Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.

Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (...

Full description

Autores:
Rengifo Gómez, Juliana
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad ICESI
Repositorio:
Repositorio ICESI
Idioma:
spa
OAI Identifier:
oai:repository.icesi.edu.co:10906/79888
Acceso en línea:
http://www.ncbi.nlm.nih.gov/pubmed/23283340
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3539200
http://hdl.handle.net/10906/79888
Palabra clave:
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ICESI2_f2b4848987a51e5f02cc9c9db8d80e00
oai_identifier_str oai:repository.icesi.edu.co:10906/79888
network_acronym_str ICESI2
network_name_str Repositorio ICESI
repository_id_str
spelling Rengifo Gómez, Juliana2016-08-30T22:01:56Z2016-08-30T22:01:56Z2013-01-0210.1523/JNEUROSCI.2142-12.20130270-6474http://www.ncbi.nlm.nih.gov/pubmed/23283340http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3539200http://hdl.handle.net/10906/79888instname: Universidad Icesireponame: Biblioteca Digitalrepourl: https://repository.icesi.edu.co/Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients. Ca(2+) influx through MS TRPC1 activates the protease calpain, which cleaves the integrin adaptor protein talin to reduce Src-dependent axon outgrowth, likely through altered adhesion turnover. We found that talin accumulates at the tips of dynamic filopodia, which is lost upon cleavage of talin by active calpain. This pathway may also be important in axon guidance decisions since asymmetric inhibition of MS TRPC1 is sufficient to induce growth cone turning. Together our results suggest that Ca(2+) influx through MS TRPC1 on filopodia activates calpain to control growth cone turning during development.12 páginasDigitalapplication/pdfspaSociety for NeuroscienceFacultad de Ciencias NaturalesBiologíaDepartamento de Ciencias BiológicasJournal of Neuroscience, Vol. 33, No. 1 - 2013EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.info:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1Artículoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Comunidad Universidad Icesi – Investigadores33273285ORIGINALrengifo_mechanosensitive_channels_2013.pdfrengifo_mechanosensitive_channels_2013.pdfapplication/pdf3284252http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/79888/1/rengifo_mechanosensitive_channels_2013.pdf14c9985d23863c120ebc65d874855d35MD5110906/79888oai:repository.icesi.edu.co:10906/798882018-10-26 11:31:25.592Biblioteca Digital - Universidad icesicdcriollo@icesi.edu.co
dc.title.spa.fl_str_mv Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
title Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
spellingShingle Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
title_short Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
title_full Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
title_fullStr Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
title_full_unstemmed Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
title_sort Mechanosensitive TRPC1 channels promote calpain proteolysis of talin to regulate spinal axon outgrowth.
dc.creator.fl_str_mv Rengifo Gómez, Juliana
dc.contributor.author.spa.fl_str_mv Rengifo Gómez, Juliana
description Intracellular Ca(2+) signals control the development and regeneration of spinal axons downstream of chemical guidance cues, but little is known about the roles of mechanical cues in axon guidance. Here we show that transient receptor potential canonical 1 (TRPC1) subunits assemble mechanosensitive (MS) channels on Xenopus neuronal growth cones that regulate the extension and direction of axon outgrowth on rigid, but not compliant, substrata. Reducing expression of TRPC1 by antisense morpholinos inhibits the effects of MS channel blockers on axon outgrowth and local Ca(2+) transients. Ca(2+) influx through MS TRPC1 activates the protease calpain, which cleaves the integrin adaptor protein talin to reduce Src-dependent axon outgrowth, likely through altered adhesion turnover. We found that talin accumulates at the tips of dynamic filopodia, which is lost upon cleavage of talin by active calpain. This pathway may also be important in axon guidance decisions since asymmetric inhibition of MS TRPC1 is sufficient to induce growth cone turning. Together our results suggest that Ca(2+) influx through MS TRPC1 on filopodia activates calpain to control growth cone turning during development.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-01-02
dc.date.accessioned.none.fl_str_mv 2016-08-30T22:01:56Z
dc.date.available.none.fl_str_mv 2016-08-30T22:01:56Z
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.none.fl_str_mv Artículo
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.spa.fl_str_mv 10.1523/JNEUROSCI.2142-12.2013
dc.identifier.issn.none.fl_str_mv 0270-6474
dc.identifier.other.spa.fl_str_mv http://www.ncbi.nlm.nih.gov/pubmed/23283340
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3539200
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10906/79888
dc.identifier.instname.none.fl_str_mv instname: Universidad Icesi
dc.identifier.reponame.none.fl_str_mv reponame: Biblioteca Digital
dc.identifier.repourl.none.fl_str_mv repourl: https://repository.icesi.edu.co/
identifier_str_mv 10.1523/JNEUROSCI.2142-12.2013
0270-6474
instname: Universidad Icesi
reponame: Biblioteca Digital
repourl: https://repository.icesi.edu.co/
url http://www.ncbi.nlm.nih.gov/pubmed/23283340
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3539200
http://hdl.handle.net/10906/79888
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv Journal of Neuroscience, Vol. 33, No. 1 - 2013
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 12 páginas
dc.format.medium.none.fl_str_mv Digital
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Society for Neuroscience
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias Naturales
dc.publisher.program.none.fl_str_mv Biología
dc.publisher.department.none.fl_str_mv Departamento de Ciencias Biológicas
institution Universidad ICESI
bitstream.url.fl_str_mv http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/79888/1/rengifo_mechanosensitive_channels_2013.pdf
bitstream.checksum.fl_str_mv 14c9985d23863c120ebc65d874855d35
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital - Universidad icesi
repository.mail.fl_str_mv cdcriollo@icesi.edu.co
_version_ 1814094868436221952