Constrained optimization framework for joint inversion of geophysical data sets

Many experimental techniques in geophysics advance the understanding of Earth processes by estimating and interpreting Earth structure (e.g. velocity and/or density structure). Different types of geophysical data can be collected and analysed separately, sometimes resulting in inconsistent models of...

Full description

Autores:
Sosa Aguirre, Uram Anibal
Tipo de recurso:
Article of investigation
Fecha de publicación:
2013
Institución:
Universidad ICESI
Repositorio:
Repositorio ICESI
Idioma:
eng
OAI Identifier:
oai:repository.icesi.edu.co:10906/78332
Acceso en línea:
http://www.scopus.com/inward/record.url?eid=2-s2.0-84887566536&partnerID=tZOtx3y1
http://hdl.handle.net/10906/78332
Palabra clave:
Soluciones numéricas
Teoría inversa
Sismología computacional
Numerical solutions
Inverse theory
Computational seismology
Automatización y sistemas de control
Automation
Control system
Rights
openAccess
License
https://creativecommons.org/licenses/by-nc-nd/4.0/
id ICESI2_a80c4b20d6450e085b8e19cefe9562f9
oai_identifier_str oai:repository.icesi.edu.co:10906/78332
network_acronym_str ICESI2
network_name_str Repositorio ICESI
repository_id_str
spelling Sosa Aguirre, Uram Anibal2015-09-30T22:24:06Z2015-09-30T22:24:06Z2013-09-1710.1093/gji/ggt3260956-540Xhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84887566536&partnerID=tZOtx3y1http://hdl.handle.net/10906/78332instname: Universidad Icesireponame: Biblioteca Digitalrepourl: https://repository.icesi.edu.co/Many experimental techniques in geophysics advance the understanding of Earth processes by estimating and interpreting Earth structure (e.g. velocity and/or density structure). Different types of geophysical data can be collected and analysed separately, sometimes resulting in inconsistent models of the Earth depending on the data used. We present a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize 1-D Earth's structure. We use two geophysical data sets sensitive to shear velocities: receiver function and surface wave dispersion velocity observations. We study the use of bound constraints on the regularized inverse problem, which are more physical than the regularization parameters required by conventional unconstrained formulations. Specifically, we develop a constrained optimization formulation that is solved with a primal-dual interior-point (PDIP) method, and validate our results with a traditional, unconstrained formulation that is solved with a truncated singular value decomposition (TSVD) for a set of numerical experiments with synthetic crustal velocity models. We conclude that the PDIP results are as accurate as those from the regularized TSVD approach, are less affected by noise, and honour the geophysical constraints. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.engGeophysical Journal International, Vol. 195, No. 3 - 2013EL AUTOR, expresa que la obra objeto de la presente autorización es original y la elaboró sin quebrantar ni suplantar los derechos de autor de terceros, y de tal forma, la obra es de su exclusiva autoría y tiene la titularidad sobre éste. PARÁGRAFO: en caso de queja o acción por parte de un tercero referente a los derechos de autor sobre el artículo, folleto o libro en cuestión, EL AUTOR, asumirá la responsabilidad total, y saldrá en defensa de los derechos aquí autorizados; para todos los efectos, la Universidad Icesi actúa como un tercero de buena fe. Esta autorización, permite a la Universidad Icesi, de forma indefinida, para que en los términos establecidos en la Ley 23 de 1982, la Ley 44 de 1993, leyes y jurisprudencia vigente al respecto, haga publicación de este con fines educativos. Toda persona que consulte ya sea la biblioteca o en medio electrónico podrá copiar apartes del texto citando siempre la fuentes, es decir el título del trabajo y el autor.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Soluciones numéricasTeoría inversaSismología computacionalNumerical solutionsInverse theoryComputational seismologyAutomatización y sistemas de controlAutomationControl systemConstrained optimization framework for joint inversion of geophysical data setsinfo:eu-repo/semantics/articlehttp://purl.org/coar/resource_type/c_2df8fbb1Artículoinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a8519517451762TEXTsosa_constrained_optimization_2013.pdf.txtsosa_constrained_optimization_2013.pdf.txttext/plain70818http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/78332/2/sosa_constrained_optimization_2013.pdf.txt7f6315c3bf20eb88bbec122846bda7f3MD52ORIGINALsosa_constrained_optimization_2013.pdfsosa_constrained_optimization_2013.pdfapplication/pdf1349839http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/78332/1/sosa_constrained_optimization_2013.pdf33b8cf4152793eaa5480df1902ebfd04MD5110906/78332oai:repository.icesi.edu.co:10906/783322020-05-21 20:49:11.203Biblioteca Digital - Universidad icesicdcriollo@icesi.edu.co
dc.title.spa.fl_str_mv Constrained optimization framework for joint inversion of geophysical data sets
title Constrained optimization framework for joint inversion of geophysical data sets
spellingShingle Constrained optimization framework for joint inversion of geophysical data sets
Soluciones numéricas
Teoría inversa
Sismología computacional
Numerical solutions
Inverse theory
Computational seismology
Automatización y sistemas de control
Automation
Control system
title_short Constrained optimization framework for joint inversion of geophysical data sets
title_full Constrained optimization framework for joint inversion of geophysical data sets
title_fullStr Constrained optimization framework for joint inversion of geophysical data sets
title_full_unstemmed Constrained optimization framework for joint inversion of geophysical data sets
title_sort Constrained optimization framework for joint inversion of geophysical data sets
dc.creator.fl_str_mv Sosa Aguirre, Uram Anibal
dc.contributor.author.spa.fl_str_mv Sosa Aguirre, Uram Anibal
dc.subject.spa.fl_str_mv Soluciones numéricas
Teoría inversa
Sismología computacional
Numerical solutions
Inverse theory
Computational seismology
Automatización y sistemas de control
Automation
Control system
topic Soluciones numéricas
Teoría inversa
Sismología computacional
Numerical solutions
Inverse theory
Computational seismology
Automatización y sistemas de control
Automation
Control system
description Many experimental techniques in geophysics advance the understanding of Earth processes by estimating and interpreting Earth structure (e.g. velocity and/or density structure). Different types of geophysical data can be collected and analysed separately, sometimes resulting in inconsistent models of the Earth depending on the data used. We present a constrained optimization approach for a joint inversion least-squares (LSQ) algorithm to characterize 1-D Earth's structure. We use two geophysical data sets sensitive to shear velocities: receiver function and surface wave dispersion velocity observations. We study the use of bound constraints on the regularized inverse problem, which are more physical than the regularization parameters required by conventional unconstrained formulations. Specifically, we develop a constrained optimization formulation that is solved with a primal-dual interior-point (PDIP) method, and validate our results with a traditional, unconstrained formulation that is solved with a truncated singular value decomposition (TSVD) for a set of numerical experiments with synthetic crustal velocity models. We conclude that the PDIP results are as accurate as those from the regularized TSVD approach, are less affected by noise, and honour the geophysical constraints. © The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.
publishDate 2013
dc.date.issued.none.fl_str_mv 2013-09-17
dc.date.accessioned.none.fl_str_mv 2015-09-30T22:24:06Z
dc.date.available.none.fl_str_mv 2015-09-30T22:24:06Z
dc.type.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.local.spa.fl_str_mv Artículo
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.spa.fl_str_mv 10.1093/gji/ggt326
dc.identifier.issn.none.fl_str_mv 0956-540X
dc.identifier.other.spa.fl_str_mv http://www.scopus.com/inward/record.url?eid=2-s2.0-84887566536&partnerID=tZOtx3y1
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/10906/78332
dc.identifier.instname.none.fl_str_mv instname: Universidad Icesi
dc.identifier.reponame.none.fl_str_mv reponame: Biblioteca Digital
dc.identifier.repourl.none.fl_str_mv repourl: https://repository.icesi.edu.co/
identifier_str_mv 10.1093/gji/ggt326
0956-540X
instname: Universidad Icesi
reponame: Biblioteca Digital
repourl: https://repository.icesi.edu.co/
url http://www.scopus.com/inward/record.url?eid=2-s2.0-84887566536&partnerID=tZOtx3y1
http://hdl.handle.net/10906/78332
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv Geophysical Journal International, Vol. 195, No. 3 - 2013
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
institution Universidad ICESI
bitstream.url.fl_str_mv http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/78332/2/sosa_constrained_optimization_2013.pdf.txt
http://repository.icesi.edu.co/biblioteca_digital/bitstream/10906/78332/1/sosa_constrained_optimization_2013.pdf
bitstream.checksum.fl_str_mv 7f6315c3bf20eb88bbec122846bda7f3
33b8cf4152793eaa5480df1902ebfd04
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital - Universidad icesi
repository.mail.fl_str_mv cdcriollo@icesi.edu.co
_version_ 1814094861318488064