
2017 |
dc.date.created.none.fl_str_mv |
2017-06-15 |
dc.date.accessioned.none.fl_str_mv |
2020-04-16T17:27:30Z |
dc.date.available.none.fl_str_mv |
2020-04-16T17:27:30Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.local.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Peer-reviewed Article |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.none.fl_str_mv |
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257 10.11144/Javeriana.iyu21-2.sasi |
dc.identifier.issn.none.fl_str_mv |
2011-2769 0123-2126 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/10554/25825 |
url |
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257 http://hdl.handle.net/10554/25825 |
identifier_str_mv |
10.11144/Javeriana.iyu21-2.sasi 2011-2769 0123-2126 |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.uri.none.fl_str_mv |
http://revistas.javeriana.edu.co/index.php/iyu/article/view/257/15039 |
dc.relation.citationissue.eng.fl_str_mv |
Ingenieria y Universidad; Vol 21 No 2 (2017): July-December; 272 |
dc.relation.citationissue.spa.fl_str_mv |
Ingenieria y Universidad; Vol. 21 Núm. 2 (2017): Julio-Dicciembre; 272 |
dc.rights.eng.fl_str_mv |
Copyright (c) 2017 David Alberto Boada |
dc.rights.licence.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Copyright (c) 2017 David Alberto Boada http://creativecommons.org/licenses/by/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.spa.fl_str_mv |
PDF |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.eng.fl_str_mv |
Pontificia Universidad Javeriana |
institution |
Pontificia Universidad Javeriana |
repository.name.fl_str_mv |
Repositorio Institucional - Pontificia Universidad Javeriana |
repository.mail.fl_str_mv |
repositorio@javeriana.edu.co |
_version_ |
1814337620822458368 |