Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems

El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la...

Full description

Autores:
Plazas Nossa, Leonardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2016
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
spa
OAI Identifier:
oai:repository.javeriana.edu.co:10554/19580
Acceso en línea:
http://hdl.handle.net/10554/19580
https://doi.org/10.11144/Javeriana.10554.19580
Palabra clave:
Absorbancia UV-VIS
Análisis de componentes principales
Indicadores de calidad de aguas
Metodologías de pronóstico
Pronóstico de series de tiempo
UV-VIS Absorbance
Principal components analysis
Time series forecasting
UV-VIS absorbance
Water quality indicators
Doctorado en ingeniería - Tesis y disertaciones académicas
Calidad del agua
Tratamiento de aguas residuales
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id JAVERIANA2_5d9dd73a83579d8b205b14f5671b10e5
oai_identifier_str oai:repository.javeriana.edu.co:10554/19580
network_acronym_str JAVERIANA2
network_name_str Repositorio Universidad Javeriana
repository_id_str
dc.title.spa.fl_str_mv Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
title Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
spellingShingle Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
Absorbancia UV-VIS
Análisis de componentes principales
Indicadores de calidad de aguas
Metodologías de pronóstico
Pronóstico de series de tiempo
UV-VIS Absorbance
Principal components analysis
Time series forecasting
UV-VIS absorbance
Water quality indicators
Doctorado en ingeniería - Tesis y disertaciones académicas
Calidad del agua
Tratamiento de aguas residuales
title_short Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
title_full Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
title_fullStr Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
title_full_unstemmed Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
title_sort Forecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systems
dc.creator.fl_str_mv Plazas Nossa, Leonardo
dc.contributor.advisor.none.fl_str_mv Torres Abello, Andres Eduardo
dc.contributor.author.none.fl_str_mv Plazas Nossa, Leonardo
dc.subject.spa.fl_str_mv Absorbancia UV-VIS
Análisis de componentes principales
Indicadores de calidad de aguas
Metodologías de pronóstico
Pronóstico de series de tiempo
topic Absorbancia UV-VIS
Análisis de componentes principales
Indicadores de calidad de aguas
Metodologías de pronóstico
Pronóstico de series de tiempo
UV-VIS Absorbance
Principal components analysis
Time series forecasting
UV-VIS absorbance
Water quality indicators
Doctorado en ingeniería - Tesis y disertaciones académicas
Calidad del agua
Tratamiento de aguas residuales
dc.subject.keyword.spa.fl_str_mv UV-VIS Absorbance
Principal components analysis
Time series forecasting
UV-VIS absorbance
Water quality indicators
dc.subject.armarc.spa.fl_str_mv Doctorado en ingeniería - Tesis y disertaciones académicas
Calidad del agua
Tratamiento de aguas residuales
description El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua. El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua.
publishDate 2016
dc.date.created.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2017-04-26T19:01:01Z
2020-04-15T13:54:13Z
dc.date.available.none.fl_str_mv 2017-04-26T19:01:01Z
2020-04-15T13:54:13Z
dc.type.local.spa.fl_str_mv Tesis/Trabajo de grado - Monografía - Doctorado
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
format http://purl.org/coar/resource_type/c_db06
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10554/19580
dc.identifier.doi.none.fl_str_mv https://doi.org/10.11144/Javeriana.10554.19580
dc.identifier.instname.spa.fl_str_mv instname:Pontificia Universidad Javeriana
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional - Pontificia Universidad Javeriana
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.javeriana.edu.co
url http://hdl.handle.net/10554/19580
https://doi.org/10.11144/Javeriana.10554.19580
identifier_str_mv instname:Pontificia Universidad Javeriana
reponame:Repositorio Institucional - Pontificia Universidad Javeriana
repourl:https://repository.javeriana.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.licence.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Pontificia Universidad Javeriana
dc.publisher.program.spa.fl_str_mv Doctorado en Ingeniería
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
institution Pontificia Universidad Javeriana
bitstream.url.fl_str_mv http://repository.javeriana.edu.co/bitstream/10554/19580/1/PlazasNossaLeonardo2016.pdf
http://repository.javeriana.edu.co/bitstream/10554/19580/2/PlazasNossaLeonardo2016_cartas.pdf
http://repository.javeriana.edu.co/bitstream/10554/19580/3/PlazasNossaLeonardo2016.pdf.jpg
http://repository.javeriana.edu.co/bitstream/10554/19580/4/PlazasNossaLeonardo2016_cartas.pdf.jpg
bitstream.checksum.fl_str_mv 407acbee48fd445e8b26f3ea683b34c1
99678c8720e608f051907f0f30192602
99f2bcc907b90325f411a35f8b0385ea
96979db570190939b0113c2766743025
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional - Pontificia Universidad Javeriana
repository.mail.fl_str_mv repositorio@javeriana.edu.co
_version_ 1814338098962628608
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessDe acuerdo con la naturaleza del uso concedido, la presente licencia parcial se otorga a título gratuito por el máximo tiempo legal colombiano, con el propósito de que en dicho lapso mi (nuestra) obra sea explotada en las condiciones aquí estipuladas y para los fines indicados, respetando siempre la titularidad de los derechos patrimoniales y morales correspondientes, de acuerdo con los usos honrados, de manera proporcional y justificada a la finalidad perseguida, sin ánimo de lucro ni de comercialización. De manera complementaria, garantizo (garantizamos) en mi (nuestra) calidad de estudiante (s) y por ende autor (es) exclusivo (s), que la Tesis o Trabajo de Grado en cuestión, es producto de mi (nuestra) plena autoría, de mi (nuestro) esfuerzo personal intelectual, como consecuencia de mi (nuestra) creación original particular y, por tanto, soy (somos) el (los) único (s) titular (es) de la misma. Además, aseguro (aseguramos) que no contiene citas, ni transcripciones de otras obras protegidas, por fuera de los límites autorizados por la ley, según los usos honrados, y en proporción a los fines previstos; ni tampoco contempla declaraciones difamatorias contra terceros; respetando el derecho a la imagen, intimidad, buen nombre y demás derechos constitucionales. Adicionalmente, manifiesto (manifestamos) que no se incluyeron expresiones contrarias al orden público ni a las buenas costumbres. En consecuencia, la responsabilidad directa en la elaboración, presentación, investigación y, en general, contenidos de la Tesis o Trabajo de Grado es de mí (nuestro) competencia exclusiva, eximiendo de toda responsabilidad a la Pontifica Universidad Javeriana por tales aspectos. Sin perjuicio de los usos y atribuciones otorgadas en virtud de este documento, continuaré (continuaremos) conservando los correspondientes derechos patrimoniales sin modificación o restricción alguna, puesto que, de acuerdo con la legislación colombiana aplicable, el presente es un acuerdo jurídico que en ningún caso conlleva la enajenación de los derechos patrimoniales derivados del régimen del Derecho de Autor. De conformidad con lo establecido en el artículo 30 de la Ley 23 de 1982 y el artículo 11 de la Decisión Andina 351 de 1993, “Los derechos morales sobre el trabajo son propiedad de los autores”, los cuales son irrenunciables, imprescriptibles, inembargables e inalienables. En consecuencia, la Pontificia Universidad Javeriana está en la obligación de RESPETARLOS Y HACERLOS RESPETAR, para lo cual tomará las medidas correspondientes para garantizar su observancia.http://purl.org/coar/access_right/c_abf2Torres Abello, Andres EduardoPlazas Nossa, Leonardo2017-04-26T19:01:01Z2020-04-15T13:54:13Z2017-04-26T19:01:01Z2020-04-15T13:54:13Z2016http://hdl.handle.net/10554/19580https://doi.org/10.11144/Javeriana.10554.19580instname:Pontificia Universidad Javerianareponame:Repositorio Institucional - Pontificia Universidad Javerianarepourl:https://repository.javeriana.edu.coEl monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua. El monitoreo de contaminantes en sistemas de saneamiento urbano es generalmente realizado por medio de campañas de muestreo, las muestras deben ser transportadas, almacenadas y analizadas en laboratorio. Sin embargo, los desarrollos en óptica y electrónica han permitido su fusión y aplicación en la espectrometría UV-Vis. Los sensores UV-Vis tienen como propósito determinar la dinámica de las cargas de materia orgánica (Demanda Química de Oxigeno DQO y Demanda Bioquímica de Oxigeno DBO5), nitratos, nitritos y Sólidos Suspendidos Totales (SST). Adicionalmente a los métodos aplicados para la calibración de los sensores y el análisis las series de tiempo de los espectros de absorbancias UV-Vis, es necesario desarrollar métodos de pronóstico con el fin de ser utilizada en control de monitoreo en línea en tiempo real. La información proveniente de los datos recolectados puede ser utilizada para la toma de decisiones y en aplicaciones de control de tiempo real. Realizar pronósticos es importante en procesos de toma de decisiones. Por lo tanto, el objetivo de este trabajo de investigación fue desarrollar uno o varios métodos de pronóstico que puedan ser aplicados a series de tiempo de espectrometría UV-Vis para el monitoreo en línea de la calidad de agua en sistemas urbanos de saneamiento en operación. Cinco series de tiempo de absorbancia UV-Vis obtenidas en línea en diferentes sitios fueron utilizadas, con un total de 5705 espectros de absorbancia UV-Vis: cuatro sitios experimentales en Colombia (Planta de Tratamiento de Aguas Residuales (PTAR) El-Salitre, PTAR San Fernando, Estación Elevadora de Gibraltar y un Humedal Construido/Tanque de Almacenamiento) y un sitio en Austria (Graz-West R05 Catchment outlet). El proceso propuesto completo consta de etapas a ser aplicadas a las series de tiempo de absorbancia UV-Vis y son: (i) entradas, series de tiempo de absorbancia UV-Vis,(ii) pre-procesamiento de las series de tiempo, análisis de outliers, completar los valores ausentes y reducción de la dimensionalidad,y (iii) procedimientos de pronóstico y evaluación de los resultados. La metodología propuesta fue aplicada a la series de tiempo con diferentes características (absorbancia), esta consiste del enventaneo Winsorising como paso para la remoción de outliers y la aplicación de la transformada discreta de Fourier (DFT) para reemplazar valores ausentes. Los nuevos valores reemplazando o los outliers o los valores ausentes presentan la misma o al menos la misma forma de la serie de tiempo original, permitiendo una visión macro en la coherencia de la serie de tiempo. La reducción de la dimensionalidad en las series de tiempo de absorbancia multivariadas permite obtener menor número de variables a ser procesadas: el análisis por componentes principales (PCA) como transformación lineal captura más del 97% de la variabilidad en cada serie de tiempo (en un rango de una a seis, dependiendo del comportamiento de la series de tiempo absorbancia) y el proceso de Clustering (k-means) combinado con cadenas de Markov. Los procedimientos de pronóstico basados en señales periódicas como la DFT, Chebyshev, Legendre y Regresión Polinomial fueron aplicados y estos pueden capturar el comportamiento dinámico de las series de tiempo. Algunas técnicas de aprendizaje de máquina fueron probadas y fue posible capturar el comportamiento de las series de tiempo en la etapa de calibración, los valores de pronóstico pueden seguir el comportamiento general comparado con los valores observados (excepto ANFIS, GA y Filtro de Kalman). Por lo tanto, ANN y SVM tiene buen rendimiento de pronóstico para la primer parte del horizonte de pronóstico (2 horas). La evaluación de cada metodología de pronóstico fue realizada utilizando cuatro indicadores estadísticos tales como porcentaje absoluto de error (APE), incertidumbre extendida (EU), conjunto de valores dentro del intervalo de confianza (CI) y suma de valores de incertidumbre extendida más el conjunto de valores dentro del intervalo de confianza. El rendimiento de los indicadores provee información acerca de los resultados de pronóstico multivariado con el fin de estimar y evaluar los tiempos de pronóstico para cierta metodología de pronóstico y determinar cuál metodología de pronóstico es mejor adaptada a diferentes rangos de longitudes de onda (espectros de absorbancia) para cada serie de tiempo de absorbancia UV-Vis en cada sitio de estudio. Los resultados en la comparación de las diferentes metodologías de pronóstico, resaltan que no es posible obtener la mejor metodología de pronóstico, porque todas las metodologías de pronóstico propuestas podrían generar un amplio número de valores que permitirán complementar cada una con las otras para diferentes pasos de tiempo de pronóstico y en diferentes rangos del espectro (UV y/o Vis). Por lo tanto, es propuesto un sistema híbrido que es basado en siete metodologías de pronóstico. Así, los valores de los espectros de absorbancia pronosticados fueron transformados a los correspondientes indicadores de calidad de agua (WQI) para utilización en la práctica. Los resultados de pronóstico multivariado presentan valores bajos de APE comparados con los resultados de pronóstico univariado utilizando directamente los valores WQI observados. Estos resultados, probablemente, son obtenidos porque el pronóstico multivariado incluye la correlación presente en todo el rango de los espectros de absorbancia (se captura de forma completa o al menos gran parte de la variabilidad de las series de tiempo),una longitud de onda interfiere con otra u otras longitudes de onda. Finalmente, los resultados obtenidos para el humedal construido/tanque de almacenamiento presentan que es posible obtener apreciables resultados de pronóstico en términos de tiempos de detección para eventos de lluvia. Adicionalmente, la inclusión de variables como escorrentía (nivel de agua para este caso) mejora substancialmente los resultados de pronóstico de la calidad del agua.The monitoring of pollutants in urban sewer systems is generally conducted by sampling campaigns, and the resulting samples must be transported, stored and analyzed in laboratory. However, the developments in optics and electronics have enabled the merge of them into the UV-Vis Spectrometry. UV-Vis probes have the purpose of determining the dynamics of loads of organic materials (i.e. Chemical Oxygen Demand (COD) and Biochemical Oxygen Demand (BOD5)), nitrates, nitrites and Total Suspended Solids (TSS). In addition to the methods used for the calibration of the probes and the analysis of the time series of UV-Vis absorbance spectra, it is necessary to develop forecasting methods in order to use the online control monitoring in real time. The information from the collected data can also be used for decision making purposes and for real-time control applications. Forecasting is important for decision-making processes. Therefore, the objective of this research work was to develop either a forecasting method or forecasting methods applied to UV-Vis spectrometry time series data for online water quality monitoring in operating urban sewer systems. Five UV-Vis Absorbance time series collected at different on-line measurement sites were used, for a total of 5705 UV-Vis absorbance spectra data: four sites in Colombia (El-Salitre Wastewater Treatment Plant-WWTP, San Fernando WWTP, Pumping Station (PS) sewage called Gibraltar and constructed-wetland/reservoir-tank (CWRT)) and one site in Austria (Graz-West R05 Catchment outlet). The complete process proposed to be applied to UV-Vis absorbance time series has several stages and these are: (i) inputs, the UV-Vis absorbance time series,(ii) the time series pre-processing, outliers analysis, complete missing values and time series dimensionality reduction,and (iii) forecasting procedures and evaluation of results. The methodology proposed was applied to the time series with different characteristics (absorbance), this consists of Winsorising as a step in outlier removal and the application of the Discrete Fourier Transform (DFT) to complete the missing values. The new values replaced either outliers or missing values present the same, or almost the same, shape as the original time series, granted the macro vision of the time series coherence. Dimensionality reduction of multivariate absorbance time series allows to have less variables to be processed: PCA linear transformation captures more than 97% of variability for each time series (PC ranging from one to six, depending on absorbance time series behavior), and Clustering process (k-means) combined with Markov Chains. Forecasting procedures based on periodic signals as DFT, Chebyshev, Legendre and Polynomial Regression were applied and they can capture the dynamic behaviour of the time series. Several Machine Learning technics were tested and it was possible to capture the behaviour of the time series at calibration stage, the forecasting obtained valúes can follow the general behaviour compared with observed valúes (with exception of ANFIS, GA and Kalman Filter). Therefore, ANN and SVM have good forecasting performances for first part of forecasting horizon (2 hours). The evaluation of each forecasting methodology was done using four statistic indicators as Absolute Percentage Error (APE), Extended Uncertainty (EU), Set of observed values within Confidence Interval (CI) and sum of EU and Set of observed values within CI. The performance indicators provided valuable information about multivariate forecasting results to estimate and evaluate the forecasting time for a given forecasting methodology and determine which forecasting methodology is best suited for different wavelength ranges (absorbance spectra) at each study site s UV-Vis absorbance time series. Results from different comparison of several forecasting methodologies, highlight that there is not possibility to have a best forecasting methodology among the proposed ones, because all of them could provide a wide forecasting values that would complemented each other for different forecasting time steps and spectra range (UV and/or Vis). Therefore, it is proposed a hybrid system that is based on seven forecasting methodologies. Thus, the forecasted absorbance spectra were transformed to Water Quality Indicators (WQI) for practical uses. The multivariate forecasting results show lower APE values compared to the univariate forecasting results (APE values) using the observed WQI. These results, probably, were obtained because multivariate forecasting includes the correlation presented at whole absorbance spectra range (captures complete or at least great part of time series variability),one wavelength interferes with another and/or other wavelengths. Finally, the results obtained for a constructed-wetland/reservoir-tank system show that it is possible to obtain valuable forecasting results in terms of time detection for some rainfall events. In addition, the inclusion of runoff variables (water level in this case) improves the water quality forecasting results.Doctor en IngenieríaDoctoradoPDFapplication/pdfspaPontificia Universidad JaverianaDoctorado en IngenieríaFacultad de IngenieríaAbsorbancia UV-VISAnálisis de componentes principalesIndicadores de calidad de aguasMetodologías de pronósticoPronóstico de series de tiempoUV-VIS AbsorbancePrincipal components analysisTime series forecastingUV-VIS absorbanceWater quality indicatorsDoctorado en ingeniería - Tesis y disertaciones académicasCalidad del aguaTratamiento de aguas residualesForecasting of uv-vis spectrometry time series for online water quality monitoring in operating urban sewer systemsTesis/Trabajo de grado - Monografía - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesisORIGINALPlazasNossaLeonardo2016.pdfDocumentoapplication/pdf16670844http://repository.javeriana.edu.co/bitstream/10554/19580/1/PlazasNossaLeonardo2016.pdf407acbee48fd445e8b26f3ea683b34c1MD51open accessPlazasNossaLeonardo2016_cartas.pdfLicencia de usoapplication/pdf4753052http://repository.javeriana.edu.co/bitstream/10554/19580/2/PlazasNossaLeonardo2016_cartas.pdf99678c8720e608f051907f0f30192602MD52metadata only accessTHUMBNAILPlazasNossaLeonardo2016.pdf.jpgIM Thumbnailimage/jpeg4503http://repository.javeriana.edu.co/bitstream/10554/19580/3/PlazasNossaLeonardo2016.pdf.jpg99f2bcc907b90325f411a35f8b0385eaMD53open accessPlazasNossaLeonardo2016_cartas.pdf.jpgIM Thumbnailimage/jpeg6532http://repository.javeriana.edu.co/bitstream/10554/19580/4/PlazasNossaLeonardo2016_cartas.pdf.jpg96979db570190939b0113c2766743025MD54open access10554/19580oai:repository.javeriana.edu.co:10554/195802022-04-29 11:50:53.722Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co