Sistemas adaptativos de inferencia neurodifusa con errores heterocedásticos para el modelado de series financieras

Neste trabalho propõem-se uma nova classe de modelos híbridos não lineais. No modelo proposto, a não linearidade em média representa-se utilizando um sistema adaptativo de nevro difusão de inferência (ANFIS, por sua sigla em inglês), enquanto a variação se representa usando um componente auto-regres...

Full description

Autores:
Zapata Gómez, Elizabeth Catalina
Velásquez Henao, Juan David
Smith Quintero, Ricardo Agustín
Tipo de recurso:
Article of journal
Fecha de publicación:
2008
Institución:
Pontificia Universidad Javeriana
Repositorio:
Repositorio Universidad Javeriana
Idioma:
spa
OAI Identifier:
oai:repository.javeriana.edu.co:10554/23276
Acceso en línea:
http://revistas.javeriana.edu.co/index.php/cuadernos_admon/article/view/3909
http://hdl.handle.net/10554/23276
Palabra clave:
ANFIS; ARCH; heteroscedasticity; time series; non-linear models
ANFIS; ARCH; heterocedasticidad; series temporales; modelos no lineales
ANFIS; ARCH; hetere cedasticidade; séries temporais; modelos não lineais
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Description
Summary:Neste trabalho propõem-se uma nova classe de modelos híbridos não lineais. No modelo proposto, a não linearidade em média representa-se utilizando um sistema adaptativo de nevro difusão de inferência (ANFIS, por sua sigla em inglês), enquanto a variação se representa usando um componente auto-regressivo heterecedástico condicional. Apresenta-se a formulação matemática deste tipo de modelos e propõem-se um método para sua estimação; adicionalmente, desenvolve-se para o modelo proposto uma estratégia de especificação baseada em uma bateria de provas estatísticas que incluem provas para a especificação dos modelos de regressão com transição suave (STR, por sua sigla em inglês), e a prova de rádio de verosimilitude. Como um caso de estudo, modela-se a dinâmica da série dos câmbios nos câmbios nos preços de feixe nas ações de IBM, a qual utiliza-se comummente como referente na literatura de séries de tempo. Os resultados indicam que o modelo desenvolvido representa melhor que outros modelos de características similares a dinâmica da série estudada.