We studied the preservation of Azotobacter chroococcum C26 using three dry polymers: carrageenin, sodium alginate, and HPMC, using a method of accelerated degradation. Bacterial viability, as response variable, was measured at three temperatures in four different times, which was followed by calcula...

Full description

Autores:
Rojas-Tapias, Daniel; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Ortega Sierra, Oriana; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Rivera Botía, Diego; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Bonilla, Ruth; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
eng
OAI Identifier:
oai:repository.javeriana.edu.co:10554/31743
Acceso en línea:
http://revistas.javeriana.edu.co/index.php/scientarium/article/view/8825
http://hdl.handle.net/10554/31743
Palabra clave:
Applied Microbiology; Bacterial preservation; polymers
bacterial preservation; Arrhenius equation; Azotobacter chroococcum; polymers
preservation; Arrhenius equation; Azotobacter chroococcum; polymers
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id JAVERIANA2_5a94500a491992b480a65cb8d0a93820
oai_identifier_str oai:repository.javeriana.edu.co:10554/31743
network_acronym_str JAVERIANA2
network_name_str Repositorio Universidad Javeriana
repository_id_str
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ministerio de Agricultura y Desarrollo Rural de ColombiaRojas-Tapias, Daniel; Corporación Colombiana de Investigación Agropecuaria - CorpoicaOrtega Sierra, Oriana; Corporación Colombiana de Investigación Agropecuaria - CorpoicaRivera Botía, Diego; Corporación Colombiana de Investigación Agropecuaria - CorpoicaBonilla, Ruth; Corporación Colombiana de Investigación Agropecuaria - Corpoica2018-02-24T16:00:33Z2020-04-15T18:08:18Z2018-02-24T16:00:33Z2020-04-15T18:08:18Z2014-10-10http://revistas.javeriana.edu.co/index.php/scientarium/article/view/882510.11144/Javeriana.SC20-2.pacv2027-13520122-7483http://hdl.handle.net/10554/31743PDFapplication/pdfengPontificia Universidad Javerianahttp://revistas.javeriana.edu.co/index.php/scientarium/article/view/8825/8857http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3121http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3122http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3123http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3124Universitas Scientiarum; Vol 20, No 2 (2015); 201-207Universitas Scientiarum; Vol 20, No 2 (2015); 201-207Universitas Scientiarum; Vol 20, No 2 (2015); 201-207Applied Microbiology; Bacterial preservation; polymersbacterial preservation; Arrhenius equation; Azotobacter chroococcum; polymerspreservation; Arrhenius equation; Azotobacter chroococcum; polymersnullnullnullhttp://purl.org/coar/version/c_970fb48d4fbd8a85Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1info:eu-repo/semantics/articlePreservation of Azotobacter chroococcum vegetative cells in dry polymersWe studied the preservation of Azotobacter chroococcum C26 using three dry polymers: carrageenin, sodium alginate, and HPMC, using a method of accelerated degradation. Bacterial viability, as response variable, was measured at three temperatures in four different times, which was followed by calculation of bacterial degradation rates. Results showed that temperature, time of storage, and protective agent influenced both viability and degradation rates (P<0.05). We observed, using the Arrhenius thermodynamic model, that the use of polymers increased the activation energy of bacterial degradation compared to control. We obtained thermodynamic models for each polymer, based on the Arrhenius equation, which predicted the required time for thermal degradation of the cells at different temperatures. Analysis of the models showed that carrageenin was the best polymer to preserve A. chroococcum C26 since ~ 900 days are required at 4 ºC to reduce its viability in two log units. We conclude, therefore, that long-term preservation of A. chroococcum C26 using dry polymers is suitable under adequate preservation and storage conditions.10554/31743oai:repository.javeriana.edu.co:10554/317432023-03-28 16:15:54.224Repositorio Institucional - Pontificia Universidad Javerianarepositorio@javeriana.edu.co
dc.title.english.eng.fl_str_mv Preservation of Azotobacter chroococcum vegetative cells in dry polymers
dc.creator.fl_str_mv Rojas-Tapias, Daniel; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Ortega Sierra, Oriana; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Rivera Botía, Diego; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Bonilla, Ruth; Corporación Colombiana de Investigación Agropecuaria - Corpoica
dc.contributor.author.none.fl_str_mv Rojas-Tapias, Daniel; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Ortega Sierra, Oriana; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Rivera Botía, Diego; Corporación Colombiana de Investigación Agropecuaria - Corpoica
Bonilla, Ruth; Corporación Colombiana de Investigación Agropecuaria - Corpoica
dc.contributor.eng.fl_str_mv Ministerio de Agricultura y Desarrollo Rural de Colombia
dc.subject.eng.fl_str_mv Applied Microbiology; Bacterial preservation; polymers
bacterial preservation; Arrhenius equation; Azotobacter chroococcum; polymers
preservation; Arrhenius equation; Azotobacter chroococcum; polymers
topic Applied Microbiology; Bacterial preservation; polymers
bacterial preservation; Arrhenius equation; Azotobacter chroococcum; polymers
preservation; Arrhenius equation; Azotobacter chroococcum; polymers
spellingShingle Applied Microbiology; Bacterial preservation; polymers
bacterial preservation; Arrhenius equation; Azotobacter chroococcum; polymers
preservation; Arrhenius equation; Azotobacter chroococcum; polymers
description We studied the preservation of Azotobacter chroococcum C26 using three dry polymers: carrageenin, sodium alginate, and HPMC, using a method of accelerated degradation. Bacterial viability, as response variable, was measured at three temperatures in four different times, which was followed by calculation of bacterial degradation rates. Results showed that temperature, time of storage, and protective agent influenced both viability and degradation rates (P<0.05). We observed, using the Arrhenius thermodynamic model, that the use of polymers increased the activation energy of bacterial degradation compared to control. We obtained thermodynamic models for each polymer, based on the Arrhenius equation, which predicted the required time for thermal degradation of the cells at different temperatures. Analysis of the models showed that carrageenin was the best polymer to preserve A. chroococcum C26 since ~ 900 days are required at 4 ºC to reduce its viability in two log units. We conclude, therefore, that long-term preservation of A. chroococcum C26 using dry polymers is suitable under adequate preservation and storage conditions.
publishDate 2014
dc.date.created.none.fl_str_mv 2014-10-10
dc.date.accessioned.none.fl_str_mv 2018-02-24T16:00:33Z
2020-04-15T18:08:18Z
dc.date.available.none.fl_str_mv 2018-02-24T16:00:33Z
2020-04-15T18:08:18Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.local.spa.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
format http://purl.org/coar/resource_type/c_6501
dc.identifier.none.fl_str_mv http://revistas.javeriana.edu.co/index.php/scientarium/article/view/8825
10.11144/Javeriana.SC20-2.pacv
dc.identifier.issn.none.fl_str_mv 2027-1352
0122-7483
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10554/31743
url http://revistas.javeriana.edu.co/index.php/scientarium/article/view/8825
http://hdl.handle.net/10554/31743
identifier_str_mv 10.11144/Javeriana.SC20-2.pacv
2027-1352
0122-7483
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.uri.none.fl_str_mv http://revistas.javeriana.edu.co/index.php/scientarium/article/view/8825/8857
http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3121
http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3122
http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3123
http://revistas.javeriana.edu.co/index.php/scientarium/article/downloadSuppFile/8825/3124
dc.relation.citationissue.eng.fl_str_mv Universitas Scientiarum; Vol 20, No 2 (2015); 201-207
dc.relation.citationissue.spa.fl_str_mv Universitas Scientiarum; Vol 20, No 2 (2015); 201-207
dc.relation.citationissue.por.fl_str_mv Universitas Scientiarum; Vol 20, No 2 (2015); 201-207
dc.rights.licence.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.spa.fl_str_mv PDF
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv null
null
null
dc.publisher.eng.fl_str_mv Pontificia Universidad Javeriana
institution Pontificia Universidad Javeriana
repository.name.fl_str_mv Repositorio Institucional - Pontificia Universidad Javeriana
repository.mail.fl_str_mv repositorio@javeriana.edu.co
_version_ 1811671287453450240